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Abstract— Constraint satisfaction problems (CSPs) widely
occur in artificial intelligence. In the last twenty years, many
algorithms and heuristics were developed to solve CSP. Recently,
bio-inspired algorithms have been proposed to solve CSP. They
have shown to be more efficient than systematic approaches in
solving hard instances. Given that recent publications indicate
that Immune systems offer advantages to solve complex prob-
lems, our aim here is to propose an efficient immune system
which can solve CSPs. We propose an immune system which
is able to solve hard constraint satisfaction problems. The tests
were carried out using random generated binary constraint
satisfaction problems on the transition phase.

I. INTRODUCTION

Constraint satisfaction problems (CSPs) widely occur in
artificial intelligence. They involve finding values for prob-
lem variables subject to constraints on which combinations
are acceptable. For simplicity we restrict our attention here
to binary CSPs, where the constraints involve two variables.
Binary constraints are binary relations. If a variable i has a
domain of potential values Di and a variable j has a domain
of potential values Dj , the constraint on i and j, Rij , is
a subset of the Cartesian product of Di and Dj . A pair
of values (a, b) is called consistent, if (a, b) satisfies the
constraint Rij between i and j. The constraint network is
composed of the variables, the domains and the constraints.
Over the few years, many algorithms and heuristics were
developed to find a solution in constraint networks. Following
these trends from the constraint research community in the
bio-inspired computation community, some approaches have
also been proposed to tackle CSP with success [4], [8], [10],
[12], [11], [13], [14]. Given that recent publications indicate
that Immune systems offer advantages in solving complex
problems [1], [3], [19] our aim here is to propose an efficient
immune system which can solve a wide range of binary
CSPs. The contributions of this paper are:

• An Immune System which can solve hard CSPs
• A comparison of the performance with other well known

incomplete approach

The paper is structured as follows. In the next section, we
briefly explain the Artificial Immune Framework. In section
3, we define the Constraint Satisfaction Problem, and we
also identify the conceptual relationship between the problem
with the components of the Artificial Immune Framework.
In section 4 we introduce our new approach CD-NAIS. The
results of tests and a comparison with other incomplete
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method are given in section 5. In our summary, we give
some conclusions and future works.

II. ARTIFICIAL IMMUNE SYSTEMS

Artificial Immune Systems (AIS) are adaptive systems
inspired by immunological theory [1]. From the information
processing point of view an AIS is a parallel and a distributed
adaptive system. It uses learning, memory and associated
recovery to do recognition and classification tasks. Roughly
speaking, the principal function of an immune system is to
protect the individual from the repeated attacks of external
agents. The system recognizes and discards doing an immune
answer coming from one of the two levels: the innate immune
system or the adaptive immune system. The cells of the
innate immune system are immediately able to take action
against external attacks. In the adaptive immune level, the
antibodies are produced as an answer to specific infections.
These cells can develop a memory, thus they will be able to
recognize a future similar attack. L. de Castro [1] proposed a
framework to design an AIS with the following components:

1) A representation to create abstract models of or-
gans, cells and immune molecules (antigen, antibody).
A molecule can, in general, be represented by a
form space S like an attribute chain (set of coordi-
nates) of size L. Thus, an attributes chain m =<

m1, m2, ..., mL > corresponds to a point in the form
space.

2) A set of functions called affinity functions to quantify
the interactions between the AIS components (organs,
cells and molecules).

3) A set of algorithms to simulate the immune behavior.
In this work we use two of the most known models:
the clonal selection and the immune network. The
clonal selection manages the interaction of the immune
system components. The immune network is used to
simulate both the dynamic and metadynamic behavior.

III. PROBLEM FORMULATION

We consider a constraint satisfaction problem (CSP) as
defined by Mackworth [9], which can be stated briefly as
follows: Given a set of variables, a domain of possible values
for each variable, and a conjunction of constraints, each
constraint is a relation defined over a subset of the variables,
limiting the combination of values that the variables in this
subset can take. The goal is to find a consistent assignment of
values to the variables so that all the constraints are satisfied
simultaneously. CSP’s are, in general, NP-complete problems
and some are NP-hard [7]. Thus, a general algorithm de-
signed to solve any CSP will necessarily require exponential
time in problem size in the worst case.
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A. Notions on CSP

A Constraint Satisfaction Problem (CSP) is composed of
a set of variables V = {X1, . . . , Xn}, their related domains
D1, . . . , Dn and a set θ containing η constraints on these
variables. The domain of a variable is a set of values to which
the variable may be instantiated. Each variable Xj is relevant
(in the next we denote being relevant for by �), to a sub-
set of constraints Cj1 , . . . , Cjk

where {j1, . . . , jk} is some
subsequence of {1, 2, . . . , η}. A constraint which has exactly
one relevant variable is called a unary constraint. Similarly,
a binary constraint has exactly two relevant variables. A
binary CSP is associated with a constraint graph, where
nodes represent variables and arcs represent constraints. If
two values assigned to variables that share a constraint are
not among the acceptable value-pairs of that constraint, this
is an inconsistency or constraint violation.

B. Immune Components for CSP

Our algorithm uses three immune components: Antigen,
Antibody and B-cells. Basically, the Antigen represents the
information for each variable given by the constraint graph.
Thus, it just depends on the problem and not on the state of
the search of the algorithm. On the contrary, the Antibody
strongly depends on the state of the search of the algorithm.
It has two kinds of information: the variable values and the
constraints violated under this instantiation. Finally, a B-cell
has all the antibody information required by the algorithm
to its evolution. The immune components in our approach
are defined as follows:

Definition 3.1: (Antigen)
For a CSP and its constraint graph we define the antigen

Ag of the n-tuple of variables (Ag1, . . . , Agn), such that the
Agi value is the number of constraints where Xi is a relevant
variable, ∀i, i = 1, . . . , n.

Thus, the antigen represents the maximal number of
inconsistencies for each variable. The algorithm needs to
know for each pre-solution its variable values and the
constraints satisfied under this instantiation. For this reason,
the Antibody has two segments: a structural and a conflicting
segment.

Definition 3.2: (Structural Antibody)
A Structural Antibody Abs is a mapping from a n-tuple

of variables (X1, . . . , Xn) → D1 × . . . × Dn, such that it
assigns a value from its domain to each variable in V,e.g.
(X1, . . . , Xn) → (14, 18, . . . , p, q)

Remark: The structural segment corresponds to an
instantiation I of the CSP.

Definition 3.3: (Conflicting Antibody)
For a CSP and its constraint graph we define the

Conflicting Antibody Abc of the n-tuple of variables
(Abc1

, . . . , Abcn
), such that the Abci

value is the number
of violated constraints where Xi is a relevant variable,

∀i, i = 1, . . . , n.

A solution consists of a structural antibody which does
not violate any constraint, that is, whose conflicting antibody
complements the Antigen.
Before defining the B-cell we need to introduce the idea
of affinity. For the Artificial Immune Systems, affinity is
a measurement of the interaction between two immune
components. In our approach we are interested in two kinds
of affinity. The affinity between the Antigen and a Conflicting
Antibody, and the affinity between two structural antibodies.

• Interaction between Ag ↔ Abc:

It is an estimation of how far the antibody is from being
a CSP solution. The key idea is that a solution of the
CSP corresponds to the biggest value of the affinity
function between Abc and Ag. This occurs when all the
constraints are satisfied. We define the function Afd to
measure this affinity as:

Afd(Ag,Abc) =

√√√√
n∑

i=1

(Agi − Abci + Fdi)
2 (1)

where Fdi is called the dispersion factor defined by:

Fdi =
di

(n − 1)·Agi

(2)

with di equal to:

di =

n∑
i�=j,j=1

|Abci − Abcj | (3)

The function Afd does not only prefer a pre-solution
with a minimal number of violated constraints, but it
also takes into account how hard for the algorithm
to repair this pre-solution could be. This is done by
including the function di as a conflicts dispersion mea-
sure. Thus, given two pre-solutions that satisfy the same
number of constraints, the algorithm prefers the one
with the smaller number of variables involved in the
constraints violations. The value of the dispersion factor
Fdi belongs to [0, 1[. The Fdi value is equal to 0
either when any of the variables are in conflict (it is
a solution) or when all the variables are involved in the
same number of conflicts.

• Interaction between Absi
↔ Absj

:

The idea of using this measure, named HAs, is to
quantify how similar two pre-solutions are. To com-
pute this interaction our algorithm uses the Hamming
distance. The algorithm prefers to have a diversity of
pre-solutions.
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Finally, a B-cell is a structure with the following compo-
nents:

• An Antibody Ab = (Abc, Abs)
• The number of clones of Ab to be generated for the

clonal expansion procedure. This number is directly
proportional to the Afd value.

• The hypermutation ratio used in the affinity maturation
step. This ratio is inversely proportional to the Afd

value.

IV. CONSTRAINT DIRECTED - NETWORK ARTIFICIAL

IMMUNE SYSTEM

We called our algorithm CD-NAIS which stands for Con-
straint Directed - Network Artificial Immune System. It is
shown in figure 1.

The algorithm works with a set of B-cells, following
an iterative maturation process. Some of these B-cells are
selected, doing a Clonal Selection, preferring those with
bigger affinity values Afd. It uses a Roulette Wheel selection.
The algorithm generates clones of the B-cells selected, that
is done by the Clonal Expansion, and these clones follow a
hypermutation process in the Affinity Maturation step. The
hypermutation is a hill-climbing procedure that repairs the
Antibody. The new set of B-cells is composed of a selected
set of hypermutated B-cells. This selection is done in the
Build Network using the HAs values in order to have a
diversity of B-cells. A hypermutated B-cell could belong to
the new set of B-cells if and only if (1−HAs

n
) > ε. Therefore,

the epsilon value is used by the algorithm to manage the
minimal degree of diversity. The ε value is known as the
threshold of crossing reactivity. The function Build Network,
using the clones list ordered by affinity (from higher to lower
affinity), sequentially selects the clones with higher affinity
which suppression counter is zero. If a clone presents a high
similarity ((1 − HAs

n
) < ε) with a clone already selected to

be part of the new set of B-cells, its suppression counter will
be incremented. If the list of clones is over and there is still
space in the new B-cells set, the remaining spaces will be
filled with the clones presenting a lower suppression counter.
The algorithm adds new B-cells randomly generated by the
Metadynamic procedure to this set of B-cells, suppressing the
lower affinity B-cells, by a pre-defined new B-cells insertion
rate n2.

Thus, the algorithm does exploration and exploitation.

V. TESTS

The goal of the following benchmarks is to evaluate the
performance of CD-NAIS for solving CSP. The algorithm
has been tested with randomly generated binary CSPs, [5].
We have done two kinds of test. The goal of the first set of
experiments is to validate that CD-NAIS is able to solve hard
instances of CSPs. The second test is to do a comparison
between CD-NAIS and the most successful evolutionary
algorithm reported, named SAW [14].

function CD-NAIS(CSP)
Begin

Ag = compute connections(CSP, n);
BCELLS = random(BCELLS NUM, n);
For i=1 to BCELLS NUM do

Compute BCELLS[i] affinity
End For
While (j ≤ MAX ITER) or not solution do

Select a set of BCELLS
CLONES = Clonal Expansion(BCELLS selected);
CLONES = Affinity Maturation (CLONES);

For i = 1 to CLONES NUM do
Compute CLONES[i] affinity

End For
BCELLS = Build Network(CLONES);
BCELLS = Metadynamic(BCELLS);
End While
Return BCELLS;
End

Fig. 1. CD-NAIS Pseudocode

A. Hardware

The hardware platform for the experiments was a PC
Pentium IV Dual Core, 3.4Ghz with 512 MB RAM under
the Mandriva 2006 operating system. The algorithm has been
implemented in C.

B. Parameters

The parameter values of the algorithm for both set of
experiments, determined by tuning, are:

• n1 = 0.5, rate of cells to be expanded,
• n2 = 0.1, rate of cells to be incorporated on the memory
• ε = 0.46, threshold reactivity between clones
• B-cells = 10
• Number of clones = 100

C. Tests in the hard zone

The idea of these tests is to study the behavior of the
algorithm solving hard problems. We have fixed p1 =
1, with n = m in {10, 15, 20} with p2 ∈ {p2crit

−
0.1; p2crit

− 0.05; p2crit
; p2crit

+ 0.05; p2crit
+ 0.1}. Where

p2crit
is computed using the function proposed by B. Smith

in [5] to obtain problems on the transition phase. For the 15
problem classes we have tested 20 there were instances using
20 runs. That is 400 algorithm executions. The algorithm
has used a maximum number of iterations of 2000. The
results are shown in the graphs in figures 2, 3, 4. When
considering the 400 executions, the first figure shows the
successful rate. The problem becomes harder to be solved
for < 20, 20, 1, p2crit > configuration. The problems in
the transition phase are more difficult as we could expect.
The second graph shows the average of the final number
of conflicts remaining for each class. For the configurations
with 10 variables, the number of constraints is 45. The
average number of conflicts unsolved is around 0.06 which
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means that CD-NAIS have found a solution for most of
the problems in this configuration. In the configuration with
15 variables, the number of constraints is 105. From these,
on average, the number of remaining conflicts is 0.4, and
in the worst cases, just one constraint is violated. As the
number of variables increases the problems became harder.
With 20 variables the number of constraints is 190. For the
worse cases, 5 constraints remain unsatisfied and for the best
case all are satisfied. In order to evaluate the complexity of
the algorithm, the third graph illustrates the average of the
number of constraints checks for each class of problems.
From these graphs we can observe that the transition phase
is identified for CD-NAIS.

Fig. 2. Different problems tested, comparison of % Succesful runs

Fig. 3. Different problems tested, comparison of Number of Constraints
Checks

D. Experimental Comparison

This set of experiments is done to compare CD-NAIS
with SAW which is the best reported evolutionary algorithm
to solve CSPs. The problems are those generated and used
by Craenen et al. [14] to compare evolutionary algorithms

Fig. 4. Different problems tested, comparison of Average of final unsolved
conflicts

p SAW CD-NAIS
105 ev. time 1.000 it. time 6.600 it. time

0.24 100 0.74 93.2 0.51 100 0.48
0.25 100 2.33 81.2 0.73 99.6 0.91
0.26 97 6.38 62 0.96 96.8 2.20
0.27 60 11.39 38.4 1.21 80.8 4.05
0.28 25 18.66 18.8 1.38 53.6 6.30
0.29 17 20.57 4.4 1.51 18 8.97
0.3 5 22.27 1.6 1.54 11.6 9.45

0.31 1 22.47 0.8 1.56 1.2 10.18
0.32 0 22.39 0.12 1.57 2.4 10.13
0.33 1 22.38 0.15 1.57 3.6 10.09

Fig. 5. Comparison of the Percentage of Problems Solved

on binary CSPs1. They generated the problems using model
E(n, m, p, k). The tests have 250 problem instances using
model E(20, 20, p, 2) and all problems have at least one
solution. They fixed the maximum number of evaluations in
100.000 for each algorithm. This limit is equivalent in our
approach to 6.600 iterations. We have also tested CD-NAIS
using a maximum of 50.000 and 1.000 iterations. These
results and the average time invested in seconds for each of
the 250 runs are shown in figure 6. From this table we can
observe that CD-NAIS can solve more problems and quicker
than SAW. The percentage of problems solved by SAW is
40% instead of 52% solved by CD-NAIS using a limited
6.600 iterations. CD-NAIS with a limit of 1.000 iterations
can obtain a success rate of 30% in less than 2 seconds per
run. Using 50.000 iterations CD-NAIS improves it success
rate, solving 61% of problems requiring on average just 35
seconds per run, using in the worst case 74 seconds. The
code for CD-NAIS is available in the web page http://www-
sop.inria.fr/orion/personnel/Marcos.Zuniga/CSPsolver.zip

1We have obtained the problems and the SAW code from the web page
http://www.xs4all.nl/˜bcraenen/resources.html

2840 2007 IEEE Congress on Evolutionary Computation (CEC 2007)



p 50.000 it. time
0.24 100 0.52
0.25 100 0.92
0.26 100 1.72
0.27 99.6 5.28
0.28 91.2 20.41
0.29 61.6 45.00
0.3 24 63.33

0.31 7.6 73.54
0.32 10 71.29
0.33 10.4 72.10

Fig. 6. Percentage of Problems Solved in 50.000 iterations for CD-NAIS

VI. CONCLUSIONS

Artificial immune systems have some interesting char-
acteristics from the computational point of view: pattern
recognition, affinity evaluation, immune networks and diver-
sity. All of these characteristics have been included in our
algorithm. The B-cell structure is useful to determine both
the solution of the problems and also to identify the involved
variables in the conflicts. The conflicting antibody is used
by the algorithm to guide the reparation of the solutions
(hypermutation process), giving more priority to the variables
involved in a higher number of conflicts. For the problems in
the hardest zone CD-NAIS has solved, on average, 12% more
problems than SAW, the best known evolutionary algorithm.
Artificial Immune Systems is a promising technique to solve
constrained combinatorial problems.

VII. FUTURE WORK

A promising research area is to incorporate some param-
eter control strategies into the algorithm. Parameter control
strategies have shown to be very useful in genetic algorithms
and it seems to be a good mechanism to guide the algorithm
to different levels of exploration/exploitation depending on
the state of the search.
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