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Abstract. In cancer treatment, understanding the aggressiveness of the
tumor is essential in therapy planning and patient follow-up. In this
article, we present a novel method for quantifying the speed of invasion of
gliomas in white and grey matter from time series of magnetic resonance
(MR) images. The proposed approach is based on mathematical tumor
growth models using the reaction-diffusion formalism. The quantification
process is formulated by an inverse problem and solved using anisotropic
fast marching method yielding an efficient algorithm. It is tested on a
few images to get a first proof of concept with promising new results.

1 Introduction

Glial based tumors account for approximately 40-45% of all primary intracranial
cancer, forming the largest class in this pathology [1]. Tumors within this group
show a high variation extending from benign to fatal. Determining different char-
acteristics of each specific case and following their change during the treatment
is crucial in therapy planning and patient follow-up. Although medical imaging
is not the sole source of information used for this, it plays an important role
in understanding the pattern and speed of invasion of healthy tissue by cancer-
ous cells. One of the most important hints that can be obtained from images is
the progression of the Critical Target Volume (CTV) and Gross Tumor Volume
(GTV), which are important in radiotherapy. For low grade gliomas, CTV cor-
responds to the enhanced region in the T2-weighted magnetic resonance images
(MRI) and at its extent tumor cells are diffused into the brain tissue. In the case
of high grade gliomas CTV corresponds to the extents of the tumor infiltrated
edema [2]. GTV in both cases is taken as the image abnormality in T1 weighted
images corresponding to the region where tumor cells are dense. As shown by
Giese et al., speed of invasion of tumor cells in grey and white matter are dif-
ferent, hence the speed of CTV progression [3]. Quantifying this progression of
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CTV in different tissues would be helpful in initial grading of the tumor and
assessing the efficacy of the current treatment procedure.

Mathematical modeling of tumor growth dynamics gives us an insight on the
physiology of the process by linking different types of observations under theoret-
ical frameworks. There has been a large amount of models proposed to describe
the growth dynamics of glial tumors. Different approaches can be coarsely clas-
sified into two groups, macroscopic and microscopic ones. Macroscopic models
describe the evolution of local tumor cell densities and try to capture the dy-
namics by general equations [4-6]. Most of the macroscopic models are based on
the reaction-diffusion formalism introduced by Murray in [7, 4].

In this paper we are proposing a method for quantifying the progression of
the CTV of glial based tumors. The formulation is based on the tumor growth
model proposed by Clatz et al. in [5], which uses reaction-diffusion formalism.
With the proposed method, we obtain quantitative estimates for the speed of
invasion in white and grey matter by solving the patient specific parameter iden-
tification problem for this growth model using MR images taken at two different
time instances from the same patient. The parameter identification problem is
formulated using the front approximation of reaction-diffusion equations, which
results in anisotropic Eikonal equations. The anisotropic fast marching method
proposed in [8] is used for numerical solutions yielding an efficient algorithm.

2 Method

Quantitative measures for the speed of CTV progression can be obtained us-
ing reaction-diffusion based growth models, which explain the invasion through
diffusion process. Clatz et al. proposed such a model in the form of a Fisher-
Kolmogorov (F-KPP) equation in [5] based on the observation of Giese et al.:

% =V (D(x)Vu) + pu(l —u) , D(x)Vu- 75 =0 (1)
where u can be seen as the normalized tumor cell density or the probability
of finding a tumor at a given point, D is the diffusion tensor explaining the
invasion of tumor cells, p is the proliferation rate and 7 5 corresponds to the
normal vector of the brain surface. We focus in this article on the D matrix,
which defines anisotropic diffusion on the white matter following the main fiber
directions and isotropic diffusion on the grey matter, constructed as:

(2)

D(x) = {ng if x is in grey matter
dyDyw(x) if x is in white matter
where Dy, is the water diffusion tensor obtained from MR diffusion tensor imag-
ing (MR-DTI) providing the fiber direction. Quantities explaining the speed of
invasion are d, and d,,, diffusion coeflicients in grey and white matter respec-
tively. Identification of these parameters for each patient using images taken at
two different times corresponds to the identification process.



2.1 Front Approximation of Reaction-Diffusion Equations

The model given in Equation 1 requires tumor cell density u to be known at
every point as an initial condition. However, this is not the case for medical
images where only contours around GTV and CTV are available. The front
motion approximation of reaction-diffusion equations offers a solution for this
discrepancy between information needed and observations available [8]. These
approximations formulate the motion of the tumor front (the visible contour)
based on a reaction-diffusion equation such as the one given in Equation 1.
Taking the contour around the CTV as the last visible tumor front we can use
such an approximation to model its evolution.

The front motion approximation for reaction-diffusion equations is based on
the fact that these PDEs have travelling wave solutions under certain conditions.
This can be illustrated in the simple one dimensional F-KPP equation where D
is scalar. In [9] it is shown that any initial condition with compact support will
evolve and converge to a traveling wave of the form u = u(x — ct) in time,
where ¢ = 2y/Dp is the asymptotic speed of a point taken on the front. The
convergence of the front and the speed of the point v = 0.5 can be seen in
Figure 1. The convergence property is carried to higher dimensions for contours
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Fig. 1. Left: Front evolution starting from a step function. Steady wave-front is trans-
lating in time. Right: Speed of wave-front plotted versus time showing the convergence
behavior and the asymptotic speed.

on the travelling wave with the asymptotic speed ¢ = 24/pntDn under the
condition that coefficients of the equation are constant and the front is planar,
meaning the front has no curvature and its normal is given by n. For more general
fronts I like the tumor front mentioned where curvature exists and coefficients
vary spatially we make the assumption that required conditions are satisfied
within a voxel. Based on this assumption we can simply derive the travelling
time formulation for I

VVTIDVT = 2\1/7) (3)

where T'(x) represents the time at which I" passes from point x [10].



2.2 Numerical Method

The travelling time formulation given in Equation 3 is an anisotropic Eikonal
equation. Very efficient methods for isotropic Eikonal equation F|VT| = 1 have
been proposed like fast marching (FM) methods [11]. These methods are based
on the fact that characteristic directions of the equation are parallel to VT [12].
However, the anisotropic case poses extra difficulties for efficient numerical algo-
rithms because this property is not satisfied [12]. The method we used to solve
Equation 3 numerically is based on the original fast marching idea with the ad-
dition of a recursive correction phase to compensate the effects of anisotropy.
In [8], it is demonstrated that this algorithm is fast and efficient in the case of
high anisotropies and general meshes. Having an efficient numerical method for
Equation 3 is essential in solving the parameter identification problem explained
in the next section.

2.3 Parameter Identification Problem

The parameter identification process uses the front motion approximation given
in Equation 3. In order to formulate this inverse problem we follow the modeling
assumption as given in [5] and state T'(I'1) = 0 and T'(I2) = ta—t1, where I'; and
I'» corresponds to contours around CTV regions observed in images taken at time
t1 and to respectively. Parameter identification process tries to find parameters
dy and d,, that create a 1" function that would satisfy these conditions. Notice
that p is a multiplicative factor in the travelling time formulation and it cannot
be determined independently from the D matrix by just looking at the motion of
the tumor front. To tackle this, we treat p as a known constant in the parameter
identification problem. t; is not available in clinical circumstances hence we use
to — t1. The formulation can be given as the minimization problem

1 —~ —
C(dy,dy) = §(dist(F2,F2) + dist(I2,1%)) , dyw >0 and dy, >0 (4)

N 1
Iy = {x|T(x) = ty — t;, VVT!DVT = NG T(IY) = 0}

where C' is the objective function to minimize with respect to d,, and dg, E is
the computed contour using the front approximation with the given parameters
and dist(A, B) is the distance between two isosurfaces taken as mean distance
from voxels of A to the closest voxel of B.

The minimizing parameters dy, and dj of the function C will create the closest

contour 1/“\2* to the observed contour 5. This formulation poses a multidimen-
sional minimization problem for which several methods have been proposed. One
crucial observation is that explicit derivatives of C' with respect to the variables
are not available. Although we have constraints on d,, and dy, these are not
very restrictive so we choose to use the unconstrained minimization algorithm
proposed by Powell in [13] and restrict the domain computation. The attractive
feature of this algorithm is that it does not require derivatives of the objective



function. Instead, local quadratic approximations of the objective functions are
obtained and used in the minimization. The algorithm requires instances of the
objective function to construct the quadratic approximation - which is computed
using anisotropic fast marching - and updates it as the minimization proceeds.
This minimization algorithm is prone to getting stuck at local minima. However,
we observed in our experiments that the minimization surface is convex hence,
this does not pose a problem.

tl — t2=120 days
d;, = 4.7 mm?/day
d; = 4.3 x10™*mm? /day

tl — t2:270 days
d;, = 0.5 mm?/day
d; = 2.7 x10™*mm?® /day

Fig. 2. Minimizing tumor front computed in the identification problem >y (thick black
contours) is plotted with the initial and the final tumor fronts manually segmented
from the images at taken at t1 and 2 respectively, (17 - thick white contours, I'> - thin
white contours). Underlying images are T2 weighted images taken at the second time
instance. Estimated growth parameters (appearent diffusion coefficients) dj and dy, for
these patients are also given.

3 Results

We illustrate the use of the proposed algorithm on two different patient images
both containing high grade gliomas, glioblastoma multiforme. In order to solve
the parameter identification problem on patient images we need to construct
tumor diffusion tensors as given in Equation 2, which requires MR-DTI and
white matter segmentation of the patient. Diffusion images are not available for
every patient and existence of the tumor and the low quality of patient images
make it impossible to obtain an accurate white matter segmentation. Thus, in



our experiments we used data acquired from a healthy subject, which consists
of T1 and T2 weighted images alongside MR-DTI. This data is registered to the
patient space using global affine transformation found using T1 weighted im-
ages. Tensors in the MR-DTI were re-oriented using finite strain strategy after
applying the global affine transformation to take into account the effects of the
transformation on the tensors [14]. To obtain the white matter segmentation,
we use fractional anisotropy (FA) values of the DTI data and let points with
FA > 0.3 form the white matter as an arbitrary value chosen for illustration
of the method. This way we obtain perfect correspondence between diffusion
tensors and the white matter segmentation. Lastly the p is set to 0.012/day as
proposed in [4].

The minimization algorithm explained in Section 2.3 is applied to the pa-
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Fig. 3. The objective function C(dw,dy) (minimization surface) for the patient whose
image are given in Figure 2(a) is plotted from two different views.

tient images given in Figure 2(a) and Figure 2(b). Tumor segmentation at the
initial time (thick white contour), tumor segmentation at the final time (thin
white contour) the computed tumor front minimizing the objective function I+
(thick black contour) are drawn on T2 weigthed images taken at the second time
instance showing CTV at {5. The minimizing parameters dy, and dj for each pa-
tient are also given in these figures. In Figure 3 we plot the minimization surface
(the function C(dy,dy)) computed for the patient image given in Figure 2(a).
Notice the minimization surface has a wide valley which makes the optimization
hard, on the other hand the surface is convex yielding only the global minimum.
The minimizing criterion, which is the symmetric distance between the computed
front and the delineated one, at this minimum reaches the value 0.05 mm for
the first patient data and 0.078 mm for the second patient data demonstrating
the similarity between the computed front and the real delineation.



4 Discussion

In this article, we proposed a novel method to quantify the speed of tumor in-
vasion in white and grey matter for gliomas on MR images using mathematical
growth models. This tool can be helpful in tumor grading and patient follow-up
as it gives quantitative values about the growth of the tumor. Quantification
process is formulated as a parameter identification problem and solved using
the anisotropic fast marching method and multidimensional optimization. The
speed estimates are given in terms of apparent diffusion coefficients d, and d,,,
which are used to construct tumor diffusion tensor as suggested by the growth
model given in Equation 1.

Results given in Section 3 demonstrate the functioning of the proposed
method. We observe that minimizing contours given in Figure 2 matches the
actual Critical Target Volume delineation given in the image reasonably well.
The discrepancies between these contours and the underlying CTVs are caused
by different factors such as the use of registered DTI data instead of the one from
the patient, lack of a good white matter segmentation of the patient, not taking
into account the mass effect caused by the tumor and the fact that identifica-
tion process assumes tumor growth is perfectly explained by the mathematical
growth model used. The diffusion coefficients obtained, shows a big difference
between the speed of the tumor in grey matter and in white matter coherent
with the experimental results given in [3].

The method has been demonstrated on high grade gliomas where CTV cor-
responds to the edema region. However, the same tool can also be applied, and
will be future work, to low grade gliomas since reaction-diffusion growth models
have been proposed for these types of tumors as well [6]. Clinical values of the
estimated diffusion coefficients should be assessed using a large database in order
to understand their importance. Finally introducing different imaging modali-
ties can give us the opportunity to find parameters more accurately and identify
more parameters such as p.
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