
J. Gulliksen et al. (Eds.): EIS 2007, LNCS 4940, pp. 374–392, 2008.

Towards an Extended Model of User Interface
Adaptation: The ISATINE Framework

Víctor López-Jaquero1, Jean Vanderdonckt2, Francisco Montero1,
and Pascual González1

1 Laboratory on User Interaction & Software Engineering (LoUISE)
Universidad de Castilla-La Mancha, 02071 Albacete, Spain
{victor,fmontero,pgonzalez}@dsi.uclm.es

2 Belgian Laboratory of Computer-Human Interaction (BCHI)
Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium

jean.vanderdonckt@uclouvain.be

Abstract. In order to cover the complete process of user interface adaptation,
this paper extends Dieterich’s taxonomy of user interface adaptation by special-
izing Norman’s theory of action into the ISATINE framework. This framework
decomposes user interface adaptation into seven stages of adaptation: goals for
adaptation, initiative, specification, application, transition, interpretation, and
evaluation. The purpose of each stage is defined and could be ensured respec-
tively by the user, the interactive system, a third party, or any combination of
these entities. The potential collaboration between these entities suggests defin-
ing additional support operations such as negotiation, transfer, and delegation.
The variation and the complexity of adaptation configurations induced by the
framework invited us to introduce a multi-agent adaptation engine, whose each
agent is responsible for achieving one stage at a time (preferably) or a combina-
tion of them (in practice). In this engine, the adaptation rules are explicitly en-
coded in a knowledge base, from which they can be retrieved on demand and
executed. In particular, the application of adaptation rules is ensured by examin-
ing the definition of each adaptation rule and by interpreting them at run-time,
based on a graph transformation system. The motivations for this multi-agent
system are explained and the implementation of the engine is described in these
terms. In order to demonstrate that this multi-agent architecture allows an easy
reconfigurability of the interactive system to accommodate the various adapta-
tions defined in the framework, a case study of a second-hand car-selling sys-
tem is detailed from a simple adaptation to progressively more complex ones.

Keywords: Adaptation, adaptation configuration, delegation, isatin, ISATINE
framework, mixed-initiative user interface, multi-agent system, negotiation, re-
configuration of user interface, transfer, user interface description language.

1 Introduction

We are witnessing a paradigm shift in the interaction with computers. The progressive
migration of applications from desktop PCs to mobile platforms is changing the habits
of user in interaction. Furthermore, a new mass of computer interaction neophytes is

© Springer-Verlag Berlin Heidelberg 2008

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-540-92698-6_37

http://dx.doi.org/10.1007/978-3-540-92698-6_37

 Towards an Extended Model of User Interface Adaptation: The ISATINE Framework 375

becoming attracted to the possibilities of using computer applications to support many
daily tasks, such us buying flight or theater tickets. At the same time, as communica-
tions and hardware sensors cost gets cheaper the availability of information to the ap-
plications is quickly increasing. To take advantage of this increase in the information
available to the application from the context of use where they are executed, adapta-
tion mechanisms that adjust the application according to the data received from the
context of use need to be devised. For this purpose, a multitude of adaptation tech-
niques are been used [3,11,14].

Currently, the most widely accepted understanding of the adaptation process comes
from Dieterich’s survey of adaptation techniques [5], despite that it has been produced
in 1993. In addition to its age, Dieterich’s taxonomy suffers from several shortcomings:
it is constrained by only entities (e.g., the user and the system) in each stage of the adap-
tation process, it does not handle an explicit collaboration and it is restricted to the exe-
cution only. Furthermore, some of the most relevant issues in the adaptation process
such as how the adaptation is specified were left out of the framework. In particular,
Dieterich’s taxonomy is incomplete with respect to the seven stages of Norman’s theory
of action [14]. This model describes how a user interacts with an application from the
beginning, when the user is forming his intention to reach a goal, until the end, when the
user evaluates the results from the actions taken to achieve the goal.

This paper expands Dieterich’s framework by incorporating some extra stages
adapted from the mental model proposed by Norman. These extra stages improve user
involvement in adaptation process and foster a more detailed description of how the
adaptation process is carried out. To validate the proposed framework, an architecture
supporting the framework is also presented. The architecture has been designed as a
multi-agent system to enable easy extensibility and to make more natural the design
of the negotiation, transferring and delegation capabilities required for the adaptation
stages proposed in our framework to be executed collaboratively.

This paper starts by describing the ISATINE adaptation framework (Section 2),
along with the antecedents that have motivated and inspired it. Section 3 introduces a
multi-agent architecture that supports the proposed framework and describes how
each adaptation stage proposed in the framework is supported. A discussion on how
the designed multi-agent architecture has been implemented is delivered in Section 4.
Section 5 exemplifies the framework by applying the framework and the architecture
on a running example: a second-hand car selling application with various levels of ad-
aptation. Some conclusions and future work are reported in Section 6.

2 The ISATINE Framework for User Interface Adaptation

This section first introduces Dieterich’s taxonomy of user adaptation in order to iden-
tify its shortcomings, thus initiating an extension according to Norman’s theory of ac-
tion for user interaction [14] resulting in the ISATINE framework. This framework is
defined in the second subsection.

2.1 Dieterich’s Taxonomy of User Adaptations

On the one hand, Dieterich’s taxonomy of user adaptations has always been consid-
ered as a seminal reference for classifying different types of user interface adaptation

376 V. López-Jaquero et al.

configurations and techniques. This paper sorted more than 200 papers dealing with
various forms of user interface adaptation and summarized them into four stages
needed to perform any form of adaptation, in principle:

1. Initiative: one of the entities involved in the interaction suggests its intention to
perform an adaptation. The main entities are usually the user and the system.

2. Proposal: if a need for adaptation arises, it is necessary to make proposals of ad-
aptations that could be applied successfully in the current context of use for that
need for adaptation detected.

3. Decision: as we may have different proposals from the previous stage, which ad-
aptation proposal best fit the need for adaptation detected should be decided, and
whether it is worth applying each proposal.

4. Execution: finally, the adaptation proposal chosen will be executed. One impor-
tant factor when making any changes in the UI is how the transition from the orig-
inal UI to the adapted one is performed. Before the execution stage, a prologue
can be executed to prepare the UI for the adaptation. For instance, if the adaptation
includes switching from one code to another code, the prologue function should
store the current state of the application, so it can be resumed after the adaptation
takes places. On the other hand, an epilogue function can be provided to restore
the system after adaptation takes place. This epilogue will take care of restoring
application state and resuming the execution of the application.

On the other hand, we are considering Norman’s mental model of user interaction
which decomposes any user interaction into seven Stages of Action:

1. Forming the Goal: the user shapes a goal in her mind.
2. Forming the Intention: to reach the goal, the user is forming some intention.
3. Specifying an Action: the intention is turned into a series of actions.
4. Executing an Action: one action at a time is selected and executed.
5. Perceiving the State of the World: after that the action has been executed, the re-

sults produced by this action are perceived.
6. Interpreting the State of the World: the results perceived trigger an interpretation

in the user’s mind on how the World has changed.
7. Evaluating the Outcome: depending on this interpretation, the user evaluates

whether the action she executed matches her initial goal or not.

If we attempt to match Dieterich’s four stages of adaptation on Norman’s model, it
can be observed straightforwardly that the initiative corresponds to the intention, that
the proposal and the decision are two steps involved in the action specification, and
that both execution stages match (Fig. 1). Therefore, only some portion of the whole
process, the left part of Norman’s model, is covered, thus creating a need for covering
the remaining uncovered portion. This expresses some current shortcomings such as:
the results of adaptation should be made perceivable in a way that is appropriate
enough for the user to understand it. Not only the adaptation results could be made
perceivable, but also the adaptation execution itself. Too often interactive systems
supporting some adaptation do not convey properly the idea and the meaning of the
adaptation process. Empirical studies have shown that users are always confused to
some extent when they face some adaptation. If nothing is implemented in the system
to minimize this effect, the adaptation process is likely to be rejected. Fig. 1 does not
reveal when the adaptation is performed by the user (adaptable user interface) vs. by

 Towards an Extended Model of User Interface Adaptation: The ISATINE Framework 377

Goals

Meaning of an
input expression

Meaning of an
output expression

Action
Specification

Shape of an
input expression

Shape of an
output expression

Execution

Interpretation

Intention Evaluation

System

Perception

User interface adaptation

Initiative

Proposal
Decision

Execution

Goals

Meaning of an
input expression
Meaning of an

input expression
Meaning of an

output expression
Meaning of an

output expression

Action
Specification

Shape of an
input expression
Shape of an

input expression
Shape of an

output expression
Shape of an

output expression

Execution

Interpretation

Intention Evaluation

SystemSystem

Perception

User interface adaptation

Initiative

Proposal
Decision

Execution

Fig. 1. The four steps of Dieterich’s taxonomy located on Norman’s mental model

the system (adaptive user interface). In Norman’s model, goals are typically expressed
by a human trying to interact with the system. Therefore, there is a need to better
identify the roles of each entity. Dieterich’s model does not decompose very much the
adaptation process into sub-processes, thus leaving some room for more expressivity.

2.2 Definition of the ISATINE Framework

The shortcomings identified in the previous subsection lead us to expand Dieterich’s
taxonomy by trying to express the adaptation process according to all the Seven Stag-
es of Norman’s model. In this way, it is expected that no adaptation stage will be left
out. Basically, we state that three entities are involved in the adaptation process: the
user (U), the interactive system (S), or any third party (T), which may substitute the
two previous entities in case of need (e.g., request for help, further support, support
for some operation which is impossible to achieve otherwise, failure). When at least
two entities share the responsibility of a stage, there is a need for coordinating the in-
put and output of these entities. For instance, mixed-initiative [9] represents a typical
configuration when U and S collaborate to determine the best option possible for en-
suring a stage. We distinguish three forms of coordination:

1. Negotiation: options could be presented by each entity and the final result is nego-
tiated between the entities so as to reach a consensus. T could serve for this pur-
pose when, for instance, contradicting output are produced by U and T. Or for
stating which entity has the higher priority.

378 V. López-Jaquero et al.

2. Delegation: when an entity estimates that it does not have information or respon-
sibility enough to achieve the adaptation stage, it may request help/support from
any other entity to achieve its purpose. When the results come back to the request-
ing entity, it may then decide the final option, therefore keeping the control over
the decision process.

3. Transfer: this form is the same as delegation, but without any return to the re-
quester. The requested entity takes the decision and may send a notification.

The specialization of Norman’s model for adaptation results into the ISATINE
1

framework, so-called because the Seven Stages became seven adaptation stages, each
one being specialized for each entity (Fig. 2):

1. Goals for user interface adaptation: any entity (U, S, or T) may be responsible for
establishing and maintaining up-to-date a series of goals to ensure user interface
adaptation. Although this adaptation is always for the final benefit of the user, it
could be achieved with respect to any aspect of the context of use (with respect to
the user herself, the computing platform used by the user, or the complete physical
and organizational environment in which the user is carrying out her task). The
goals are said to be self-expressed, machine-expressed, locally or remotely, de-
pending on their location: in the user’s head (U), in the local system (S), or in a
remote system (T). A typical example of machine-expressed goals is encountered
when the system is made responsible for maintaining a certain level of fault-
tolerance depending on varying network or hardware conditions. This main goal
could be further decomposed into sub-goals, like keeping a minimal amount of in-
formation, ensuring a graceful degradation [7] of the user interface, or avoiding
any task disruption.

2. Initiative for adaptation: this stage is further refined into formulation for an adap-
tation request, detection of an adaptation need, and notification for an adaptation
request, depending on their location: respectively, U, S, or T. For example, T
could be responsible for initiating an adaptation when an update of the UI is made
available or there is a change of context that cannot be detected by the system it-
self (e.g., an external event).

3. Specification of adaptation: this stage is further refined in specification by demon-
stration, by computation, or by definition, depending on their origin: respectively,
U, S, or T. When the user wants to adapt the UI, she should be able to specify the
actions required to make this adaptation, such as by programming by demonstra-
tion or by designating the adaptation operations required. When the system is re-
sponsible for this stage, it should be able to compute one or several adaptation
proposals depending on the context information available. When the third party
specifies the adaptation, a simple definition of these operations could be sent to
the interactive system so as to execute them.

1 An orange-red crystalline substance, C8H5NO2, obtained by the oxidation of indigo blue. It is

also produced from certain derivatives of benzoic acid, and is one important source of artifi-
cial indigo (Source: http://dictionary.reference.com/)

 Towards an Extended Model of User Interface Adaptation: The ISATINE Framework 379

4. Application of adaptation: this stage specifies which entity will apply the adapta-
tion specified in the previous stage. Since this adaptation is always applied on the
UI, this UI should always provide some mechanism to support it. If U applies the
adaptation (e.g., through UI options, customization, personalization), it should be
still possible to do it through some UI mechanisms.

5. Transition with adaptation: this stage specifies which entity will ensure a smooth
transition between the UI before and after adaptation. For instance, if S is respon-
sible for this stage, it could provide some visualization techniques, which will vi-
sualize the steps, executed for the transition, e.g., through animation, morphing,
progressive rendering [15].

6. INterpretation of adaptation: this stage specifies which entity will produce mean-
ingful information in order to facilitate the understanding of the adaptation by
other entities. Typically, when S performs some adaptation without explanation, U
does not necessarily understand why this type of adaptation has been performed.
Conversely, when U performs some adaptation, she should tell the system how to
interpret this evaluation. For instance, [6] develops a machine-learning algorithm
where the system first proposes some adaptation to be applied. If this adaptation
does not correspond to users’ needs, the user provides the alternate adaptation in-
stead and tells the system how to incorporate this new adaptation scheme for the
future. The system updates the knowledge base by interpreting this explanation.

7. Evaluation of adaptation: this stage specifies the entity responsible for evaluating
the quality of the adaptation performed so that it will be possible to check whether
or not the goals initially specified are met. For instance, if S maintained some
internal plan of goals, it should be able to update this plan according to the adapta-
tions applied so far. If the goals are in the users’ mind, they could be also evalu-
ated with respect to what has been conducted in the previous stages. In this case,
the explanation of the adaptation conducted also contributes to the goals update.
Collaboration between S and U could be also imagined for this purpose.

The only stage, which could not be a priori ensured by U or T, is the execution, un-
less the user is a programmer or the third part supports dynamic programming.

The deviation between the initial expression of goals for UI adaptation and those
specified in terms of the system is referred to as the adaptation semantic distance in
input. When an adaptation operation is adequately specified, the deviation between
this specification and the operations required to achieve the adaptation step is referred
to as the adaptation articulatory distance in input. The sum of these two deviations
denotes the gulf of adaptation execution and represents how complex it could be to
represent and execute the adaptation operations in the system’s terms. Similarly, the
deviation between the perception of the adaptation as performed on the UI and the
perception of the user denotes the adaptation articulatory distance in output. The
 difference between the goals reached so far in the system and the initial goal denotes
the adaptation semantic distance in output. The sum of these two deviations de-
notes the gulf of adaptation evaluation and represents how complex it could be to
evaluate the results of the adaptation. This second gulf is too often forgotten in adap-
tation algorithms, although it is largely reported (e.g., in [3,5]) that any adaptation,
however good and adequate it could be, always provokes some perturbation in the
user’s mind. By reducing this gulf, the perturbation should be able to be minimized.

380 V. López-Jaquero et al.

Goals for user
Interface adaptation

Meaning of an
input adaptation

Meaning of an
output adaptation

Specification
of adaptation

Shape of an
input adaptation

Shape of an
output adaptation

Application of
adaptation

INterpretation
of evaluation

Initiative for
adaptation

Evaluation
of adaptation

Interactive
System

Transition with
adaptation

Adaptation
semantic
distance
in input

Adaptation
articulatory

distance
in input

Adaptation
semantic
distance
in output

Adaptation
articulatory

distance
in output

G
ul

f o
f a

da
pt
at

io
n

ex
ec

ut
io

n
G
ulf of adaptation evaluation

Goals for user
Interface adaptation

Meaning of an
input adaptation
Meaning of an

input adaptation
Meaning of an

output adaptation

Specification
of adaptation

Shape of an
input adaptation

Shape of an
output adaptation

Application of
adaptation

INterpretation
of evaluation

Initiative for
adaptation

Evaluation
of adaptation

Interactive
System

Interactive
System

Transition with
adaptation

Adaptation
semantic
distance
in input

Adaptation
articulatory

distance
in input

Adaptation
semantic
distance
in output

Adaptation
articulatory

distance
in output

G
ul

f o
f a

da
pt
at

io
n

ex
ec

ut
io

n
G
ulf of adaptation evaluation

Fig. 2. The seven stages of the Isatine framework for user interface adaptation

3 A Multi-agent Architecture Supporting ISATINE Framework

The previous section identified some holes in the support of a complete adaptation
process, which is also reflected in some lacks of system support for these stages. In-
deed, the lack of general techniques, methods and tools for adaptation design pro-
duces systems where the support for adaptation is rather inflexible, and the knowledge
injected into the adaptation engine is very hard to be reused. In the design of a general
technique that supports adaptivity in a flexible manner, where knowledge can be re-
used and integrated with a user interface design method that provides the required
formalism to build UIs in a systematic way, a software architecture is required able to
cope with all these requirements. However, this software architecture should be able
to decide which adaptation could be applied, when they should be applied, etc. There-
fore, a dedicated software architecture is required, where the system is able to make
some reasoning and to decide what to do next (which adaptation to apply, if any).

Different reasoning models have been proposed so far: rule based systems, neural
networks, Bayesian networks, etc. However, a great interest has appeared for software
agents [19] as a means to represent reasoning capabilities in an abstract manner

 Towards an Extended Model of User Interface Adaptation: The ISATINE Framework 381

similar to human reasoning. Most of them use the BDI model (Beliefs, Desires, Inten-
tions) [8,18], which is inspired by human reasoning theories. Beliefs represent the
view the agent has of itself and the world where it is immersed. Desires describe the
goals that the agent is trying to achieve. Finally, Intentions are the plans the agent is
executing to achieve the goals it pursues. Because the designed architecture support-
ing the ISATINE framework should be able to manage negotiation, delegation, and
transferring between the different stakeholders in adaptation process (the user, the
system or a third-party) multi-agent systems are especially suitable, since there is al-
ready some work done within agents research community regarding how the different
agents involved in a multi-agent system collaborate or compete negotiating, delegat-
ing or transferring duties. Another advantage found in multi-agent systems is the natu-
ral distribution of computation, which supports the integration of the implemented
multi-agent system with exiting services easily. Furthermore, software agents have al-
ready proved useful in the interaction between the user and the UI in some projects
such as [8,18]. Those were our motivations to design an architecture to support the
ISATINE framework as a set of agents collaborating in a multi-agent system to achieve
the final goal: adaptation. Next, how the different stages of the adaptation process de-
fined in ISATINE framework are carried out by the multi-agent system created will be
addressed.

3.1 Goals for User Interface Adaptation

The goals for user interface adaptation express the motivations to initiate an adapta-
tion process. When these goals are in the user’s head, our system cannot directly
achieve them, however the system supports it by means of the adaptability facilities
included. Although, not every user goal can be supported, including support for some
of them actually increases user’s confidence in the adaptation capabilities of the sys-
tem. When the goals are kept by the system, they should be expressed in terms of the
context of use characteristics considered during the design of the system and the us-
ability criteria to be preserved. Thus, no goal can be stored that makes use of context
of use characteristics that the system is not able to either query or store. The goals for
adaptation kept by the system are represented in two different components in our sys-
tem. On the one hand, these goals are partially expressed as part of the adaptation
rules that will finally produce the adaptations required to fulfill those goals. On the
other hand, they are expressed as a usability trade-off. This usability trade-off speci-
fies relatively the usability criteria that should be preserved while adapting the user
interface. For instance, if in the usability trade-off we specify that continuity should
be maximized, the system will always choose those adaptations producing a lesser
disruption in continuity, unless the user forces the execution of another adaptation.
This usability trade-off is expressed by using I* [18] notation. I* notation was
originally designed to specify system goals in early requirements analysis stage. In
section 3.4 how this trade-off is actually applied is described. The multi-agent system
supports also those goals remotely-expressed. In this last case, the new remote goals
should be expressed in terms of new adaptation rules that can be plugged into the ad-
aptation engine seamlessly. In section 3.3 we elaborate more on how these adaptation
rules are designed and specified.

382 V. López-Jaquero et al.

3.2 Initiative for Adaptation

In ISATINE multi-agent architecture, the adaptation process can be initiated by either
the user, the system or a third-party. The user is allowed to do it by clicking or typing
(auditory user interfaces are not supported by now) an option available in every user
interface generated by the system. The system can decide that an adaptation is needed
by inferring it from the incoming information from the context of use. The agents in
charge of detecting context of use changes (AgentContextPlatform, AgentContextEn-
vironment, AgentContextUse and AgentDetectContextOfUse) notice those changes by
means of sensors. These sensors can be either software or hardware sensors. Hard-
ware sensors are built or plugged into the hardware platform where the application is
running, while software sensors are programmed, and included into the applications
supported by the multi-agent system. The designer of the adaptation facilities of every
application can define his own software sensors provided that the implementation is
compliant with the defined interface for sensors. Most data incoming from sensors in
directly linked with a piece of information in the context model, although it is not
mandatory. In this architecture, the current task the user is carrying out is also in-
cluded within the context of use, since it is necessary quite often to guess user needs.
To guess the user’s current goal, this agent uses the task model created at design time.
This task model is a tree where the designer specifies the tasks the user will be able to
perform along with some temporal constraints (for instance, a sequential relationship
between two tasks). Thus, at any time, taking into account the tree structure and the
temporal constraints between the tasks, there will be just a set of possible tasks that
the user is allowed to perform through the UI (called enabled tasks set). Therefore, the
agent just needs to guess which one among the tasks included in the enabled tasks set
is the current task. To help in this problem, the agent uses the usage data collected
from interaction, especially taking into account the last components of the UI that
have been manipulated and the mapping between the widgets of the user interface and
the tasks in the task model.

3.3 Specification of Adaptation

Given an initiated adaptation process it is necessary to decide which adaptation will
be applied (if any). Whether the user, the system or a third-party has initiated the ad-
aptation process, AgentAdaptationProcess Agent proposes the set of adaptation rules
that best fit the current context of use. The specification of the set of available adapta-
tions to choose from is built in different ways. The user can demonstrate how he
would like the user interface to be adapted. Currently, the user is allowed to demon-
strate the colors for each kind of widget, the sizes of the different types of widgets and
some kinds of widgets replacements. The agent supports also the specification of rules
by computation, although it is currently constraint to the refinement of rules previ-
ously defined. However, the main corpus of adaptation rules is provided by the appli-
cation designer by defining how the system should react to the different situations
arising from the interaction.

3.4 Application of Adaptation

By default regardless on who was the one that started the adaptation the system will
automatically choose which application to apply. If it was either the user or a third

 Towards an Extended Model of User Interface Adaptation: The ISATINE Framework 383

party the one who initiated the adaptation the agent will ask the user or the third party
which adaptation between the eligible ones he would like to apply. Otherwise, or if
the user or the third-party delegate the task of choosing the adaptation the AgentAdap-
tationProcess agent will choose the most appropriate ones, creating a ranking of rules.
To make this selection the rules are evaluated by means of a set of metrics. After-
wards, the agent will try to execute the rules starting from the highest one in the rank-
ing. If the application of the rule does not meet the usability trade-off specified in the
goals for user interface adaptation that rule will be discarded and the agent will try to
apply the next rule in the ranking following the same process as for the first rule in the
ranking. This process is made until no rule is left in the ranking list or until the agent
finds that a ranking has been reached in the list too low for that rule to be applied. The
agent has been designed so it will not apply any adaptation rule it does not find good
enough (unless the uses forces its execution). Most of the time is better inaction than
applying a rule that is not good enough, producing a degradation of user interface us-
ability and damaging user confidence in the system.

3.5 Transition with Adaptation

Making smoother and clearer the transition between the original user interface and the
adapted one is very important to avoid confusing the user, and therefore to avoid de-
grading the user’s confidence in the system. ISATINE architecture has been extended
with a new agent to support this stage. Although many different kinds of transitions
[15] from the original user interface to the adapted one can be imagined, in our case
we are just supporting those being general enough to be applied to many different us-
er interfaces, since our transitions are generated at run-time on-the-fly. In section 5.4
an example of how this stage in applied and how our architecture was extended to
support it is shown.

3.6 Interpretation of Adaptation

One of the issues we found when testing adaptive systems is that sometimes the users
were not actually aware that an adaptation had been done, and even what the adapta-
tion was for. The same happens when the user makes an adaptation and the system
does not understand why the user wanted to perform that adaptation. To address the
first issue transition stage can be used. However, to address the second issue another
sub-stage is required to help the user in evaluating what the result of the adaptation
was. In this sense, if the user is the one leading the adaptation process, she is allowed
to provide a description of what the adaptation was useful for. It allows the system to
extract some keywords used to relate this new adaptation with other adaptations
stored in adaptation rules pool. On the other hand, if the system leads the adaptation
process, it always adds a tooltip to the adapted user interface with a short description
of the adaptation made.

3.7 Evaluation of Adaptation

An adaptation quality assessment is essential to any good adaptation process, because
it should be adaptive itself. The system assesses the adaptation performed by applying
heuristics to evaluate a migration cost [13]. This assessment is made at specification

384 V. López-Jaquero et al.

of adaptation stage to create a ranking with the potential applicable rules. However, it
is not enough. Since it is impossible to foresee every combination of factors in the
context of use, the system can apply a rule not good enough, or simply it can apply a
rule the user dislikes. Thus, in the architecture the user can undo any adaptation
applied expressing he did not like it. This feedback from the user is injected into the
adaptation evaluation mechanism applying a Bayesian approach where rules can im-
prove or worsen their ranking.

4 Implementing the Multi-agent Architecture

In this section we will show an overview of the technologies used in the implementa-
tion of the multi-agent architecture to support ISATINE framework.

For the multi-agent system implementation we have used JACK2 [2]. JACK is an
agent programming language based on BDI paradigm. This language generates Java
language code out of a set of templates that is executed within an execution environ-
ment supplied with the language. To maximize platform independence we have
wrapped the multi-agent java based system within an HTTP server interface.

The HTTP server interface allows any platform capable of networking using
TCP/IP protocol to access the ISATINE adaptation engine. This HTTP server has been
implemented as a servlet (server side applet) that runs on top of a TOMCAT server.

Internally, the user interface knowledge gathered at design-time, and later at run-
time by means of sensors is stored by using the XML-based user interface description
language UsiXML3. By means of UsiXML we are able to achieve the specification of
a user interface in a representation abstract enough to be presented in different plat-
forms. The model in this language, which is closer to the actual user interface the user
interacts with, is the concrete model.

The concrete UI model describes a UI in a manner independent from the platform
where it will run on (although it is dependent on modality). Therefore, a renderer is
needed so the user can visualize the UI. For this purpose, a renderer for the concrete
UI level of UsiXML has been written for several languages. Currently, there is basic
rendering support for XUL, Java 2, J2ME, and OpenLaszlo4 languages, what allows
us to run the developed adaptive applications in almost every platform.

By now, we have just implemented sensors for collecting interaction usage data
from the client platform and the user. Other data, such as environment physical condi-
tions changes are being simulated via an agent called AgentStimuliGenerator. This
agent is able to process an input XML file containing a specification of events and
their timing, so it can simulate the arrival of changes in the context of use from hard-
ware or software not currently available. This is especially useful during adaptation
rules design process.

The real adaptation the user interface undergoes as a result of the application of the
adaptation rules is specified by using Attributed Graph Grammars [17]. A detailed de-
scription of how this approach is used to generate a user interface can be found
in [12]. The transformation engine to execute the transformations associated to the

2 http://www.agent-software.com/shared/products/index.html
3 http://www.usixml.org
4 http://www.openlaszlo.org

 Towards an Extended Model of User Interface Adaptation: The ISATINE Framework 385

adaptations uses the API from AGG (Attributed Graph Grammars) tool5 to perform
the transformations. It provides a programming language enabling the specification of
graph grammars and a customizable interpreter enabling graph transformations.

Next, a description of the main processes within the implemented multi-agent sys-
tem will be described.

4.1 Receiving Context Changes from the Sensors and Adapting the UI

When a sensor wants to communicate any change in the context of use it has detected,
it opens a communication with a specific URL belonging to the webAdaptationEngine
servlet. Then the sensor will send the information using the XML format designed for
this purpose. This information will be passed to AgentDispatcherAgent by the servlet.
This agent acts as a mediator between the multi-agent system and the servlet. This
agent will detect that it is a context communication act, and it will use its plan Contex-
tEventGenerator to send the information to the agent AgentDetectContextOfUse. This
agent will perform two steps: it processes the XML information received and dis-
patches each piece of information to the corresponding agent (AgentContextPlatform,
AgentContextEnvironment or AgentContextUser). AgentContextPlatform, AgentCon-
textUser and AgentContextEnvironment will update the context model to reflect the
changes they have received from AgentDetectContextOfUse. Notice that not every
piece of information received from AgentDetectContextOfUse will produce a change
in the context model. The new values received can be equal to the values stored in
context model, or the changes in the values might not be significant. When these
agents update the context model (represented as agents’ beliefs - called PlatformCon-
textModel), an event will be generated automatically by the agent’s beliefs to indicate
to AgentDetectContextOfUse that it should throw events of the type ContextChanged.
These events will be handled by AgentAdaptationProcess, which will generate the
feasible adaptivity rules (plans) for the new context of use. Finally, a meta-reasoning
method will be used to choose the rules to be applied using the adaptation rules selec-
tion policy chosen. For the execution of the rules, the agent first gets the up-to-date
usiXML version of the running UI to be adapted. Next, it transforms the usiXML spe-
cification into a graph representation, and it applies the selected rules using AGG
API. Finally, the adapted graph is transformed back to usiXML and the target lan-
guage at the same time. Thus, the adapted UI is made available to the AgentDispac-
tcherAgent, so it can be delivered to the client. This process is illustrated in Fig. 3.

Fig. 3. Receiving Context Changes Info from the Sensors and Adapting the UI

5 http://tfs.cs.tu-berlin.de/agg/index.html

386 V. López-Jaquero et al.

4.2 Getting the Adapted User Interface

When any of the sensors communicate information to the adaptation engine, they al-
ways receive an answer about whether there is a newly adapted UI ready or not. If
there is a new adapted UI ready, it will connect to a specific URL belonging to the
webAdaptationEngine servlet. Then, AgentDispatcherAgent will send the adapted UI
to the client. Thus, the user will get an adapted version of the UI that matches the
changes in the context of use detected by sensors.

5 A Second-Hand Car Selling Case Study

To demonstrate how the architecture supports ISATINE framework for a real example,
and the flexibility introduced by designing the architecture as a multi-agent system, a
case study is presented next. The case study is based on the main searching facilities
form of a real second-hand car selling website. In this form the user is allowed to
select the different data required to filter the kind of second-hand car he is searching
for. In this sense, the user can provide the car brands he would like the car to be, the
maximum amount of money he is willing to spend or the mechanical and physical
characteristics of the car. The examples in this section will be presented in growing

Fig. 4. Original main form for the second-hand car-selling example

 Towards an Extended Model of User Interface Adaptation: The ISATINE Framework 387

complexity to illustrate the features starting from the more simple adaptations to the
more complex ones. In Fig. 4, a screenshot of the main form for our example is
shown. In this case we have used the OpenLaszlo renderer of our architecture to gen-
erate the final running user interface (http://www.usixml.org/index.php?view=page&
idpage=120). On the upper part of the form the user selects the car brands he is inter-
ested in, while in the bottom part the user selects the features and constraints for the
cars he is searching for.

5.1 Adaptability in ISATINE Framework Architecture

One of the main issues in adaptive systems is that if the adaptations are not properly
carried out, and the user feels a sense of loosing control, the adaptation engine might
be rejected. Therefore, it is really important for an adaptation architecture to support
the user in taking control of the adaptation engine, because mental model and tastes
for different users might differ. In our example the user is querying the system data-
base for the different car brands he is interested in.

To take this decision he is getting additional information from the web pages of
different branches. However, the user in his current context of use is a little bit an-
noyed with the way the interaction is made, because the form takes too much screen
display space. By occupying so much space the form is preventing the user from
browsing the car brands web sites while selecting the different car features, forcing
the user to switch between the second hand car selling application and the car’s web-
sites. At his moment has a goal on her mind: reducing the displaying space required to
interact with the application.

Because of that goal the user wants to adapt the user interface to reduce screen
space required by the form of the second hand selling application to be shown. To do
so, the user clicks on the “ADAPT” button to express her intention to adapt the user
interface. Next, according to the ISATINE framework, the adaptation to be performed
needs to be specified. In this case, in order to specify which adaptation is executed,
the user selects the adaptation from the available adaptation rule pool. An adaptation
rule replaces a set of checkboxes with a multi-select combo box. In this selection ac-
tivity, the user is supported by providing a meaningful description of the results
achieved by applying the adaptation. The application of the adaptation is made by the
system. Since it is the user the one who chose to apply the adaptation it will be ap-
plied regardless of the ranking of the rule. Because it was the user who led the adapta-
tion process, it is not necessary to help him to interpret the adaptation. The adaptation
in this case is considered to be successful unless the user undoes it.

5.2 Platform Adaptation in ISATINE Framework Architecture

In the same manner as for the user-initiated adaptation previously described, the ar-
chitecture supports platform adaptation. In this second example, the user is now using
the second hand car selling application in a PDA. In this case, the adaptation is trig-
gered as a result of a goal specified by the designer: “every form displayed in the
target platform must show, or at least allow browsing, the data required to carry
out the task the form is intended to”. The initiative in this case is taken by the system.
The system detects a change in the target architecture by means of software sensors

388 V. López-Jaquero et al.

reporting the new characteristics of the platform. To face this situation the system
uses the set of rules created by the designers. To reinforce user’s trust in the system it
shows to the user the possibilities to achieve this platform shifting. In our example,
the user selects the application of the same rule as in the previous example, so the
checkbox group is replaced with a multi-select combo box. In general, one could
imagine to provide the user with different sets of rules applicable for each specific
platform.

5.3 Context Adaptation in ISATINE Framework Architecture

The user is now at a motor show where many different brands are available. The user
is using the application in a PDA equipped with a web cam. The user is making a vid-
eoconference to decide which car to buy. So the user stands on the center of the exhi-
bition center and he would like to show to other person each car in the conference,
and then by using the second hand car selling application find out if there are any of
those cars available and what its characteristics and price are. The user takes the ini-
tiative by clicking on the “ADAPT” button. The system now offers to the user the list
of possible adaptations to apply. In this case, the user chooses an adaptation called
“minimum presentation” that transforms the searching form of the application into a
minimal set of widgets to allow querying the site for second hand cars. The adaptation
application stage is made in this case in collaboration between the user and the sys-
tem. The system applies the adaptation to produce a minimal presentation, however, it
is the user in charge of positioning the brand new generated presentation in the best
place of the screen to support his activities.

5.4 Extending ISATINE Framework Architecture to Support Transition Stage

In the previous example, there is an abrupt change between the original user interface
in Fig. 5 and the adapted user interface shown in Fig. 6. Thus, a big disruption ap-
pears in the change from the original user interface to the adapted one, drastically re-
ducing continuity usability property.

To improve the continuity in the adaptation process a new stage should be included
in the adaptation process in charge of making smoother the transition from the origi-
nal user interface to the adapted one. This stage is one of the extra stages in ISATINE
adaptation framework with respect to Dieterich’s one. One of the key features of the
designed architecture is its extensibility. As long as it was created by using agent’s
paradigm, it can be easily extended by just adding some extra new agents and rerout-
ing some messages from some agents to other agents. For instance, for the transition
state we added a new agent called AgentTransition. AgentAdaptationProcess was
modified so as to send the adapted user interface generated during the application of
the adaptation rules to this brand new agent, instead of sending it directly to Agent-
DispatcherAgent to be delivered to the user. AgentTransition takes the adapted user
interface and it creates smooth transitions depending on the kind of adaptation the us-
er interface has undergone. Right now, this agent is able to highlight the adapted wid-
gets in different ways to guide the user, by changing the background color of some
components, changing the panel containing the adapted components or adding word
balloons to explain the user what happen during the adaptation. Other techniques such
as image animation or morphing could be implemented also. The new adapted user

 Towards an Extended Model of User Interface Adaptation: The ISATINE Framework 389

Fig. 5. Adapted user interface reducing displaying space

Fig. 6. Second-hand car selling user interface after a context adaptation

interface with the transition effects added is sent to AgentDispatcherAgent to be final-
ly delivered to the user. In Fig. 7 a screenshot of the application of the transition stage
by AgentTransition can be found. A tooltip has been added by AgentTransition to re-
mind the user that he can change the view to show some more extra filtering options
by clicking on “ADAPT” button. In the same manner that AgentTransition agent has
been added, other extra agents could be added almost seamlessly to extend the archi-
tecture to better attend adaptation requirements.

390 V. López-Jaquero et al.

Fig. 7. An example of the output for the transition stage applied to the UI in Fig. 6

6 Conclusion and Future Work

This paper was initially motivated by the need for supporting more than just the adap-
tation execution, which is addressed in Dieterich’s taxonomy. This taxonomy has
therefore been expanded according to the Seven Stages of Norman’s theory of action,
thus, leading to the ISATINE framework for UI adaptation. This framework not only
decomposes the whole adaptation process into seven corresponding stages, but it also
shows how to decompose each stage into sub-stages depending on the collaboration
between the entities involved in each stage: the user, the system, an external third par-
ty or any collaboration between them. A multi-agent software architecture has been
motivated, justified, and defined so as to support the stages of the framework defined.
The BDI paradigm has been used for this purpose. A graph transformation system,
consisting of steps of graph transformations, has been developed to support the execu-
tion of the adaptation on a UI model. A running example has demonstrated how this
architecture should be modified in order to accommodate a series of progressively
more complex adaptation schemes, thus validating the approach.

A first area for future work consists in exploring other forms of collaboration such
as competition (where at least two entities should compete to find out the best solu-
tion and a judge entity then keeps the best one assessed according to some criteria) or
coopetition (where at least two entities should compete while cooperating at the same
time because their knowledge is perhaps complementary). Coopetition is the combi-
nation of cooperation and competition. These new forms do not disrupt the multi-
agent architecture defined in this paper. A new agent could be incorporated and new
relationships defined according to the BDI paradigm could be defined. This greatly
simplifies updating the software architecture for accommodating new forms of adap-
tation, even perhaps the unknown ones.

A second area for future work is to pursue research and development for the agent
responsible for conducting the transition. Many techniques proposed in [15] are very
promising for this purpose, but they are built-in. The advantage of having the UI
model maintained at adaptation time enables us to develop some of these techniques
specialized for the UI widgets.

A third area for future work consist of examining how IFIP quality properties (e.g.,
honesty, observability, browsability [8]) could be preserved by applying this or that
adaptation technique and how controllability and traceability of the stages (especially
transition and evaluation) could be achieved.

 Towards an Extended Model of User Interface Adaptation: The ISATINE Framework 391

Acknowledgements

This work is partly supported the Spanish CICYT TIN2004-08000-C03-01 grant and
the PBC-03-003 and PAI06-0093-8836 grants from the Junta de Comunidades de
Castilla-La Mancha. Also, we gratefully acknowledge the support of the SIMILAR
network of excellence (http://www.similar.cc), the European research task force creat-
ing HCI similar to human-human communication of the Sixth Framework Program.

References

1. Bratman, M.E.: Intention, Plans, and Practical Reason. Harvard University Press, Cam-
bridge (1987)

2. Busetta, P., Ronnquist, R., Hodgson, A., Lucas, A.: Jack intelligent agents - components for
intelligent agents in java. AgentLink News Letter (January 1999) White paper accessible,
http://www.agent-software.com

3. Calvary, G., Coutaz, J., Thevenin, D.: Supporting Context Changes for Plastic User Inter-
faces: a Process and a Mechanism. In: Blandford, A., Vanderdonckt, J., Gray, P. (eds.) In-
teractions sans frontières – Interactions without frontiers, Proc. of the Joint AFIHM-BCS
Conf. on Human-Computer Interaction IHM-HCI 2001, Lille, 10-14 September 2001,
vol. I, pp. 349–363. Springer, London (2001)

4. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A
Unifying Reference Framework for Multi-Target User Interfaces. Interacting with Com-
puters 15(3), 289–308 (2003)

5. Dieterich, H., Malinowski, U., Kühme, T., Schneider-Hufschmidt, M.: State of the Art in
Adaptive User Interfaces. In: Schneider-Hufschmidt, M., Khüme, T., Malinowski, U.
(eds.) Adaptive User Interfaces: Principle and Practice. North Holland, Amsterdam (1993)

6. Eisenstein, J., Puerta, A.: Adaptation in Automated User-Interface Design. In: Proc. of
ACM Conf. on Intelligent User Interfaces IUI 2000, New Orleans, 9-12 January 2000,
pp. 74–81. ACM Press, New York (2000)

7. Florins, M., Vanderdonckt, J.: Graceful Degradation of User Interfaces as a Design
Method for Multiplatform Systems. In: Proc. of ACM Conf. on Intelligent User Interfaces
IUI 2004, Funchal, 13-16 January 2004, pp. 140–147. ACM Press, New York (2004)

8. Gram, C., Cockton, G.: Design Principles for Interactive Software. Chapman & Hall,
London (1996)

9. Kolp, M., Giorgini, P., Mylopoulos, J.: An Organizational Perspective on Multi-agent Ar-
chitectures. In: Meyer, J.-J.C., Tambe, M. (eds.) ATAL 2001. LNCS, vol. 2333, pp. 128–
140. Springer, Heidelberg (2002)

10. Horvitz, E.: Principles of Mixed-Initiative User Interfaces. In: Proc. of ACM Conf. on
Human Factors in Computing Systems CHI 1999, Pittsburgh, 15-20 May 1999, pp. 159–
166. ACM Press, New York (1999)

11. Langley, P.: User Modeling in Adaptive Interfaces. In: Kay, J. (ed.) Proc. of the 7th Int.
Conf. on User Modeling UM 1999, pp. 367–371. Springer, Berlin (1999)

12. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., López-Jaquero, V.: USIXML:
A language supporting multi-path development of user interfaces. In: Bastide, R., Palan-
que, P., Roth, J. (eds.) DSV-IS 2004 and EHCI 2004. LNCS, vol. 3425, pp. 200–220.
Springer, Heidelberg (2005)

392 V. López-Jaquero et al.

13. López-Jaquero, V.: Adaptive User Interfaces Based on Models and Software Agents, Ph.D.
thesis, University of Castilla-La Mancha, Albacete, Spain (in Spanish) (October 14, 2005),
http://www.isys.ucl.ac.be/bchi/publications/Ph.D.Theses/Lope
z-PhD2005.pdf

14. Norman, D.A.: Cognitive Engineering. In: Norman, D.A., Draper, S.W. (eds.) User Cen-
tered System Design, pp. 31–61. Lawrence Erlbaum Associates, Hillsdale (1986)

15. Rogers, S., Iba, W.: Adaptive User Interfaces: Papers from the 2000 AAAI Symposium,
Technical Report SS-00-01. AAAI Press, Menlo Park (March 2000)

16. Schlienger, C., Dragicevic, P., Ollagnon, C., Chatty, S.: Les transitions visuelles différen-
ciées: principes et applications. In: Proc. of the 18th Int. Conf. on Association Franco-
phone d’Interaction Homme-Machine IHM 2006, Montreal, 18-21 April 2006. ACM Int.
Conf. Proc. Series, vol. 133, pp. 59–66. ACM Press, New York (2006)

17. Taentzer, G.: AGG: A graph transformation environment for modeling and validation of
software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp.
446–453. Springer, Heidelberg (2004)

18. Yu, E.: Towards Modelling and Reasoning Support for Early-Phase Requirements Engi-
neering. In: Proc. of the 3rd IEEE Int. Symp. on Requirements Engineering RE 1997,
Washington, 6-8 January 1997, pp. 226–235. IEEE Computer Society Press, Los Alamitos
(1997)

19. Wooldridge, M., Jennings, N.R.: Agent Theories, Architectures, and Languages: A Survey.
In: Proc. of ECAI-Workshop on Agent Theories, Architectures and Languages, Amster-
dam, pp. 1–32 (1994)

Questions

Philippe Palanque:
Question: According to the fact that you are using a multi-agent technology (that is
by definition continuously evolving), how can you assess the results and, for instance,
guarantee that the adaptation that was a success once, will be a success again?

Answer: this is a real problem and the definition of metrics on a multi-agent platform
is still a research topic. Now that the platform is ready and that the architecture is de-
fined this is one of the things we will be working on.

	Towards an Extended Model of User Interface Adaptation: The ISATINE Framework
	Introduction
	The ISATINE Framework for User Interface Adaptation
	Dieterich’s Taxonomy of User Adaptations
	Definition of the ISATINE Framework

	A Multi-agent Architecture Supporting ISATINE Framework
	Goals for User Interface Adaptation
	Initiative for Adaptation
	Specification of Adaptation
	Application of Adaptation
	Transition with Adaptation
	Interpretation of Adaptation
	Evaluation of Adaptation

	Implementing the Multi-agent Architecture
	Receiving Context Changes from the Sensors and Adapting the UI
	Getting the Adapted User Interface

	A Second-Hand Car Selling Case Study
	Adaptability in ISATINE Framework Architecture
	Platform Adaptation in ISATINE Framework Architecture
	Context Adaptation in ISATINE Framework Architecture
	Extending ISATINE Framework Architecture to Support Transition Stage

	Conclusion and Future Work
	References

