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Towards an exact description of
electronic wavefunctions in real solids
George H. Booth1, Andreas Grüneis1,2, Georg Kresse2 & Ali Alavi1

The properties of all materials arise largely from the quantum mechanics of their constituent electrons under the
influence of the electric field of the nuclei. The solution of the underlying many-electron Schrödinger equation is a
‘non-polynomial hard’ problem, owing to the complex interplay of kinetic energy, electron–electron repulsion and the
Pauli exclusion principle. The dominant computational method for describing such systems has been density functional
theory. Quantum-chemical methods—based on an explicit ansatz for the many-electron wavefunctions and, hence,
potentially more accurate—have not been fully explored in the solid state owing to their computational complexity,
which ranges from strongly exponential to high-order polynomial in system size. Here we report the application of an
exact technique, full configuration interaction quantum Monte Carlo to a variety of real solids, providing reference
many-electron energies that are used to rigorously benchmark the standard hierarchy of quantum-chemical
techniques, up to the ‘gold standard’ coupled-cluster ansatz, including single, double and perturbative triple
particle–hole excitation operators. We show the errors in cohesive energies predicted by this method to be small,
indicating the potential of this computationally polynomial scaling technique to tackle current solid-state problems.

Although density functional theory has been the workhorse of com-
putational materials science for several decades1, systematic routes to
improve the crucial but approximate exchange-correlation functionals
do not exist2. In contrast, for molecular systems, a systematic hierarchy
of approximate yet highly successful quantum-chemical techniques,
such as coupled-cluster theory, has long been established3. This hierar-
chy has not yet been explored in solids, although initial implementa-
tions of its lower levels have been encouraging4–11. Part of the reason for
this is the high computational complexity of quantum-chemical meth-
ods. The computational cost grows rapidly with the number of con-
sidered electrons N and with the basis set size M. Traditional full
configuration interaction (FCI), that is, exact diagonalization, has
combinatorial scaling and can cope with at most some ten electrons
in a small basis; and even coupled-cluster methods, although requiring
only a computational time that is polynomial in M and N, are extremely
expensive. However, recent developments in methodology, as well as
the increase in computer power, mean that it is now possible to address
their accuracy and applicability in this domain.

In the development of quantum chemistry, FCI has played an
invaluable benchmarking role, by providing exact results within a
given basis. This has enabled the electron correlation problem to be
addressed in isolation from other complicating factors inherent when
comparing to experiment12. Moreover, FCI enables us to assess the
degree to which the electronic wavefunction is dominated by a single
determinant, and therefore which systems are likely to be well
described by approximations such as many-body perturbation theory
and coupled-cluster theory13. In solids, however, the absence of FCI
means that the accuracy of such approximations cannot be easily
gauged, especially in systems where correlations are expected to be
strong. Here we provide, for the first time to our knowledge, FCI-
quality energies in a range of realistic solids and unambiguously
evaluate the accuracy of high-level quantum-chemical methods.

A further motivation for the application of quantum-chemical
methods to solids comes from the multitude of recent developments,

which hold the promise to reduce the computational cost beyond our
present consideration. These include optimized virtual spaces14, explicit
correlation15,16, exploitation of locality of correlation5, and others17–19,
and should be directly transferable to the solid state. Combining high
accuracy with increased efficiency, quantum-chemistry methods hold
the promise to routinely bring high accuracy to computational mate-
rials science.

FCIQMC and the quantum-chemical hierarchy
The FCI quantum Monte Carlo (FCIQMC) method has emerged as a
tool to calculate energies that are essentially identical to the true
correlation energy captured by the basis set, whilst having a signifi-
cantly lower computational scaling than a traditional brute force
diagonalization of the problem (FCI). This makes it ideally suited
for a systematic benchmarking of wavefunction-based methods in
the solid state20–25. This method involves a stochastic sampling of a
Slater determinant space constructed from the basis set—a function
space of orthonormal antisymmetrized determinants in which the
wavefunctions are expressed. This method has previously been
applied to molecular systems20–24 and the homogeneous electron
gas25, where energies were calculated that compared favourably, or
in some cases surpassed in accuracy, those achieved with state-of-the-
art diffusion Monte Carlo (DMC) techniques26. This provides the
confidence to tackle more realistic solid-state systems here.

Although it is possible for DMC to be used as a benchmark for
quantum-chemistry methods and vice versa27, DMC does not operate
in a Slater determinant space, but rather a real space representation of
the wavefunction. As such, it would require quantum-chemical cal-
culations to be converged to high accuracy with respect to the basis set
size before any meaningful comparisons could be drawn. Instead, by
comparing to values obtained in the same Slater determinant basis,
robust comparisons between FCIQMC and more approximate dia-
grammatic methods can be drawn without the need for absolute
convergence. More approximate methods can then also be used to
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extrapolate to the infinite basis set limit14,17,28. Additionally, DMC
requires an approximation for the nodal surface of the wavefunction.
Although this error can be made relatively small29,30, releasing the
nodal surface is notoriously difficult for solids and greatly increases
the computational demand. Similarly, another variant of QMC meth-
ods, auxiliary-field quantum Monte Carlo (AFQMC), although now
operating in a space of Slater determinants and with favourable scal-
ing, requires analogous constraints within the phaseless approxi-
mation in order to go to realistic system sizes and avoid transient
energy estimates31,32.

Here we illustrate the extension of the FCIQMC method to the solid
state. The introduction of translational and crystal momentum sym-
metries, which arise from working with finite simulation cells with
periodic boundary conditions, necessitates a change to the ‘walker’
dynamics and ‘initiator’ rules (see below for descriptions). In order
to take advantage of these properties, the method is reformulated for
complex wavefunctions. The presence of a ‘phase’ problem, rather than
a simpler sign problem, is considered. A range of systems, from the
extensively studied lithium hydride, to other ionic, covalent and rare
gas solids is considered, while benchmarking the established quantum-
chemical methods of second-order Møller–Plesset theory (MP2)33,
coupled-cluster singles and doubles (CCSD)34, and the first imple-
mentation of perturbative triples (CCSD(T))35 for periodic systems.
These three methods are generally considered to possess a favourable
trade-off between accuracy and cost, and are the most widely used of all
quantum-chemical methods. Finally, we study the far more complex
electronic structure of the charge-transfer solid NiO, to evaluate the
ability of these quantum-chemical methods to handle strong correla-
tion effects, where deficiencies are likely to be exposed.

Sampling in the solid state
The recently developed FCIQMC method20–24 involves a discrete sam-
pling of the wavefunction by signed ‘walkers’ which stochastically
evolve within a Hilbert space of N-electron Slater determinants as
illustrated in Fig. 1. The method converges rapidly with the number
of walkers to the FCI limit, and generally the number of walkers
required is a tiny fraction of the Hilbert space. This leads to a huge
compression in the wavefunction information, while correctly repro-
ducing exact time-averaged properties. The reason that a sufficient
number of walkers is required has to do with overcoming the ‘fermion
sign problem’ present in the Monte Carlo sampling of any fermionic

wavefunction36. The sign problem in this space manifests itself in the
presence of a lower-energy state characterized by a combination of
the 6Y degenerate solutions, which if not suppressed, leads to an
exponential increase in noise. The growth of this state is controlled in
FCIQMC by annihilation between walkers of opposite signs, which
stabilizes the wavefunction to one signed solution20,37. The discrete
space of Slater determinants allows FCIQMC to implement this anni-
hilation exactly, and provided the walker population is large enough,
will directly overcome the sign problem without requiring constraints
on the wavefunction.

Because walker annihilation can only occur on occupied determi-
nants, it is important to ensure that the newly occupied space remains
sign-coherent to the currently sampled wavefunction. This is the
rationale behind the ‘initiator’ rules used in the i-FCIQMC method22,
which is used exclusively in this work, whereby newly occupied deter-
minants must have originated from a determinant with a popula-
tion greater than a parameter nadd. By restricting the growth of the
occupied space in this way, the walker density and hence annihilation
rate is kept high, ensuring that propagation of noise in the system is
kept to a minimum. This biases the dynamic in a small way, but
rigorously converges onto exact energies of the Hamiltonian as the
walker number increases.

The determinants in this work are composed from antisym-
metrized products of one-electron orbitals obtained from a prior
Hartree–Fock calculation in a large basis of periodic plane waves
within the framework of the projector-augmented wave method, as
implemented in VASP. If these orbitals are strictly real then the wave-
function Y can also be real20. In this work, however, the orbitals are
complex Bloch functions, to account for the translational invariance
of the potential. With these we can construct many body wavefunc-
tions and use k-point sampling to ensure convergence, rather than
sampling ever larger unit cells to remove finite-size effects.

Because it is necessary to correlate between sampled k-points, the
number of explicitly correlated electrons and orbitals increases line-
arly with the number of sampled k-points yielding combinatorial
scaling in the size of the Hilbert space (essentially exponential
with the number of k-points). However, performing this sampling
increases the number of zero Hamiltonian matrix elements be-
tween determinants, as crystal momentum must be conserved. By
implementing an algorithm to stochastically generate only these
momentum-allowed excitations, a saving that grows quadratically
with the number of k-points is achieved, because both the accessible
space is reduced, and the magnitude of the time step is increased.

To take advantage of these savings, it is necessary to work with
complex orbitals, requiring a complementary set of both ‘real’ and
‘imaginary’ walkers in the FCIQMC dynamic, and a reformulation of
the algorithm. The master equations of the FCIQMC method follow
naturally from the imaginary-time Schrödinger equation, and are
given by

{
dNi

dt
~ Hii{Sð ÞNiz

X

j=i

HijNj ð1Þ

where Ni represents the now complex walker population on deter-
minant Di, t represents imaginary time, S is a strictly real energy-
offset parameter denoted the ‘shift’, which controls population
growth, and Hij~ Di Ĥ

�� ��Dj
� �

is the many-electron Hamiltonian eval-
uated between two determinants. In each iteration, for each walker
(real and imaginary) on a determinant Di, a suitable momentum-
allowed excitation, Dj, is generated. The real (<) and imaginary ( )
parts of Hij are considered in turn, and two attempts at generating new
walkers on Dj are stochastically realized. For real parent walkers:

p<s j ijð Þ~
dt < Hij

� ��� ��
pgen j ijð Þ ; sign~{sign < Ni½ �< Hij

� �� �
ð2Þ
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Figure 1 | FCIQMC in a nutshell. The antisymmetric many-electron
wavefunction Y(r1, r2, …, rN) is represented in a space of determinants
constructed out of Hartree–Fock (HF) orbitals (occupied as well as unoccupied
one electron wavefunctions, w(r)). Walkers are encoded by a bit string as shown
on the right, where each bit corresponds to one orbital. ‘1’ (red) and ‘0’ (black)
imply that the orbital is occupied and unoccupied, respectively. Because some
Slater determinants (for instance, the Hartree–Fock determinant) have a very
high occupation probability, additional bits are reserved to count the signed
number of real and imaginary walkers on a determinant. The computational
procedure involves selecting a new determinant from an existing walker with a
certain sign and transition probability as discussed in the main text. The
excitation number of a determinant refers to the numbers of holes which need
to be introduced in the Hartree–Fock determinant to generate the determinant.
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ps j ijð Þ~
dt Hij

� ��� ��
pgen j ijð Þ ; sign~{sign < Ni½ � Hij

� �� �
ð3Þ

and for imaginary parent walkers:

p<s j ijð Þ~
dt Hij

� ��� ��
pgen j ijð Þ ; sign~{sign Ni½ � Hij

� �� �
ð4Þ

ps j ijð Þ~
dt < Hij

� ��� ��
pgen j ijð Þ ; sign~{sign Ni½ �< Hij

� �� �
ð5Þ

where t is the timestep for the simulation, and p<s and ps indicate the
probability of creating real and imaginary child walkers, respectively.
pgen(jji) is the probability of generating determinant Dj from Di. After
this step, the ‘death’ step is performed for each occupied determinant,
with the same death probability for the real and imaginary walkers
of dt(Hii 2 E0 2 S) stochastically realized, where E0 is a reference
energy, and Hii is now strictly real. A final annihilation step occurs
every iteration, where real and imaginary walkers are separately con-
sidered, and pairs of opposite sign on the same determinant are
removed from the simulation.

The value of S can be used as a strictly real measure of the correla-
tion energy of the problem; however, provided a good overlap of the
walker distribution with a reference wavefunction D0 (generally taken
to be the Hartree–Fock determinant) can be found, an averaged pro-
jected estimator is often less noisy:

E tð Þ~
D0 Ĥ
�� ��Y tð Þ

� �

D0 Y tð Þjh i ð6Þ

where ÆD0jY(t)æ 5 N0. As opposed to S, E(t) is now a complex quant-
ity, where in order to achieve real energies, the imaginary part of the
energy must cancel to zero in a non-trivial way. In order to test this,
we considered rock-salt-structured LiH sampled using 2 3 2 3 2
k-points. By choosing all k-points to lie at the C-point or Brillouin
zone boundary, it was possible to take linear combinations of the
orbitals to give a strictly real basis. This is compared to the complex
basis in Fig. 2.

It can be seen that all methods, including FCIQMC, agree exactly
between the two bases, and that in the complex basis, the imaginary
component of the energy converges to zero within small error bars.
Although there is the potential for rotations of the wavefunction in the
complex plane, it is observed that the discretization of the wave-
function amplitudes prevents this from happening, and global U(1)
transformations are thus suppressed after an initial arbitrary phase
factor is determined. This indicates that there is no more of a sign-
issue to overcome with annihilation events than that of the original
real formulation of the dynamics.

Real solids and the accuracy of quantum chemistry
Having established the accuracy and efficiency of the complex
FCIQMC walker dynamics, it was initially tested on the most widely
studied solid to date, rock-salt-structured LiH (refs 6–9, 11, 17, 27).
We first benchmark the accuracy of the MP2, CCSD and CCSD(T)
energies for this system, by considering the deviation of each from
FCIQMC values. Figure 3 shows an equation of state for a range of
volumes, with a 3 3 3 3 3 k-point sampling, in a minimal basis
required to capture any non-dynamic correlation.

The efficient sampling of the i-FCIQMC method is clear, where the
3 3 3 3 3 k-point mesh correlates 54 electrons in a space of ,1030

determinants, with convergence to the exact energy obtained after

only ,50 million walkers, as demonstrated in Fig. 4a. The MP2 values
are clearly shifted to higher energies compared to FCIQMC, and
because this error changes significantly with volume, the MP2 equi-
librium volume and bulk modulus deviate by 3.5% and 6.5%, respec-
tively, from the FCIQMC values.

CCSD energies are virtually parallel to the FCIQMC results, yield-
ing a similar volume and bulk modulus as FCIQMC. Finally,
CCSD(T) shows almost exact agreement with FCIQMC in the abso-
lute energies. Overall, these results very much mimic the performance
of the standard quantum-chemical hierarchy established for mole-
cular systems and are indicative of their suitability for other similar
solids.
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Figure 2 | Comparison of real and complex i-FCIQMC dynamics for the
correlation energy of LiH. A 2 3 2 3 2 C-centred k-point mesh with 16
electrons, and 40 correlated Hartree–Fock orbitals was employed, at a primitive
rock-salt unit cell volume of 17.03 Å3. Converged energies for 30 million
walkers between the two bases agree within small stochastic error bars. The
additional overhead for the complex dynamic means that the cost was ,5 times
that of the real dynamic to converge to equivalent error bars. Also included are
MP2, CCSD and CCSD(T) results for comparison. ÆE(t)æt is an imaginary-time
average of the projected energy E(t), taken after a period of equilibration.
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Figure 3 | Equation of state for rock-salt LiH, with the error from the
i-FCIQMC value per unit cell at each volume shown below, for MP2, CCSD
and CCSD(T). A 3 3 3 3 3 C-centred k-point mesh was employed, with 54
electrons in 54 Hartree–Fock orbitals. All i-FCIQMC energies were converged
with 55 million walkers, and error bars are too small to be seen on the plot
(O[0.1 meV]).
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To cover different bonding situations, in Fig. 5 we consider the
relative errors of quantum-chemical methods for the correlation ener-
gies of several crystals when compared to FCIQMC. MP2 and CCSD
recover between 80% and 98% of the FCIQMC correlation energy for
the sample of rare gas, covalent and ionic solids. The dependence of
the relative errors on the various systems is most pronounced in the
case of MP2 theory. This is not unexpected and reflects the limitations
of low-order perturbation theory. MP2 is more accurate for wide-gap
insulators, such as Ne and LiF, than for semiconductors with a smaller
gap, like Si and AlP. In contrast, CCSD(T) is shown to give a balanced
description across the different systems and is in error by at most 2%.

What accuracy, therefore, can one expect from converged CCSD(T)
calculations for solids? To answer this question, we computed cohesive
energies. These are extremely demanding quantities for any theory,
because the correlation effects in solids differ markedly from atoms,
potentially leading to large errors in the prediction of the cohesive
energy. Furthermore, attention needs to be paid to finite-size scaling
(that is, k-point sampling). For the present study we have limited our
attention to four solids, rock-salt LiH, diamond, zinc-blende BN and

AlP, expecting similar results for the other materials. We have used the
progressive downsampling technique14,28, employing k-point meshes
of up to 4 3 4 3 4. Figure 4b shows for diamond that the MP2 cohesive
energy converges as 1

	
N3

k , where Nk is the number of k-points used to
sample the Brillouin zone in each direction. By fitting to the MP2,
CCSD and CCSD(T) energies for 3 3 3 3 3 and 4 3 4 3 4 k-points,
we can extrapolate to infinitely dense k-point meshes. The remaining
finite size error on the correlation energy is expected to be less than
20 meV per atom for the considered systems. The computational cost
is of the order of 25,000 CPU (central processing unit) hours for
diamond, with results reported in Table 1.

As anticipated (owing to the established agreement with i-
FCIQMC in smaller bases and supercells), the CCSD(T) results are
all in almost exact agreement with the experimental cohesive energy
corrected for the zero-point energy38. The MP2 cohesive energies
generally show substantial error compared to experiment5,9,17. MP2
severely underestimates the correlation energy of atoms, and while it
also underestimates the correlation energy of the solids as shown in
Fig. 5, the perturbative nature of the theory leads to less underestima-
tion of the correlation energy in solids so that the cohesive energy is
often—but not always—overestimated compared to the experimental
value. This makes MP2 an unreliable method for solids, especially for
calculation of cohesive energies. CCSD and CCSD(T), on the other
hand, are far more consistent. Although the absolute errors in the
CCSD cohesive energies are still quite sizeable, the cohesive energies
are always underestimated. This results from the CCSD correlation
energy in the solids being always too small (Fig. 5) whereas in atoms it
is generally a good approximation. On adding the perturbative triples
correction to the CCSD, the cohesive energies dramatically improve,
to an error of only 0.03 eV. As for the absolute correlation energies in
solids, the (T) correction over-compensates, leading to too-negative
correlation energies, and hence an overestimation of the cohesive
energies, albeit only mildly so. We finally note that our results indicate
that the residual errors are dominated by correlation errors in the
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k , where Nk is the number of k-points in each direction.
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Figure 5 | Relative errors compared to i-FCIQMC in a range of solids.
2 3 2 3 2 k-point sampling was employed, correlating 64 electrons in 64
orbitals, and 80 electrons in 72 orbitals, for LiF and LiCl, respectively. Lattice
structures are given as A1 5 f.c.c., A4 5 diamond, B1 5 rock salt, B3 5 zinc
blende, while lattice constants can be found in ref. 44. Error bars of each method
are derived from the random errors of the i-FCIQMC values they are compared
to. The i-FCIQMC calculations employed ,10,000 walkers on the Hartree–
Fock determinant resulting in between 2 million and 300 million total walkers,
depending on the system.

Table 1 | Cohesive energies evaluated within the quantum-chemical
hierarchy

LiH C BN AIP

MP2 –2.386 –8.039 –7.149 –4.629
CCSD –2.454 –7.295 –6.572 –4.107
CCSD(T) –2.483 –7.545 –6.782 –4.347
Experiment –2.487 –7.545 –6.758 –4.322

Energies are given in eV per atom. Experimental values have been corrected for zero-point vibration
energies.
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solid, whereas correlation energies for atoms are essentially converged
at the CCSD(T) level.

The conclusion is that the accuracy of CCSD(T) has been estab-
lished for solids to be of the order of 0.03 eV or 1 kcal mol21. By
contrast, the most widely used density functional (PBE39) exhibits
a mean-absolute error of 0.15–0.2 eV for a similar range of insulat-
ing solids40.

Towards strong correlation
An important and open question is the domain of applicability of
CCSD and CCSD(T) as stronger correlation effects set in. An initial
indication of this can be found by comparing the performance of the
methods for the spin gap between the ground antiferromagnetic state
(AFII) and the ferromagnetic state (FM) of nickel oxide in a rhom-
bohedral unit cell. This is a classic charge-transfer insulator, and it is
expected to have strong correlation effects for at least one of the states,
and as such, a balanced description for the calculation of the spin gap
is expected to provide a stern test.

The results for the FM–AFII spin gap are given in Fig. 6 and illu-
strate the systematic convergence of the quantum-chemical hierarchy
with respect to the correlation treatment of the system. Analysis of the
FCIQMC wavefunction indicates that the ground state (AFII) is more
strongly correlated and multiconfigurational, with a normalized
Hartree–Fock weight of only 0.69, compared to 0.86 for the FM state.
This lack of a dominant single reference leads to errors in MP2 of over
50%, while CCSD is still 19% in error compared to i-FCIQMC.
Despite this, the qualitative behaviour of the quantum chemical hier-
archy remains intact, with CCSD(T) providing an excellent approxi-
mation to the exact result. Results from unrestricted Hartree–Fock
(UHF) calculations of NiO converged to the thermodynamic limit
only capture 17% of the experimental spin gap between the two
states41, inferred from neutron scattering42. This agrees well with
our restricted k-point sampled system, where the UHF captures
23% of the spin gap compared to FCIQMC results.

Conclusions and outlook
We have shown that FCI-quality correlation energies can be obtained
for solid-state systems using an extension of the i-FCIQMC method to
complex wavefunctions. We have demonstrated that the standard
quantum-chemical hierarchy of increasingly accurate polynomially
scaling methods holds for a range of materials, including rare gas,
ionic and covalent solids and the charge-transfer insulator NiO. As
explicitly shown by the cohesive energies of LiH, C, AlP and BN,
CCSD(T) is very accurate for the solid state, surpassing 1 kcal mol21

accuracy in reproducing experimental results. Considering the
proven reliability of CCSD(T) for molecules, we expect a similar
precision for insulators and semiconductors in general, with metals

possibly requiring further methodological improvements. In com-
bination with recent developments to reduce the computational
cost—for instance with explicit inclusion of the cusp condition for
the many-electron wavefunction—as well as further technical, algo-
rithmic and methodological advances, the accuracy of FCIQMC and
the quantum-chemistry methods will be brought routinely to solid-
state physics and computational materials science. We are witnessing
a slow but steady change of our computational paradigm.
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