
Towards an extensible context ontology for
Ambient Intelligence

Davy Preuveneers1, Jan Van den Bergh2, Dennis Wagelaar3, Andy Georges4,
Peter Rigole1, Tim Clerckx2, Yolande Berbers1, Karin Coninx2, Viviane

Jonckers3, and Koen De Bosschere4

1 Department of Computer Science, K.U.Leuven
Celestijnenlaan 200A, B-3001 Leuven, Belgium,

{davy.preuveneers, peter.rigole, yolande.berbers}@cs.kuleuven.ac.be,
http://www.cs.kuleuven.ac.be

2 Expertise Centre for Digital Media, Limburgs Universitair Centrum
Universitaire Campus, B-3590 Diepenbeek, Belgium,

{jan.vandenbergh, tim.clerckx, karin.coninx}@luc.ac.be,
http://www.edm.luc.ac.be

3 System and Software Engineering Lab, Vrije Universiteit Brussel
Pleinlaan 2, B-1050 Brussels, Belgium,

dennis.wagelaar@vub.ac.be, vejoncke@info.vub.ac.be,
http://ssel.vub.ac.be

4 Department of Electronics and Information Systems, Ghent University
St.-Pietersnieuwstraat 41, B-9000 Gent, Belgium,

{ageorges, kdb}@elis.UGent.be,
http://www.elis.UGent.be/paris

Abstract. To realise an Ambient Intelligence environment, it is para-
mount that applications can dispose of information about the context in
which they operate, preferably in a very general manner. For this purpose
various types of information should be assembled to form a representa-
tion of the context of the device on which aforementioned applications
run. To allow interoperability in an Ambient Intelligence environment,
it is necessary that the context terminology is commonly understood
by all participating devices. In this paper we propose an adaptable and
extensible context ontology for creating context-aware computing infras-
tructures, ranging from small embedded devices to high-end service plat-
forms. The ontology has been designed to solve several key challenges in
Ambient Intelligence, such as application adaptation, automatic code
generation and code mobility, and generation of device specific user in-
terfaces.

1 Introduction

Small portable devices, such as PDAs and mobile phones, are becoming more
widespread. As a consequence, people are expecting the functionalities provided
by these devices to increase. GSMs with a quite extensive amount of organizer
software, games and multimedia services are no exception, rather they are rapidly



becoming a default asset in everyone’s life. As devices grow more powerful, with
respect to computing power and autonomy, we expect the software on such em-
bedded devices to become more advanced too. Additionally, at home and at
work, embedded systems start getting a foothold. Home automation systems for
example are no longer the rare expensive gadgets they used to be. Observing
these trends, the IST Advisory Group (ISTAG) [1] has concluded that within
a few years, real Ambient Intelligence (AmI) environments will emerge. In such
environments, devices will communicate and interact independently, without im-
mediate user interaction. The devices will make decisions based on a variety of
factors, including user preferences and the presence of other users in the near
neighbourhood.

To accomplish this, devices need to be aware of contextual information within
their environment. In order to sort out any information that may characterize
the situation of a person or a computing device, it is a must to structure the large
amount of data so that synthesizing of valuable information from varying sources
is possible. The resulting structured data is called the context of the device. The
context thus describes all the relevant information to allow software on a device
to semi-automatically interact in a well-defined way with its environment. The
context model proposed in this paper will be used in the CoDAMoS project [2]
to solve several key challenges in the area of Ambient Intelligence by supporting
context-driven adaptation of mobile services.

A short overview of the context requirements to support an Ambient Intel-
ligence environment is given in section 2. In section 3 we describe related work
on the modeling of context and their shortcomings. We then present our context
ontology proposal in section 4 and end this paper with a conclusion and future
work in section 5.

2 Requirements for Ambient Intelligence

The aim of AmI computing infrastructures is to provide intelligent services to
the user by targeting software towards a specific context before delivery, and
adapting it to a changing context after delivery. More specifically, it will require
integration of state-of-the-art concepts within several computer science research
domains, such as application adaptation, code mobility in nomadic environ-
ments, automatic code generation and context-aware user interfaces. Therefore,
detailed context information should be provided to be able to accomplish these
objectives, resulting in the following requirements for a basic context model:

R.1 Application adaptivity: With dynamic environments and changing con-
texts in mind, it is important that applications support some degree of adap-
tivity. Hence, up-to-date information about the user, available services and
host platforms, network connectivity, time, location and other sensed data
should be included in the context model to assist appropriate application
adaptation.

R.2 Resource awareness: As resources on embedded devices are sometimes
too limited to run certain services, sufficient information about maximum



and currently available resources, such as processing power, memory, battery
life time and bandwidth, is needed to consider service adaptation or service
relocation for lowering resource usage.

R.3 Mobile services: When the location of a user changes over time, whole
services or parts thereof must be able to migrate almost instantaneously.
Therefore, detailed information about the execution platform should allow
autonomous migration when, for example, compatible virtual machines exist
on two different platforms.

R.4 Semantic service discovery: Semantic discovery based on context in-
formation enhances key-value based matching protocols by automatically
incorporating search criteria that are relevant for the current user or device.

R.5 Code generation: By specifying the operating system, drivers, software
libraries and virtual machines on an embedded device, code generation can
be used to generate a dedicated implementation of a high-level service spec-
ification to broaden the range of devices on which services can be deployed.

R.6 Context-aware user interfaces: Services at the end-user side that have
to work within tight resource boundaries on mobile devices need user inter-
faces that are adapted to their context of use. User interfaces can further
adapt dynamically if the context changes over time.

These requirements allow mobile services to be designed in a generic way, with
functional variations to be generated for a range of platforms, but also so that
they can adapt to context elements such as other services and resources available
in their context.

3 Related Work

Context-awareness is a hot research domain, with interesting topics such as
context modeling, formal context languages for specifying facts and interrela-
tionships, and infrastructure support for querying and reasoning on contextual
information using an inference engine.

The Context Ontology Language (CoOL) [3] is an ontology-based context
modeling approach, which uses the Aspect-Scale-Context (ASC) model where
each aspect (e.g. spatial distance) can have several scales (e.g. kilometer scale or
mile scale) to express some context information (e.g. 20). Mapping functions exist
to convert context information from one scale to another. CoOL is very useful
for describing concepts with an inherent metric ordering such as in requirement
R.2, though less practical for expressing scales for aspects as in requirement R.1.
Chen et al. [4] propose a context broker architecture (CoBrA) using an ontology
to describe persons, places and intentions. Less emphasis is put on the notion
of services and related aspects, such as user interfaces and mobile devices on
which these services are deployed, needed to fulfill the above requirements. Gu
et al. [5] present a service-oriented context-aware middleware (SOCAM) based
on a context model with person, location, activity and computational entity (such
as a device, network, application, service, etc.) as basic context concepts. The



notion of mobile services seems to be beyond the scope of this context model.
Henricksen and Indulska [6] propose a context model that describes context based
on several types of facts (e.g. sensed, static and profiled) subject to constraints
and quality annotations.

Some general description frameworks for expressing context are the Resource
Description Framework (RDF) [7] and the Web Ontology Language (OWL) [8].
Other languages are built on top of these frameworks, but are more tailored to
describing context. These include the Composite Capability/Preference Profiles
(CC/PP) [9] and the User Agent Profiling Specification (UAProf) [10]. All have
been used to specify context. Korpipää et al. [11] use RDF to describe sensor and
derived sensor data on mobile devices. CC/PP was used by Indulska et al. [12],
but found to be too limited to describe complex context models. OWL, on the
other hand, allows the definition of more complex context models and is used in
several approaches [3–5].

4 Extensible Context Ontology

Considering the fast evolution in the hardware and software industry, it is impor-
tant that decisions made today regarding our context specification are adaptable
and extensible. Thus, we should remain as conservative as possible, keeping open
the options for change in our context model. We therefore opted to define a ba-
sic, generic context ontology1. Ontologies provide classes of objects, relationships
and domain constraints on their properties. By mapping concepts in different
ontologies, structured information can be shared. Hence, ontologies are good
candidates to express meaning within our context specification.

4.1 General Overview

We determined four main entities around which we built our ontology. These
are based around the most important aspects in context information, which are
also, sometimes partially, discussed in [13–15]:

User: The user plays an important role within Ambient Intelligence. The appli-
ances within its environment should adapt to the user, and not vice versa.
Important properties include a user’s profile, but also his preferences, mood
and current activity.

Environment: The environment in which the user interacts is an important as-
pect of the context specification. It consists of time and location information,
and environmental conditions, such as temperature and lighting.

Platform: This part is dedicated to the hardware and software description
of a specific device. This includes among other things specifications of the
processor, available memory and bandwidth, but also information about the
operating system and other available software libraries.

1 The current implementation of our context ontology in OWL can be found at
www.cs.kuleuven.ac.be/cwis/research/distrinet/projects/CoDAMoS/ontology/



Service: Services provide specific functionality to the user. Specifying semantic
and syntactic information sustains easy service discovery and service inter-
action using a well-defined service interface.

Every device will contain its own context specification with a full description of
its provided services, while containing pointers to relevant information on devices
in its environment. An overview of the proposed context ontology2 is given in
figure 1.

user

platform environmentservice

providesService* hasEnvironment

usesService*

usesPlatform*

Fig. 1. Context ontology overview

4.2 User

According to Dey [15], context information is only relevant if it influences a user’s
task. This is why the user should take a central place in the Ambient Intelligence
philosophy. Collecting information about his context enables applications and
services to improve the usability of appliances. By accomplishing requirements
R.1 and R.6, it is possible to adapt the application as well as the user interface
to the user’s preferences. In the ontology a distinction is made between a user’s
preference, such as a preference for using small fonts, and his profile, containing
facts such as gender, name and current employer. While the former may be
subject to the current situation, the latter remains more or less static.

When a user performs a task, this can be subdivided into several activities.
Clerckx et al. [16] show it is possible to link context information to a model de-
scribing the tasks a user can perform while using an application. The user fulfills
a certain role, e.g. the project manager who is heading off to work for a meeting
or the considerate father who picks up his children from school. Hence, people
have different roles, but also different moods, and their personal preferences may
depend on both issues. For example, consider the project manager, drowning in
work, who does not want to be disturbed unless for urgent matters. Figure 2
shows the relevant user concepts and relationships.

2 A (*) means a relationship with multiplicity of 1 or more.



preference
profile

profile

user

role

task

activity

service

hasActivity*

hasTask*

hasRole*
hasProfile

usesService*

hasProfile

mood

hasMood

hasProfile

i/o
device

usesIODevice*

isa

Fig. 2. User ontology concepts

4.3 Environment

A user is not a singular entity in an ambient environment. He interacts through
various devices with his environment and with other people. This environment
continuously provides information that allows him to make well-informed deci-
sions or that can influence his behaviour. However, the diversity of entities that
can be sensed or measured is enormous, if not infinite. It is therefore useless to
try to describe everything within the surroundings of a user or a device. As user
mobility is a key aspect within Ambient Intelligence, important concepts in this
part of the context specification to meet requirements R.1 and R.3 include: loca-
tion, time and some environmental conditions. For example, due to some cloudy
weather and heavy rain outside, the home automation system might decide to
turn on the lights. Of course, this is not needed in the middle of the night or
if nobody is at home. Figure 3 gives an overview of the ontology concepts and
relationships for the environment.

Another issue is that this information might be sensed by varying sources
with different accuracies, with possibly conflicting measurements. It is very im-
portant that we are reasonably confident about the accuracy of the derived
information within the context specification. Note that the environment is not
directly related to the user, but rather through the used platform: The envi-
ronment is always sensed through a device. By explicitly specifying this, it is
possible to reason about several properties of the sensed environment that re-
quire knowledge of the measuring device, e.g. accuracy.



platform

environment

location
environmental

condition

temperature

pressure

humidity

lighting

noise

address

absoluterelative

isa

isa

isa

hasEnvironment

isRelativeTo*
time

hasLocation*

hasTime*

hasEnvironmentalCondition*

Fig. 3. Environment ontology concepts

4.4 Platform

The platform section of the ontology provides a description of (i) the software
that is available on the device for the user or other services to interact with, and
(ii), the hardware which specifies the resources of the device. Since the presence
of certain hardware and software elements in devices can vary, only the relevant
entries of the context specification are filled in. An overview of this part of the
context specification is shown in Figure 4.

The software installed on the device The available software on a device is
specified for the following reasons: (i) a service may require certain functionality
to run, thus before deployment the service provider should be able to check
for the presence of said functionality, and (ii) automated service builders must
know for which software platform they are generating code. Hereby, we fulfill
requirements R.3 and R.5.

Software that is available on the device can be described by the following
required parameters, or properties in the context specification:

Name: The software component name, e.g. Java Media Framework.
Edition: The software edition, if applicable, e.g. Enterprise Edition.
Version: The software version, e.g. 2.11.

While we will in general generate code [17] for a high-level API, such as the
Java API, it sometimes may be necessary to drop to a lower level, such as



user

platform

software hardware

operating
system

virtual 
machine

rendering 
engine

input
device

output
device

resource

memory
resource

cpu
resource

storage
resource

network
resource

power
resource

environment

service

isa

providesSoftware*

isa

isa
providesService*

hasEnvironment

middleware

i/o
device

isa

usesIODevice*

modality

requiresPlatform*

supportsModality*

providesHardware*

Fig. 4. Platform ontology concepts

the operating system or C-library. Therefore, we define the various software
components, ranging from the lowest level to the high-level API’s. By specifying
an exact edition or version of the software components, we can generate code
that is optimised for usage with these components.

Operating system: When code is generated for this level, it is necessary for
the code generator to know about the API offered by the operating system
(system calls) and e.g. the C-library (if any) present on the system. Examples
are Windows CE 3.0 and Linux-2.4.19/glibc-2.3.2.

Virtual machine: If a virtual machine is present, the code generator should
know what type of machine-independent representation the machine accepts
and what API is offered by it. Examples are J2EE [18], J2ME [19] and
.NET [20]. We also need to know the vendor and version of virtual machines.
We have shown in [21] that the JVM can have a significant influence on the
execution behaviour of a workload (JVM + application + input), especially
for short or small applications.

Middleware: Besides the operating systems and virtual machines that are
present, additional ‘middleware’ packages and libraries may have been in-
stalled as well, e.g. a CORBA broker [22].

Rendering Engine: This forms the backend for rendering a user interface on
the particular device supporting at least one modality. Examples are QT,
Java Swing and Windows Forms.

The hardware of the device For software deployment purposes, it is impor-
tant that the context specifies the hardware in the device, such as the CPU type
and properties, the available memory, networking capabilities, etc.



If one wants to deploy a piece of software, obviously it should fit on the device,
both statically, and dynamically (at runtime). Furthermore, for e.g. multi-media
applications, it is important that deadlines can be met. Consider for exam-
ple the decoding of a video sample. The user wants smooth rendering of the
video-frames, making it necessary to decode each frame in time. Thus, if the
performance of the video decoding software is too low, these deadlines will not
be met.

We distiguish five hardware resources that should be described in the context
to accomplish requirements R.1, R.2, R.3 and R.5 for the device to support
service mobility or service profiling: (i) the CPU, (ii) storage (permanent), (iii)
memory (volatile), (iv) power, and (v) network capabilities. Each of these have
several properties that are important for code-generation and for subsequent
performance estimation. For the latter, we should know e.g. the cache and TLB
size, the branch predictor used, etc., as they are used in the performance model
we are developing. This model is needed to see if the generated code can actually
run on the device, or if a simpler version should be instantiated.

4.5 Services

In several computer science domains the concept of services refers to a com-
putational entity that offers a particular functionality to a possibly networked
environment. Typical examples of where this term is used are in the domains
of web services, telematics, residential gateways and mobile services. Although
the previous domains target different users, they all have in common that these
services are deployed to offer users a certain functionality using a well-defined
interface, hereby providing a comfortable way for a user to achieve his goals.
Our research is focussed on how services can dynamically interact and be aware
of and be adapted to the current context, while keeping certain QoS aspects in
mind. A user should be able to discover services in his environment and invoke
them without too much hassle. This research involves requirements R.1, R.2 and
R.3. These services might be composed of other existing services and be adapted
to personal preferences and to the device on which it is being employed. Hence
service descriptions should be detailed enough to make this possible.

In figure 5 we give an overview of the main concepts regarding services. Typi-
cally, a user wants to employ a service to accomplish a specific task. He therefore
interacts with some I/O device (a touchscreen, keyboard, voice recognition, etc.).
Services will generally be implemented using software modules being provided on
a device. Hence, each platform can host several services and/or employ several
remote services in the neighbourhood when the necessary network infrastructure
is present.

The level of detail at which services are described in the context specification
of a device, depends on where these services are hosted. Each device is responsible
for having a full description of its own services, including how it can be interfaced
by other services. A high-level description of the services in its neighbourhood
is more than adequate enough for doing service discovery using the context
specification of the device to see if we are interested in a service and would



task software

service

service
profile

service
model

service
grounding

hasServiceGroundinghasServiceProfile

hasServiceModel

usesService* providesService*

Fig. 5. Service ontology concepts

like to receive more detailed information about it. Information about required
protocols and message formats can be negotiated later on if necessary, hence
keeping bandwith usage to a minimum by only sending required information.

We therefore provide a multi-level service description, by extending our con-
text ontology with a service ontology called OWL-s [23]. Although this ontology
is tailored to web services and the semantic web [24], it also provides a rich
and standardized framework to describe services in general. The Semantic Web
community, using the OWL-s ontology specification, addresses the problem of
having a lack of semantics within WSDL [25] service descriptions by adding a
semantic layer based on the following concepts:

Service profile: It provides a human readable description of the functionality
of the service by specifying its inputs and outputs, information about the
service provider, a quality rating and other attributes that can be used for
service discovery.

Service model: It describes what happens when the service is carried out,
by giving more detailed information about the control-flow and data-flow
involved in using the service so that the user or agent could perform an
in-depth analysis of whether the service meets its needs.

Service grounding: The service grounding deals with implementation details
by specifying a communication protocol, message formats, other service spe-
cific details.

5 Conclusion and Future Work

The necessity of ontologies for the establishment of context-aware pervasive com-
puting systems is broadly acknowledged. In this paper, we presented a basic,
generic ontology for the description of context information.

The ontology is currently expressed in OWL, but could also be expressed in
other ontology languages. It consists of four basic context entities: (i) user, the
central concept in context-aware computing, (ii) environment, the description of



relevant aspects of the user’s surroundings , (iii) platform, the hardware and soft-
ware of the device or devices through which a user interacts with the application
or services and (iv) service, functionality offered in the user’s environment.

Based on the gained experience and the feedback of industrial partners the
context ontology will be further refined. Extensions, inevitable for the realization
of concrete case studies for the CoDAMoS project [2], and refinements will be
related to the presented basic ontology.

Further attention will be paid to how emerging standardized ontologies for
various aspects of context information will relate to the established ontology.
When needed for our research objectives or accomplishment of case studies,
relations between the ontologies will be specified to enhance our current ontology.

6 Acknowledgements

The CoDAMoS (Context-Driven Adaptation of Mobile Services) project IWT
030320 is directly funded by the Flemish Institute for the Promotion of the
Scientific-Technological Research in the Industry (IWT – Vlaanderen).

References

1. Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J., Burgelman, J.C.: ISTAG,
Scenarios for Ambient Intelligence in 2010. http://www.cordis.lu/ist/istag-
reports.htm (2001)

2. The CoDAMoS Project: Context-Driven Adaptation of Mobile Services.
http://www.cs.kuleuven.ac.be/distrinet/projects/CoDAMoS/ (2003)

3. Strang, T., Linnhoff-Popien, C., Frank, K.: CoOL: A Context Ontology Language
to enable Contextual Interoperability. In Stefani, J.B., Dameure, I., Hagimont,
D., eds.: LNCS 2893: Proceedings of 4th IFIP WG 6.1 International Conference on
Distributed Applications and Interoperable Systems (DAIS2003). Volume 2893 of
Lecture Notes in Computer Science (LNCS)., Paris/France, Springer Verlag (2003)
236–247

4. Chen, H., Finin, T., Joshi, A.: An Ontology for Context-Aware Pervasive Comput-
ing Environments. Special Issue on Ontologies for Distributed Systems, Knowledge
Engineering Review (2003)

5. Gu, T., Wang, X.H., Pung, H.K., Zhang, D.Q.: An Ontology-based Context Model
in Intelligent Environments. In Proceedings of Communication Networks and Dis-
tributed Systems Modeling and Simulation Conference, San Diego, California, USA
(2004)

6. Henricksen, K., Indulska, J.: A Software Engineering Framework for Context-
Aware Pervasive Computing. In: Second IEEE International Conference on Per-
vasive Computing and Communications, IEEE Computer Society (2004) 77–86

7. Beckett, D.: RDF/XML Syntax Specification (Revised).
http://www.w3.org/TR/rdf-syntax-grammar/ (2003)

8. McGuinness, D.L., van Harmelen, F.: OWL Web Ontology Language Overview.
http://www.w3.org/TR/2004/REC-owl-features-20040210/#s1.1 (2004)

9. Klyne, G., Reynolds, F., Woodrow, C., Ohto, H., Hjelm, J., Butler, M.H., Tran, L.:
Composite Capability/Preference Profiles (CC/PP): Structure and Vocabularies
1.0. http://www.w3.org/TR/2003/PR-CCPP-struct-vocab-20031015/ (2003)



10. FORUM, W.: UAProf User Agent Profiling Specification (1999, amended 2001)
11. Korpipää, P., Mätyjärvi, J., Kela, J., Keränen, H., Malm, E.J.: Managing Context

Information in Mobile Devices. IEEE Pervasive Computing, Mobile and Ubiquitous
Systems 2 (2003) 42–51

12. Indulska, J., Robinson, R., Rakotonirainy, A., Hendricksen, K.: Experiences in
Using CC/PP in Context-Aware Systems. In Stefani, J.B., Dameure, I., Hagimont,
D., eds.: LNCS 2893: Proceedings of 4th IFIP WG 6.1 International Conference on
Distributed Applications and Interoperable Systems (DAIS2003). Volume 2893 of
Lecture Notes in Computer Science (LNCS)., Paris/France, Springer Verlag (2003)
224–235

13. Schilit, B.N., Adams, N.I., Want, R.: Context-Aware Computing Applications.
In: Proceedings of the Workshop on Mobile Computing Systems and Applications,
Santa Cruz, CA, USA, IEEE Computer Society (1994) 85–90

14. Schmidt, A., Aidoo, K.A., Takaluoma, A., Tuomela, U., Laerhoven, K.V., de Velde,
W.V.: Advanced Interaction in Context. In: Handheld and Ubiquitous Comput-
ing, HUC’99, Proceedings. Volume 1707 of Lecture Notes in Computer Science.,
Karlsruhe, Germany, Springer (1999) 89–101

15. Dey, A.K., Salber, D., Abowd, G.D.: A Conceptual Framework and a Toolkit
for Supporting the Rapid Prototyping of Context-Aware Applications. Human-
Computer Interaction (HCI) Journal 16 (2001) 97–166

16. Clerckx, T., Luyten, K., Coninx, K.: Generating Context-Sensitive Multiple Device
User Interfaces from Design. In: Pre-Proceedings of the Fourth International Con-
ference on Computer-Aided Design of User Interfaces, CADUI’2004, 13-16 januari
2004, Edited by Robert J.K. Jacob, Quentin Limbourg and Jean Vanderdonckt,
Funchal, Isle of Madeira, Portugal (2004) 288–301

17. Wagelaar, D.: Towards a Context-Driven Development Framework for Ambient
Intelligence. In: Proceedings of the 24th International Conference on Distributed
Computing Systems Workshops (ICDCS 2004 Workshops), IEEE Computer Soci-
ety (2004)

18. Shannon, B.: JavaTM2 Platform: Enterprise Edition Specification. Sun Microsys-
tems, Inc. (2001) Version 1.3.

19. Sun Microsystems, Inc.: Java 2 Micro Edition website. (2003) [Online]
http://java.sun.com/j2me/.

20. Platt, D.S.: Introducing Microsoft .NET. 3rd edn. Microsoft Press (2003)
21. Eeckhout, L., Georges, A., De Bosschere, K.: How Java Programs Interact with

Virtual Machines at the Microarchitectural Level. In: Proceedings of the 18th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA 2003), Anaheim, CA, USA, ACM (2003)
169–186

22. Object Management Group, Inc.: The Common Object Request Broker: Architec-
ture and Specification. (2002) Version 3.0.

23. The OWL Services Coalition: OWL-S: Semantic Markup for Web Services.
http://www.daml.org/services/owl-s/1.0/owl-s.html (2003)

24. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web.
http://www.scientificamerican.com/print version.cfm?articleID=00048144-10D2-
1C70-84A9809EC588EF21 (2001)

25. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services
Description Language (WSDL) 1.1. http://www.w3.org/TR/2001/NOTE-wsdl-
20010315 (2001)


