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Abstract

The concept of patient flow modelling has attracted managers, commissioners
and clinicians to better understand the operational and clinical functions of
the healthcare system. Understanding major drivers could reduce inefficiencies,
improve patient experience, and most importantly lead to a better outcome for
patients, carers and taxpayers. In this context, we study individual clinical
pathways of chronic obstructive pulmonary disease (COPD) patients, a source
of concern for major stakeholders. In this study, a random effects continuation-
ratio logit model is applied to capture the individual clinical pathways of patients
leading to multiple readmissions. Data on COPD patients were extracted from
the national English Hospital Episodes Statistics dataset. Individual patient
pathways from initial admission through to more than four readmissions are
captured. We notice that as patients are frequently readmitted, males are more
likely to be in the higher risk group than females. Furthermore, the number
of previous readmissions has a direct impact on the propensity of experiencing
a further readmission. This method could easily be implemented as a decision
support tool to determine disease specific (e.g. stroke, congestive heart failure)
probabilities of multiple readmissions. Therefore, this could be a valuable tool
for clinicians (health care managers, policy makers, etc.) for informed decision
making in the management of diseases, which ultimately contributes to improved
measures for hospital performance management.
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1. Introduction

Advances in medicine, a well-informed patient population, and demographic
changes (e.g. an ageing population) mean that the demand on health and social
care services will continue to rise. This makes it more important for us to find
the most efficient and effective ways of delivering the best outcomes for people
who need care and support. Furthermore, given the increasing demand and
capacity constraints, most countries including the United Kingdom (UK) have
forced their health organisations to work under intense pressure. This means
that without affecting the quality of the existing service deliveries, providers
(i.e. hospitals) and purchasers will have to find ways of providing ‘better health
at lower cost ’. Therefore, it is important to strike a good balance between the
need for new capacity and ways of making better use of existing capacity. In
many cases this may mean service re-design to ensure that patients receive the
right care at the right time and in the right place.

Current UK Government policy, as set out in the 2011 Health and Social
Care Bill, establishes outcomes as the measure by which the National Health
Service (NHS) will be judged [1, 2]. As well as adapting to the shift in focus
from process to outcomes, the NHS also faces an unprecedented resource chal-
lenge: net savings of £20 billion must be achieved over the coming 4-5 years,
representing a productivity challenge of around 4% a year [3]. Since 2000, pro-
ductivity in the NHS (useful outputs divided by resources) has fallen by around
1% per year [4]. The key challenge for the NHS, with its budget constrained
system, is to deliver maximum patient benefit, measured as useful outcomes per
pound spent. Health expenditure is estimated to cost the UK economy £120
billion/year [5]. However, in anticipation of tough times ahead, providers and
purchasers are not only interested in the effectiveness of the intervention but
whether the intervention is cost effective. Achieving an understanding of how
best to increase value in the delivery of health care is therefore critical.

Related to this, the concept of patient flow modelling have enabled man-
agers, commissioners and clinicians to better understand the operational and
clinical functions of the health system. Understanding major drivers could re-
duce inefficiencies, improve patient experience, and most importantly lead to a
better outcome for patients, carers and taxpayers.

The medical condition with which the patient is confronted may require a
number of different interactions between services or departments, such as x-
rays, tests and investigations, surgical operations, etc. At each stage of the care
process patients are associated with an activity and resource use, such as the
departments visited and the amount of time required to deliver care (e.g. length
of stay). These studies have been devoted to two types of modelling, namely
conceptual patient pathways and physical patient pathways. Conceptual patient
pathways research has been undertaken to diagnose issues related to length of
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stay (LoS), i.e. the conceptual (or virtual) phases that a patient goes through
before discharge. Here, the interest is in determining the probability of a patient
being discharged from a particular conceptual phase, giving that he/she has
been in care for x number of days. Previous research has been devoted to the
use of markov models [6, 7, 8, 9] and compartmental modelling [10, 11]. For
instance, Faddy and McClean [6] applied a stochastic network approach to LoS
modelling. In their model, a patient’s stay in a geriatric department is viewed as
transitions through a set of ordered phases, where the conceptual phases could
correspond to the increase in disease severity, or some loosely defined stages,
for instance, “short stay”, “medium stay” and “long stay”. However, any phase
found empirically by fitting the model to a dataset may not have such a practical
interpretation. Under this model, the distribution of LoS is a Coxian phase-type
distribution with the least number of phases that provides adequate fit, and the
estimation of model parameters is by maximum likelihood. Using a subset of
data used in [8], the authors show that a model with four phases provides a
good fit to the empirical LoS distribution.

However, incorporating individual patient pathways (instead of explaining
the LoS distribution with virtual phases) within a modelling framework is an
emerging field and so far little research has aimed at quantitatively modelling
physical patient pathways.

Patient pathways can be viewed from two perspectives; operational and clin-
ical. Though these are the traditional perspectives, common characteristics of
both include an entrance, an exit, a path connecting both entrance and exit, and
the random nature of the health care elements. The randomness is embodied
in two features. First, for a given health care service, not all of the elements
in a patient flow network may be applicable to all patients. Second, the time
patients spend at each phase and the time patients spend in the overall network
also implies a degree of randomness. These are the subject specific random ef-
fects. Patient pathways, thus, summarize the individual patient clinical (disease
progression) and operational (movement) experience during the process of care.

Two papers on this subject were found to be highly relevant. The first de-
veloped a stochastic model (semi-Markov processes) [12] to capture individual
patient’s experience during a visit to the local family practice clinic. This esti-
mated the transition probabilities between the paths (waiting room, nurse aide
station, examining room, lab/x-ray, and discharge) visited by the patient. The
second developed a multinomial logit model [13] to capture the individual pa-
tient’s pathway in the process of care, where patient frailties are modelled as
random effects. The approach identified interesting pathways such as those that
resulted in a high probability of death (survival), pathways incurring the least
(highest) cost of care or pathways with the least (highest) length of stay. Patient
specific discharge probabilities from the healthcare system were also predicted.

In [13] it was assumed that the movement of babies from one level of care
to the other until discharge is multinomial. In reality, these movements can be
considered as an improvement in their condition (or vice versa). Hence, it is
plausible to assume that the outcome from previous activity (e.g. care, treat-
ment) is likely to effect the next. In line with our previous work, we introduce
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a continuation ratio random effects model to investigate readmission progres-
sion and the differential effect of gender on these progressions. In an earlier
study, regional disparities were detected in multiple readmissions of COPD in
the UK [14]. Note that the leading causes of emergency readmission are conges-
tive heart failure and COPD [15]. As a result, these two disease categories are
widely studied in the context of emergency readmissions. We therefore focus
on COPD and extract data based on individual patient pathways from initial
admission to hospital through to more than four emergency readmissions, i.e.,
tracking individual patient readmissions longitudinally over the full care cy-
cle and effectively focusing on chronically ill patients. These are known to be
frequent users of our services and highly costly.

In the literature, the definition of readmission varies according to the purpose
of the study, generally from 30 to 90 days [16, 17], but some studies have used
readmissions following certain surgeries, for shorter (14 days) [18] or longer
time window (1 year) [19]. So, if a patient is readmitted within the chosen time
window, then it is regarded as a quality issue otherwise it is just an unplanned
admission. The chosen time windows are generally subjective. Therefore, we
have used an approach [20] that objectively defined the time window for COPD
patients as 36 days. In the present study, based on this time window, we classify
patients into high risk and low risk readmission groups, depending on whether
a patient comes back to the hospital before or after a threshold of 36 days.

The current study has two objectives. First, to introduce a random effects
continuation-ratio logit model, suitable for detecting stage wise transitions, to
patient pathways modelling. Second, we aim at advancing our knowledge with
regard to the application of modelling techniques to patient pathways. By doing
so, the aim is to widen the remit of applications of modelling techniques in health
care management and assess the pertinence of the insights gained from such ex-
ercises. Therefore, given the importance of modelling patient pathways (patient
readmissions in particular), our research can be of great interest to providers
and commissioners of care in England and other countries. For instance, better
understanding the pathways with the least and highest cost of care could enable
healthcare providers to allocate resources (staff, equipment) more efficiently and
effectively, which may lead to improvement in services and cost-effectiveness of
care pathways. Furthermore, our results could enable senior decision makers to
adopt more pro-active and evidence-based methods in the commissioning de-
cision making process, such as re-designing care pathway to improve clinical
outcomes and reduce costs, or identifying bottlenecks of services.

In the next section, we present the National Hospital Episodes Statistics
(HES) data with relevant data analysis; Section 3.1 briefly summarises the gen-
eralized linear random effects models for patient pathways and the estimation
of model parameters; section 3.2 and 3.2.1 describes the continuation ratio logit
model and the results, respectively; section 3.3 extends our modelling approach
to examine gender disparity with the results illustrated in section 3.3.1, the
discussion and conclusion are in section 4 and 5, respectively.
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2. The Data

The Department of Health in England releases annually HES data. The
HES dataset contains personal, medical and administrative details of all patients
admitted to, and treated in, NHS hospitals in England. There are approximately
12 million records for each financial year (in the UK, a financial year is from
1 April to 31 March the following year). The dataset captures all consultant
episodes of a patient during their stay in hospital. A patient may encounter
several successive episodes, collectively known as a spell. For each patient,
readmission time is the time from discharge to admission (the difference between
previous discharge and admission date). We focused our study on COPD, as it
is known to be the leading cause of early readmission in the UK [21, 22]. From
the HES dataset between 1997 and 2004 we extracted 962,656 episodes from
patients who had the primary diagnosis codes corresponding to COPD (ICD-10
codes J40-J44). A set of 696,385 spells were derived. From these spells, the
total number of live discharges from hospital constituted 638,103. From Table
1 we notice that 53% of all admissions were males; the highest admission rate
was amongst the age group 81-90, and the majority of patients had a hospital
length of stay between 6 to 11 days.

Table 1: Characteristics of COPD patients in England between 1997 and 2004.

Variable Category n %
Sex Male 368379 53

Female 328006 47
Age group < 40 7776 1.1

40-50 18239 2.6
51-60 75413 11
61-70 181139 26
71-80 275758 39.6
81-90 125544 18
> 90 12157 1.7

Length of stay < 2 86066 12.3
(days) 2-5 199053 28.6

6-11 228672 32.8
> 11 178607 25.6
NULL 4513 0.65

Admission method Emergency 647275 92.9
Elective 36979 5.3
Other 12657 1.8

To examine the changes in patient admissions and readmissions we illustrate
these over calender years. Between 1997 and 2004, admissions for COPD pa-
tients increased between 1998 and 2003; the percentage of readmission (patients
readmitted within 36 days after discharge) has actually remained relatively sta-
ble from 2000 to 2003 (refer to Table 2).
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Table 2: Levels of readmission for COPD in England for calendar years 1998 to 2003.

Total number High risk Total number Percentage of

of admissions group patients1 of readmissions readmissions 2

1998 96,814 9866 26866 37%

1999 101,819 11338 35552 32%

2000 98,470 12363 40866 30%

2001 99,795 13309 45595 29%

2002 101,970 14012 48178 29%

2003 112,918 15209 53190 29%

3. Methodology

This section develops series of methods based around the continuation ratio
random effects model to investigate readmission progression and the effect of
predictors (e.g. gender) on these progressions. The objective is to capture the
sequential readmission of individual patients by tracking them longitudinally
from their initial admission to subsequent readmissions (see Figure 1), and de-
termine the probability of experiencing further readmission. All patients having
more than four readmissions are grouped. The justification is that we do not
observe many patients having more than five readmissions. Note that each read-
mission is classified as high risk (within 36 days) or low risk group (greater than
36 days), hence a binary outcome at each readmission.

The next section 3.1 illustrates the generalized linear random effects model
for patient pathways and an estimation method based on Gaussian quadrature.

3.1. The generalized linear random effects model for patient pathways

Let Yp(t) = (yp1, ..., ypTp); t = 1, .., Tp be the random vector representing
the combination of observed paths for the pth patient in state Tp. In a multi-
state system, the pathways represent clustered or repeated measurements for an
individual patient. When repeated measurements are taken on patients, classical
regression assumptions are violated. Therefore, random effects models need to
be developed to model the outcome in a view to capture the correlation structure
induced and the patient specific frailty. There are two distinct approaches to
the analysis. First, the heterogeneity can be explicitly modelled; we will refer to
this as the patient-specific approach. These patient specific effects are assumed
to follow a parametric distribution across population, usually normal. Second,

1The high risk group patient column refers to the number of patients readmitted with a
36 day interval

2Percentage of readmissions within a 36 day time window is 100 ×
high risk group/total number of readmissions
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Figure 1: Multiple readmissions as disease progression

the population averaged response can be modelled as a function of covariates
without explicitly accounting for patient to patient heterogeneity.

We propose a generalized linear mixed model (GLMM) for the pathways
through the system with a generic random effects distribution. Generally, a
function of the mean of the random vector representing the observed paths for
the pth patient is modelled with fixed and random parts as follows

h(µp) = Xβp + Zpθp and θp ∼ f (θp|ψ) (1)

where X is the individual design matrix for the fixed effects βp, Zp the
individual design matrix for the random effects θp and h (.) is a linear or non-
linear link function. The random effects are assumed to follow some parametric
distribution f (θp|ψ) , usually a multivariate normal distribution an assumption
made for appropriateness and mathematical convenience. Random effects is a
generic name for the latent dimension driving some activities. For example, this
may be ability in item response theory, utility in marketing research, anxiety in
psychology or frailty in health related research.
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3.1.1. Estimation: The likelihood

The contribution from patient p to the likelihood can be expressed with the
following probability element:

lp (θp|y, β, ψ) =

Tp∏
t=1

P (Yp(t) = yp(t)|β, θp)× f (θp|ψ) . (2)

Here, Tp denotes the number of states the pth patient has visited and
P (Yp(t) = yp(t)|β, θp) = h−1

(
Xβp + Zpθp

)
. We assume that the variability in

paths from each patient is explained not only by the fixed effects but also by
the frailties. Then the marginal likelihood for the pth patient can be written as

lp (θp|y, β, ψ) =

∫
Ω

Tp∏
t=1

P (Yp(t) = yp(t)|β, θp) f (θp|ψ) dθ, (3)

where Ω is the parameter space for θp and f (θp|ψ) is as defined in (1).
There are many estimation methods that have been proposed in the literature
to maximize the resulting marginal maximum likelihood. We will consider direct
maximization of the likelihood using adaptive gaussian quadrature as described
in [23]. Numerical integration will be used to perform the integration of the
resulting marginal likelihood. The integration is approximated by a summation
on a number of quadrature points for each dimension of the integration. Model
estimation using quadrature has been implemented in SAS PROC NLMIXED
[24]. A quadrature method approximates the marginal likelihood by a weighted
sum over predefined abscissas for the random effects. A good approximation is
obtained with an adequate number of quadrature points as well as appropriate
centering and scaling of the abscissas. Generally, adaptive Gaussian quadrature
for the integral over the random effects θp centers the integral at the empirical
Bayes estimate of θp, defined as a vector θ̄p that minimizes the log-likelihood
resulting from

Lp(θp|y, β, ψ) = −log(

∫
Ω

Tp∏
t=1

P (Yp = yp | β, θp)f(θp | ψ)dθp) (4)

with β, and ψ set to their current estimates. The final Hessian matrix from
this optimization is used to scale the quadrature abscissa. The estimates of
the random effects θp are the subject specific frailties used to construct the
subsequent probabilities that are estimated by the empirical Bayes estimator θ̄.
This estimator is given by

θ̄ = E (θp | yp) =
1

P (.)

∫
Ω

θplp (θp|yp, β, ψ) f (θp | ψ) dθp. (5)

The variance estimator is obtained similarly as

V
(
θ̄
)

=
1

P (.)

∫
Ω

(
θp − θ̄

)2
lp (θp | yp, β, ψ) f (θp | ψ) dθp, (6)

8



where P (.) = P (Yp = yp | β, θp) and lp (θp | y, β, ψ) is the likelihood of (2).

3.2. The generalized continuation ratio logit model

The continuation ratio model makes successive comparisons for all lower
categories on a scale to the next succeeding one. Thus, the first category is
compared to the second, the first two to the third and so on. Obviously, this
comparison is asymmetric, and one could start from the top of the scale, instead
of the bottom. This model describes the probability of moving one step on
the scale, given present position. Considering the longitudinal nature of the
data, the continuation ratio model is an appropriate model to adapt. For a
response with K categories there will be K − 1 comparisons. For instance, if
the multinomial distribution withK = 5 ordinal readmissions, with probabilities
πk, k = 1, 2, 3, 4 with π0 = 1−π1−π2−π3−π4, where πk refers to the probability
of the kth readmission. We can reparameterise as the series of conditional
probabilities λ1 = π1

1−π2−π3−π4
, where λ1 refers to the probability of a patient

experiencing a second readmission after the first. Likewise, λ2 = π2

1−π3−π4
, λ3 =

π3

1−π4
and λ4 = π4. Since individual patient experience can be seen as multiple

readmissions, which constitutes repeated measurements, this serial dependence
can also be included into the GLMM approach. Two types of dependence might
be expected: those arising from heterogeneity among individual patients, often
called frailties (in our case modelled as random effects) and those from serial
correlation in time (not applicable in this investigation). Therefore, we propose
a random effects variant of the continuation ratio model where λk’s is now
regressed not only on explanatory variables but also on random effects as

λ = logit

(
πk

1−
∑
j 6=k πj

)
= Xpβ + Zpθp (7)

and the patient population based on the random effects θp is assumed to have
a normal distribution with mean 0, variance σ2

p.Xp is a matrix of patient specific
covariates including previous readmissions; Zp is a column of ones referring to
a random intercept; β is the population effects corresponding to Xp. This is a
class of linear random effects model.

3.2.1. Results

The generalized continuation ratio logit model is applied to the HES data
set summarised in section 2. Multiple readmissions play a key role in measuring
disease severity [21]. The HES is a large data set, where no amount of data
exploration will bring out the enormous information embedded in the data.
Here, the progression to multiple readmissions as a function of initial admission
and series of readmissions is modelled, hence the patient flow is clinical rather
than operational.

Individual patient pathways from current readmission through to at least
four previous readmissions is captured within this model. In this context, cur-
rent can be defined as the patient being observed at any stage of progression.
Suppose a patient is on their 2nd readmission, this could be their current and
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1st can be their previous readmission. Here, the focus is to determine the prob-
ability of being readmitted for a third time. Likewise, if we observe a patient
to be in their sixth readmission, this is recognized as a patient who has ex-
perienced four or more readmissions. Hence, four or more readmissions is the
current readmission, and we look into the past history of readmissions to deter-
mine the probability for their next readmission. We present the model based
results in the following order by group of patients according to the number of
readmissions.

Model I: Group of patients having only current readmission (1st readmis-
sion)

Model II: Group of patients having a current readmission (2nd readmis-
sion) and a previous readmission (1st readmission), i.e, at most two read-
missions

Model III: Group of patients having a current readmission (3rd readmis-
sion) and two previous readmissions (1st and 2nd readmission), i.e, at
most three readmissions

Model IV: Group of patients having a current readmission (4th readmis-
sion) and three previous readmission (1st, 2nd and 3rd readmission), i.e,
at most four readmissions

In other words, we want to determine the probability of a patient belonging
to any of the lower group advancing to a higher group as a function of pa-
tients characteristics, such as gender, age, readmission history, total length of
stay in hospital prior to discharge, number of previous readmissions, Charlson
co-morbidity index, index of multiple deprivation(IMD), ethnicity, reasons for
discharge and discharge destinations.

The Charlson index of comorbidity [25] is a measure of patient severity,
which is based on ICD-10 diagnosis codes, where various weights are attached
to the presence of conditions, such as congestive heart failure and cancer. The
IMD [26] is a weighted index based on seven factors of deprivation, which can be
recognized and measured separately, and are related to: income; employment;
health and disability; education, skills and training; barriers to housing and
services; living environment and crime. The English Indices of Multiple Depri-
vation identifies the most deprived areas across the country. They combine the
seven indicators into a single deprivation score for each small area in England.
Charlson comorbidity index and IMD are not available in the HES dataset and
a number of steps had to be taken to incorporate this information.

The Charlson co-morbidity index is only statistically significant (see Table 3)
for patients having more than four readmissions (Model IV). Patients belonging
to this group are suffering more from other opportunistic infections as a result
of COPD (and or related diseases contributing to multiple readmissions for
COPD).

Methods of discharge are as follows: discharged on clinical advice or with
clinical consent (clinical); self discharged or discharged by a relative or advocate
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(selfadv); discharged by a mental health review tribunal (tribunal); and death.
Note that death records from this dataset has been removed because interest
lies in modeling readmissions, as deceased patients cannot be readmitted. Des-
tination of discharge are as follows: the usual place of residence including no
fixed abode (home); Penal establishments (penal); NHS other hospital provider
or nursing/residential homes (NHS); local authority residential accommodation
(local); and non-NHS run hospital, nursing or residential homes (nonhs).

There are no significant age effects on having only a first readmission. How-
ever, significant age effects can be seen in other readmission groups. There
is a slight increase in the number of readmissions as COPD patients become
older, making older patients more prone to multiple readmissions. The same
phenomenon could be observed for length of stay (LOS), where multiple read-
missions is associated with prolonged hospital stay. The index of multiple de-
privation (IMD) increases with multiple readmissions, making people who are
highly deprived to be more likely to have multiple readmissions. IMD, however,
is lower for the group of patient with three previous readmissions. There is a
significant decrease in the number of new admissions as readmission progresses
after adjusting for death on admission. Progress in readmissions results in in-
creased readmission, for example patients with only one readmission before the
current are less likely to progress to multiple readmissions. Across the groups it
is less likely for any patient to be readmitted as low risk, that is most patients
across the group are more likely to be readmitted as high risk patients as read-
mission progresses. This might be true since multiple readmissions are clinically
related to advancement in the medical condition leading to more frequent visits
to hospitals.

The majority of patients in each of the groups are White and people of Asian
origin. Surprisingly, gender doesn’t seem to be playing any significant role in
multiple readmissions. Since smoking is the main causal agent of COPD, gen-
der might not significantly play a role in choosing a “good” smoker. Though,
female smokers may be at greater risk of developing COPD, possibly due to sex
differences in the metabolism of cigarette smoke [27], nothing is known on how
gender influences multiple COPD readmissions. The model presented above
might not be adequate to capture the gender difference in multiple COPD read-
missions. Therefore, in the next section, we investigate gender bias in COPD
readmission progression, since it has been shown that gender difference in the
diagnosis, treatment and management of COPD is an important research area
that is still lagging behind in the epidemiological study of COPD [27].

3.3. A continuation ratio logit model for gender disparity

Gender disparities for those treated for COPD have been studied amongst
many public health issues. However, for those experiencing frequent readmis-
sions, these have have not been considered. The objective here is to determine
the probability of a patient having an early readmission (or probability of being
readmitted within 36 days), given patient and gender specific previous read-
missions. Several studies investigated gender disparities in the outcomes and

12



treatment of COPD. These studies have examined mortality disparities of pa-
tients by gender. For a review of studies on gender differences in the diagnosis,
management, and surveillance of COPD, refer to [27]. Following the footsteps
of cardiovascular researchers, clinicians and the pulmonary scientific commu-
nity on the exploration of how gender may impact the diagnosis, treatment,
and surveillance of COPD, we hereby investigate gender disparities in COPD
readmissions. This has not been investigated by any other researchers in the
field of COPD epidemiology and public health. Investigating individual patient
pathways, i.e. following patients from their initial admission to subsequent read-
missions, we determine the probability of experiencing a further readmission,
based on the variation between males and females.

The continuation ratio logit model of the previous section is modified to
accommodate gender bias as follows:

λ = logit

(
πk

1−
∑
j 6=k πj

)
= Xp(β

? − δ?gender) + Zpθp (8)

where all the arguments are as presented earlier and the patient popula-
tion based on the random effects θp is partitioned into male and female sub-
populations each having a normal distribution with mean 0, variance σ2

male and
µfemale, variance σ2

female, respectively. The mean of the male is fixed at 0 to
ease computational complexity. δ is the gender disparity parameter imposed on
β.

3.3.1. Results

As in section 3.2.1, we present the results according to the number of read-
missions. Model I referred to the group of patients having only current read-
mission (1st readmission), Model II the group of patients having a current read-
mission (2nd readmission) and a previous readmission (1st readmission), i.e,
at most two readmissions, and so on. In this section we further examine to
see if these results will be different if the fourth group is split into two, that
is, an additional group with four readmissions and at least five readmissions.
Note that in section 3.2.1 we modelled individual patient pathways from current
readmission through to at least four previous readmissions and if a patient had
6 previous readmissions this was considered to be at least four readmission.

Result for Group I

In this group, there are 444,495 observations, which constitutes 69% of all
the records extracted from the HES dataset. These patients are seen for the
first time as a readmission and no previous records of readmission are known.
Approximately 24% are classified as high risk group (HRG) of which 56% are
male. From the 76% of low risk group (LRG) patients, 52% were male. In
Table 4 Model I, we present the modelling results for this group of patients
having only a current readmission (1st readmission). We notice that it is less
likely to progress beyond the current readmission for this group of patients

13



(log-odd − 2.2907, p < .0001). Therefore, the probability of predicting the sec-
ond readmission from this model is low, i.e., patients with only a 1st readmission
are less likely to experience multiple readmissions (e−2.2907 = 0.10). In terms of
gender disparity, female patients with a single readmission are about 67% more
likely than males to have multiple readmissions (log-odd 0.5141, < .0001) and
they are just about 5% more likely to return as HRG (log-odd 0.0468, .0444) .

Result for Group II

This group constitutes 60,916 records, which accounts for 9% of the extracted
HES dataset. These patients are observed for the second time as a readmis-
sion with one previous readmission. From this extraction, 74% are classified
as LRG of readmission of which 51% are male. Here, we notice that it is 28%
more likely to progress beyond the current readmission for this group of patients
(log-odd 0.2458, p < .0001), i.e. patients with a current readmission and a previ-
ous readmission are more likely to experience multiple readmissions. Females are
about 68% more likely than males to experience multiple readmissions after their
current and one previous readmission (log-odd 0.5181, p < .0001), whereas they
are less likely to belong to the HRG of readmission (log-odd − 0.0982, p = .0444).

Result for Group III

This group has 37,413 records, which is about 5% of all the records extracted.
These patients are observed twice before their current readmission (3rd readmis-
sion). About 69% are classified as LRG of which 51% are male. From the 31%
in the HRG, approximately 55% are male. In Table 4 Model III, the result of the
modelling shows that it is more likely to progress beyond the current readmission
for this group of patient, taking into account that they have been readmitted
twice before (log-odd 0.2958, p < .0001), i.e. patients with a current readmis-
sion and two previous readmission are more likely to have multiple readmission.
Females in this group are less likely to have multiple readmissions after their cur-
rent and two previous readmissions (log-odd − 2.2279, p < .0001) . Gender has
no significant effect on LRG or HRG of readmission (log-odd 0.0702, p = .0242) .

Result for Group IV

This group is based on those patients with a current readmission (fourth
readmission) and at most three previous readmissions (24,725 records - 4% of
HES), where 66% are classified as LRG of readmission (51% are male). Table 4
Model IV shows that it is more likely to progress beyond the current readmission
for this group of patient’s taking into account that they have already been read-
mitted on three occasions (log-odd 0.3455, p < .0001). Females are less likely
than males to experience multiple readmissions (log-odd − 2.0710, p < .0001) .,
and gender has no effect on LRG or HRG of readmission (p > .05).

Result for Group V
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This group (76,354 records, 12% of HES dataset) are those who have ex-
perienced at least four previous readmissions before their current readmission
(more than four readmissions). Here, 54% are classified as LRG (52% are male).
Table 4 Model V illustrates that it is more likely to progress beyond the cur-
rent readmission for this group of patient’s, taking into account that they have
been readmitted at least four times previously (log-odd 0.3457, p < .0001), i.e.
patients with a current readmission and four previous readmissions are more
likely to have multiple readmissions. Females in this group are less likely than
males to have multiple readmissions (log-odd − 1.8310, p < .0001) . Patients be-
longing to the HRG are more likely to have multiple readmissions (p < .0001.)
and gender has no effect on readmission based on LRG or HRG (p > .05).

4. Discussion

The recession and the banking crisis forced the UK government to cut fund-
ing to public services. During 2010-11, the National Health Service will need to
save £20bn over the next 4-5 years, and thus every service provider and pur-
chaser is faced with the challenge of making the best use of their resources and
showing value for money at every opportunity. One of the most effective ways
of doing this is to truly understand service provision and thus make informed
decision in the face of uncertainties, e.g. is our services improving patient out-
comes, is it effective, and are there any unknown patterns and trends in the use
of our services?

The recent Transparency in Outcomes [28] paper clearly stresses the impor-
tance of measuring the outcomes of care as well as structure and process in
order to evidence and drive up quality. Providers and purchasers seek to ensure
that their funds are used effectively to address the underlying determinants of
patients in their local population. They need to constantly identify where de-
velopments and changes need to occur and predict the outcomes of services to
improve both patient outcomes and practice in relation to the organisation and
delivery of health care.

Given that healthcare outcomes (readmissions in particular) are at the heart
of the UK Government’s (and other countries) initiative towards improving pa-
tient satisfaction and safety, it is important that robust and effective method-
ologies are developed to better understand the behaviour of those patients who
are frequently readmitted, that is, focusing on the main drivers associated with
patients progression to multiple readmissions. From the point of view of indi-
vidual patients, hospital managers and primary care trusts, the identification of
these risk factors is of considerable importance.

In essence, the four models profile COPD patients based on readmission
groups and relate group membership to characteristics, demographics and prior
use of medical services. For example, in all the models, it can be noticed that
the propensity to experience a second readmission is higher for those who had
a first readmission. Therefore, this model is very useful in detecting the most
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critical threshold at which multiple readmissions are more probable. Clinicians
should note that a first readmission signifies a problem in the process of care and
if care is not taken this may be the beginning of many subsequent readmissions.

Exploring how gender may impact the diagnosis, treatment and surveillance
of COPD is beginning to be popular [27]. This is made possible by the complex
questions surrounding how differences in male/female biology may interact with
gender differences in environmental, societal, cultural and behavioural determi-
nants of health to influence outcomes. Our results suggest a critical point in
readmission progression to be those patients with a second readmission. How-
ever, the result of gender disparity means that female patients are worse off at
this critical point. Therefore, clinicians should especially note female patients
on a second readmission as they are more prone to more readmissions beyond
the second readmission.

Note that pathways capture both the operational and clinical experience of
patients within the health system. By representing these in a model, patients
experience can be studied to detect points at which clinical decisions were taken
and the outcome of such decisions. It also offers an opportunity to make ad-
justments when necessary to improve the clinical outcome.

Rapid patient discharge to free beds for incoming patients is a controversial
debate in the UK. Some argue that patients may have been discharged too soon,
raising the issue that patients are being discharged ‘sicker and quicker’ [29].
As a result, early discharges may generate high levels of readmissions, which
could possibly be seen as patients being discharged inappropriately. However,
results suggest that the LOS effect on readmission progression is minimal in
this study population. In this respect, other measures different from keeping
patients unnecessarily longer in hospital and which may result in the reduction of
emergency readmissions, increase patient and staff satisfaction, reduce waiting
lists, increase the performance of the hospital, and given the economic conditions
in the UK, cost savings need to be developed.

Almost all public organisations including the NHS in England are data rich,
but starving for information. This suggests a potential to bring together data
sources to routinely evaluate outcomes. Given this vast amount of data, the
current study has led to some important insights concerning COPD patient
readmissions progression and their behaviour in the health care system. How-
ever, it has only added to our thirst to learn more about this important element
of the management of specific disease categories. The results of this research
have already paved the way to the investigation of more issues regarding the
management of healthcare services. For example, it would be very interesting
to know the effects of management policies, changes to admission policies, inte-
gration of services, and restructuring of delivery structures on the performance
of these systems.

Our research has the potential to have numerous benefits for providers and
purchasers of health and social care, such as: 1) the availability of techniques to
support strategic and business planning through effective evaluation of patient
readmissions; 2) the transferable skills in advanced data analytics using large
and complex datasets; 3) the health outcomes for the local population through
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more timely and effective interventions (reduction in waiting lists, mitigating
financial risks and hence cost savings); 4) developing a holistic understanding
of how the local population accesses and uses health service; 5) identification
of patterns and pathways of service usage previously unrecognized; 6) under-
standing how information is applied in making strategic decisions, particularly
in the health sector based around emergency readmissions; and 7) practical
involvement in how information informs commissioning decisions.

5. Conclusion

Under new government plans NHS hospitals will face financial penalties if
patients are readmitted as an emergency within 30 days of being discharged.
Hospitals in England will be paid for initial treatment but not paid again if a
patient is brought back in with a related problem.

There is an acknowledgment of a lack of robust analysis of routine data to in-
form models that measures outcomes (i.e. readmissions), cost and effectiveness.
Substantial and often unwarranted variations exist across the NHS and other
health systems both in terms of inputs to care and the useful outputs (quality,
or outcomes) of care. In this context, it is important that clinicians, hospital
managers and commissioners have a better understanding of “individual” pa-
tient pathways from initial admission to subsequent readmissions (longitudinal
cycle of care).

To truly understand the operational and clinical functions of the health-
care system, patient centred outcomes (e.g. readmissions) must be aggregated
around the patient rather than discrete services. It is the longitudinal aspect of
providing care that matters and so far very little research has aimed at tracking
individual patient pathways that are modelled within an advanced statistical
framework.

The majority of published papers can be grouped into two categories: 1)
risk factors and prediction models [30, 31]; and 2) whether readmission is an
indicator of poor process of care (quality of care) [32, 33, 34, 35, 36, 37, 38].
Our research aims at advancing our knowledge in this newly emerging field
of modelling care pathways, hence does not belong to either categories. Our
primary objective is to showcase this new approach as an additional decision
making tool that can be complementary to other techniques.

It is accepted that clinical factors explain variations better than using ad-
ministrative data. However, in the absence of such data, we have developed a
framework that incorporates patient history of readmissions with frailty mod-
elled as random effects, an important concept often neglected in this area of
research. Using the national HES dataset, we demonstrate the use of clini-
cal pathway to model probability of progression to multiple readmissions. The
models show differences in case-mix. Individual profiles (pathways) of multiple
readmissions is a novel approach that has been modelled to capture patient to
patient heterogeneity, ensuring that individual patients progression to multiple
readmission is incorporated into the model. In the majority of studies, this het-
erogeneity is not accounted for due to its complexity and the lack of availability
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of data. Though we have only considered COPD patients, this model could
easily be adapted to other disease categories. This method could easily be im-
plemented as a software toolkit to determine disease specific (e.g. COPD, stroke,
congestive heart failure, etc) probabilities of multiple readmissions. Therefore,
this could be a valuable tool for clinicians (health care managers, policy mak-
ers, etc.) for informed decision making in the management of diseases, which
ultimately contributes to improved measures for hospital performance manage-
ment.

We have presented models that capture patients pathways, but an elegant
way will be to jointly model length of stay (for each readmission patients stay
in hospital for a period of time) and clinical flow paths for improvement in the
process of care and better planning. Therefore, future work will be devoted to
the joint analysis of patients pathways and length of stay. We will develop a
method for the joint modelling of mixtures of ordinal (multiple readmissions)
and continuous (i.e. LOS) outcomes, since models for this type of problem are
new to health services research in general and LOS modelling in particular.

In conclusion, we demonstrated that the random effects continuation ratio
logit model can be used to capture COPD patients progression to multiple read-
missions as a function of initial admission, previous readmissions and predictors
(e.g. IMD, age, gender). This model is very useful in detecting the most critical
threshold at which multiple readmissions are more probable, thereby informing
decision making in the management of COPD.
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