
Towards an Instructional Theory: the Role of 
Student's Misconceptions* 

PEARLA NESHER 

*A talk given at the Canadian Mathematics Education Study Group 
meeting at Queen's University May 30. 1987 

L During the past decade we have witnessed a new trend 
in cognitive research emphasizing expert systems. A great 
deal of effort has been dedicated to the study of experts' 
performance in various fields of knowledge .. My presenta­
tion today deals with the question: what kind of expertise is 
needed for instruction? Researchers in the field agree that 
the process of learning necessarily combines three factors: 
the student, the teacher and the subject to be learned In 
addition, it seems obvious that to teach a given subject 
matter we need at least two kinds of expertise: the subject 
matter expert who can knowledgeably handle the disci­
pline to be learned, who can see the underlying conceptual 
structure to be learned with its full richness and insights; 
and there is also, obviously, the expert teacher whose exper­
tise is in successfully bringing the student to know the given 
subject matter by various pedagogical techniques that 
make him the expert in teaching. In this framewmk of 
experts' systems, what is, then, the role of the student? what 
does he contribute to the learning situation? And though it 
might seem absurd, I would like to suggest that the stu­
dent's "expertise" is in making errors; that this is his contri­
bution to the process of learning 

My talk consists of three main parts First, I will focus on 
the contribution of performance errors to the process of 
learning. I will, then, demonstrate that enors do not occm 
randomly, but originate in a consistent conceptual frame­
work based on earlier acquired knowledge I will conclude 
by arguing that any futme instructional theory will have to 
change its perspective from condemning errors into one 
that seeks them .. A good instructional program will have to 
predict types of errors and purposely allow for them in the 
process of learning But before we reach such an extreme 
conclusion let me build the argument and clarify what 
these "welcomed" enors are 

II, In order to better understand the process of learning, I 
would like to make a digression here and learn something 
from scientific progress Science involves discovering 
truths about our universe; it does so by forming scientific 
theories. These theories then become the subject matter for 
learning. Philosophers wonied for a long time about these 
truths. How can one be sure that one has reached truth and 
not falsehood? Are there clear criteria to distinguish truth 
from falsehood? These philosophical discussions can also 
enlighten our understanding 

It was C. S, Peirce, the American scientist and philo­
sopher (1839- 1914), who brought to our attention that we 
all act most of the time according to habits which are 
shaped by our beliefs (and from the history of science we 
know that there have been many false beliefs). But we do 
not regularly question these beliefs; they are established in 
the nature of our habitual actions. It is only when doubts 
about our beliefs are raised that we stop to examine them 
and start an inquiry in order to appease our doubts and 
settle our opinions Thus, in Peirce's view, starting inquiry 
on a certain question is not an arbitrary act, but rather an 
unavoidable act when some doubt arises When do such 
doubts arise? When an expectation is not fUlfilled because 
it conflicts with some facts On such occasions when one 
feels that something is wrong, only then does a real ques­
tion arise and an inquiry become initiated, an inquiry that 
should settle our opinions and fix our beliefs [Peirce, 1877] 

A similar, though not identical view was strongly advo­
cated by K. Popper [1963] In his book Conjectures and 
refutations he argues against an idealistic and simplistic 
view of attaining truths in science. He claims that "Errone­
ous beliefS may have an astonishing power to survive, for 
thousands ofyears" [Popper, 1963, p 8], and since he does 
not believe in formulating one method that would lead us 
to the revelation of truth, he suggests changing the ques­
tion about "sources of our knowledge" into a modified one 
-"How can we hope to detect error?" [Ibid p 25] If we 
are lucky enough to detect an error we are then in a 
position to improve our set of beliefs. Thus fOr Popper 
science should adopt the method of "critical search for 
error" [Ibid. p 26] which has the power of modifying our 
earlier knowledge 

In the systems of these philosophers which I have only 
touched upon here, there are several points relevant to 
learning in general that should be clearly stated: 

I) Falsehood is adjunct to the notion of truth, or in 
the words of Russell: "Our theory of truth must be 
such to admit of its opposite, falsehood " [Russell, 
1912, p .. 70] 
2) Though having a truth-value is a property of 
beliefs, this may be established by many different 
methods and is independent of whether our beliefs 
will ultimately become true or false (a point which I 
will take up again later) 
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3) We hold many beliefs that we are unaware of 
and which are part of our habits, yet once such a 
belief clashes with some counter-evidence or contra­
dictory arguments, it becomes the focus of our atten­
tion and inquiry 

Is all this relevant to the child's learning? I believe it is. II I 
replace the terms ''true and false" with "right and wrong" 
or "'correct and erroneous" we will find ourselves in the 
realm of schools and instruction, where, unlike in the philo­
sophical realm, "being wrong" and "making eHors" are 
negatively connotated The system, in tact, reinforces only 
"right" and "correct" performances and punishes "being 
wrong" and "making errors" by means of exams, marks, 
etc., a central motive in our educational system 

I fOund it very refreshing when visiting a second grade 
class to hear the fOllowing unusual dialogue: 

Ronit (second grader with tears in her eyes): "I did it 
wrong" (referring to her geometrical drawing). 
''Never mind", said the teacher, "What did we say 
about making mistakes?" 
Ronit (without hesitation) answered: "We learn from 
our mistakes". 
"So", added the teacher, "Don't cry and don't be 
sad, because we learn from our mistakes" 

The phrase "we learn from mistakes" was repeated over 
and over. The atmosphere in the classroom was pleasant 
and the use of this phrase was the way the children admit­
ted making enors on the given task At this point I became 
curious and anxious to know what children really did learn 
from their mistakes I will first describe the task, and how 
the children knew when they made mistakes. Let us now 
observe a geometry lesson in which the students learned 
about the reflection transformation The exercises con­
sisted of a given shape and a given axis of reflection (see 
Figure 1); the children first had to hypothesize (or guess) 
and draw the reflected figure in the place where they 
thought it would fall, and then to fold the paper along the 
reflection axis and by puncturing the original figure with a 
pin to see whether their drawing was right or wrong 

Figure 1 
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I would like to make it explicit that, from the child's 
point of view, he or she had to discover the "theory" of 
reflection. The teacher did not intend to serve as the author­
ity lor this knowledge, lecturing about the invariants of 
reflection, but instead supplied the child with a structured 
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domain against which any erroneous conceptions could be 
checked The line of dots created by the pin-puncture 
served both as an ideal reality for this kind of reflection, 
and as feedback for the child's conjectures In my view this 
resembles in a nutshell scientific inquiry in several impor­
tant aspects 

Delighted to find such a supportive atmosphere in the 
classroom, I became interested in the epistemological ques­
tion: what did the children really learn from their mistakes? 
When each child who made an error was asked to explain 
to me what was learned from his or her mistake I could not 
elicit a clear answer Instead the children repeated again 
and again that one learns from mistakes in a way that 
started to sound suspiciously like a panoting of the 
teacher's phrase At this point it became clear to me that 
the teacher tolerated errors, but did not use them as a 
feedback mechanism fOr real learning on the basis of actual 
performance I then drew on the blackboard three different 
errors: 

Figure 2 

Figure 3 

Figure 4 

,-, 
! I 1 . \ ' L--r: -, 

' : .. 
' . . • ' ' / ~~ .. 

,.--
/ \ . 
\ I : .. -.:r-... J 

' ' ' , 
' ' ' ' I /• 

' ' 

.. -.. 
' ' ' I 1

1 1 

..... "! '_, .. ; r , . ' 
' ' I 

-~ ' ' ' ' ' I 



The first one, which I named Sharon's error, dealt with the 
property that a reflection is an opposite transfOrmation; 
thus, what was right will become left in the reflection, and 
vice-versa (see Figure 2). The second error, named after 
Dan, was dedicated to the size property, i e that lengths 
are invariant under the reflection transformation (see Fig­
ure 3). This was also the basis for the third error, named 
after Joseph, that had to do with the distance from the 
reflection axis (see Figure 4). I asked the children whether 
one learns the same thing from each of the above errors? 
should Sharon, Dan and Joseph leam the same thing? or is 
there something specific to each error? 

At this point we turned from the psychological support 
and tolerance of enors to discover the epistemological and 
cognitive value of errors in the process of learning From 
errors like these a child could learn distinct properties of 
reflection that he or she was not aware of before. (If they 
had been a ware, they would not have committed this kind 
of error) Committing an en or, however, revealed the 
incompleteness of their knowledge and enabled the teacher 
to contribute additional knowledge, or lead them to realize 
fOr themselves where were they wrong. The clash between 
their expectations, demonstrated by their drawings, and 
the "reality" as shown by the pin-puncture, created a prob­
lem, an uneasiness (up to tears), that they had yet to settle. 
The solution to this problem in fact involved the process of 
learning a new property of the reflection transformation 
not known to them until then As Popper [Ibid p 222] 
wrote: 

Yet science starts only with problems Problems crop 
up especially when we are disappointed in our expec­
tations, or when our themies involve us in difficul­
ties, in contradictions; and these may arise either 
within a theory, or between two different theories, or 
as the result of a clash between our theories and our 
observations Moreover, it is only through a problem 
that we become conscious of holding a theory. It is 
the problem which challenges us to learn; to advance 
our knowledge; to experiment and to observe [Ibid 
p 222] 

I think that if we use the word "theory" in not too rigorous 
a manner, and substitute the word learning fOr science, 
then Popper's description is most pertinent to om issue 

III In the title of this presentation, I did not use the word 
"'errm" or "mistake" but rather "misconception" The 
notion of misconception denotes a line of thinking that 
causes a series of errors all resulting from an incmrect 
underlying premise, rather than sporadic, unconnected 
and non-systematic enors It is not always easy to follow 
the child's line of thinking and reveal how systematic and 
consistent it is Most studies. therefOre, report on classifica­
tion of errors and their frequency, though this does not 
explain their somce and therefore cannot be treated sys­
tematically Or, when dealt with, it is on the basis of a mere 
surface-structure analysis of errors, as in the case of 
"Buggy" [Brown and Burton, 1978; Brown and VanLehn, 
1980], where we end up with a huge, unmanageable cata-

Iogue of errors It seems that this lack of parsimony could 
he avoided it one looked into the deeper levels of represen­
tation in which a meaning \Y\fcm evolves that controls the 
surface performance When an euoneous principle is 
detected at this deeper level it can explain not a single, but a 
whole cluster, of errors We tend to call such an erroneous 
guiding rule a mi~conception 

I would like to describe now two detailed examples of 
misconceptions (out of many others) that demonstrate 
how errors do not occur randomly but rather have their 
wots in erroneous principles. Moreover, these misconcep­
tions are not created arbitrarily but rely on earlier learned 
meaning systems: and again, although seemingly absurd, 
they arc actually derived from previous instruction These 
examples are chosen because they are each based on exten­
sive research programs which deal with unveiling students' 
misconceptions and focus on plausible explanations for 
their erroneous performance 

The first example is taken from a series of studies about 
the nature of errors made by elementary school children in 
comparing or ordering decimal numbers In these studies 
an attempt was made to trace the sources of the students' 
systematic errors The findings which emerge, following 
studies in England, France, Israel and USA [Leonard and 
Sackur-Grisvald, 1981; Nesher and Peled, 1984; Swan, 
19K3J show that in all these countries there is a distinct and 
common system of rules employed by those who fl1il in 
comparing decimals 

Consider for example the following tasks which were 
administered to children of grades 6, 7, 8, and 9 The 
subjects had to mark the larger number in the following 
pans: 

case I 
case II 

04 
04 

vs 
vs 

0 234 
0 675 

Jeremy marked in case I that 0.234 is larger than 0.4;and in 
case II he marked that 0 675 is the larger one. Does he or 
does he not know the order ol decimal numbers~ In our 
study in Israel the data was gathered in individual inter­
views so that the children could explain their choices This 
helped us understand their guiding principles. In both 
cases .Jeremy said that the number with the Ionge! number 
of digits (after the decimal point) is the larger number (in 
value) . .Jeremy had one guiding principle as to the order of 
decimals and, accordingly, in case I Jeremy was wrong 
while in case II he was right Although his guiding princi­
ples was a mistakCn one, he succeeded in correctly solving 
all the exercises similar to case II It is also not hard to see 
that his guiding principle was one that served him well up 
to this point, having been imported from his knowledge of 
whole numbers where the longer numbers really are larger 
in value. And. unless something is done, Jeremy's ""suc­
cess" or ""failure" on certain tasks is going to depend on the 
actual pairs of numbers given to him .. This, of course, blurs 
the picture of his knowledge in any given test 

Now consider Ruth, who decided in both cases I and II 
(in the above example) that 0.4 is the larger number, i e in 
each case she pointed to the shorter number as the larger 
one in value Ruth gave the following explanation: ·'Tenths 
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are bigger than thousandths, therefore the shorter number 
that has only tenths is the larger one" Ruth does not 
differentiate between case I and case II either She will be 
correct in all cases similar to case I, but wrong in all cases 
which are similar to case II We can understand this kind of 
erroneous reasoning in the light of what is learned in 
fractions. Ruth has a partial knowledge of ordinary frac­
tions and cannot integrate what she knows about them 
with the new chapter on decimal fractions and their nota­
tion In particular she finds it difficult to decide whether the 
number written as a decimal fraction corresponds to the 
numerator or the denominator. She cannot corrdinate the 
size of the parts with their number in decimal notation. 

It is interesting to note that about 35% of the sixth 
graders in Israel who completed the chapter on decimals 
acted like Jeremy and were, in fact, using the above­
mentioned rule which relies heavily on the knowledge of 
whole numbers, and about 34% of the Israeli sample of 
sixth graders made Ruth's type of mistake. Even more 
interesting is the fact that while Jeremy's rule declines in 
frequency in higher grades, Ruth's rule is more persistent 
and about 20% of the seventh and eighth graders still 
maintain Ruth's rule [Nesher and Peled, 1984] 

As I remarked before, these misconceptions are hard to 
detect. This is because on some occasions the mistaken rule 
is disguised by a ''correct" answer That is, the student may 
get the "right" answer for the wrong reasons Thus, for the 
student who holds a certain misconception, not all the 
exercises consisting of a pairs of decimal numbers will elicit 
an incorrect answer For example, decimals with the same 
number of digits are compared as if they were whole 
number and, therefore, these questions are usually ans­
wered correctly In tact this also related to a method taught 
in schools: add zeros to the shorter number until it becomes 
as long as the longer one and then compare them 

An interesting question then emerged: if the teacher is 
not aware of the cases that discriminate between various 
types of misconceptions and those cases that do not dis­
criminate misconceptions at all, what is the probability 
that he or she will give a test (or any other set of exercises) 
that detect systematic errors? Irit Peled, my former student, 
in her Ph D thesis dealt with precisely this question 
[Peled, 1986] She built a series of simulations that made it 
possible to evaluate quantitatively the probability of get­
ting discriminating items on a test 

Let me retum to the question of a discriminating item for 
a certain error. For example, consider the fOllowing item, 
"Which is the larger of the two decimals 0 4 and 0.234?" If 
the student answers 0.234 we may suspect that he holds 
Jeremy's misconception But, if he answers 0 4 we cannot 
know whether he knows how to order decimals, or if he is 
holding Ruth's enor but happened to get lucky numbers 
and be correct on this particular item Thus this item can 
discriminate between those holding and not holding Jere­
my's misconception, but cannot discriminate between 
those holding Ruth's misconception and experts (i.e those 
who really know the domain). Along these lines, in the 
same task, the pair of numbers 0.4 and 0.675 can discrimi­
nate those holding Ruth's misconception from the rest, but 
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cannot discriminate between those holding Jeremy's mis­
conception and experts Comparing the numbers 0.456 
and 0 895 cannot discriminate students holding either Jere­
my's or Ruth's misconception (whether the answers arc 
correct or not) 

So, if a teacher composes a test (or any other assignment) 
without looking intentionally for the discriminating items, 
there is little chance that such items will be included In 
Peled's simulations it was found that when pairs of 
numbers are randomly selected from all the possible pairs 
of numbers having at most three digits after the decimal 
point, the probability of getting items that will disCiiminate 
Jeremy's eHor was O.IO, and Ruth's error 0 02 Thus both 
Jeremy and Ruth can scmc up to 90% on a test composed 
by their teacher if she is not aware of this problem It is not 
surprising, then, that teachers are usually satisfied with the 
performance of children holding Jeremy's or Ruth's mis­
conceptions, and they should not be blamed On the basis 
of one item answered wrongly it is impossible to discover 
the nature of the student's misconception 

The teacher could of course increase the difficulty of the 
test by allowing only pairs of numbers with unequal 
lengths (up to three digits after the decimal point) This 
raises the probability of getting discriminating items on the 
test, but will not insure correct diagnosis of a specific 
misconception (see Appendix B for a sample test). The 
probability is that on such a random test Jeremy will get 
58% correct and Ruth will get 48% With awareness of the 
problem, the teacher can design a test to intentionally 
diagnose and discriminate the known misconceptions to a 
propmtion and distribution already determined 

Teachers, however, arc hardly aware of such an analysis 
of misconceptions Some of them listening to our report 
could not believe the existence of Ruth's type of misconcep­
tion at all until they retmned to their classes and found it 
fm themselves. Teachers do not generally build such 
knowledge into their instruction and evaluation of the 
student's perfOrmance Frequently the teacher completes 
the section of instruction on comparing decimals, gives a 
final test, and believes that the children know it perfectly 
well, not noticing that many of them still hold important 
misconceptions such as Jeremy's and Ruth's, as we and 
others have found in our studies. In such a classroom it will 
also be very difficult for Jeremy or Ruth to give up their 
misconceptions since they are daily rewarded fOr their 
erroneous guiding principles by correctly answering non­
discriminating items 

Several lessons can be learned from these studies: 
a) In designing the instruction of a new piece of knowledge 
it is not enough to analyze the procedures and their prerequ­
isites- which is, in many cases, done We must know how 
this new knowledge is embedded in a larger meaning sys­
tem that the child already holds and from which he derives 
his guiding principles. 
b) It is crucial to know specifically how the already-known 
procedures may interfere with material now being learned 
In the case of decimal knowledge a fine analysis will show 
the similarity and dis-similarity between whole numbers 
and decimals, or between ordinary fractions and decimals 



Some of the elements of earlier knowledge may assist in the 
learning of decimals, but some of them are doomed to 
interfere with the new learning. because of their semi­
similarity (see Appendix A) 

c) All the new clements, which resemble but differ from the 
old ones, should be clearly discriminated in the process of 
instruction, and the teacher should expect to find errors on 
these elements Needless to say, although they elicit more 
enoncous answers, such clements should be presented to 
the children and not avoided 

My second example is taken hom a series of studies by 
Fischbein et al [1985] In their study Fischbein's group 
claimed that in choosing the operation for a multiplicative 
word problem (let's say, choosing between multiplication 
and division) students tend to make specific kinds of mis­
takes derived from their implicit intuitive models that they 
already have concerning multiplication Thus identifica­
tion of the operation needed to solve a problem does not 
take place directly but is mediated by an implicit, uncons­
cious, and ptimitive intuitive model which imposes its own 
constraints on the search process .. The primitive model for 
multiplication is assumed to be '"repeated addition" 

The data supporting their hypotheses is based on the 
following findings Multiplication word problems in which 
according to the context, the multiplier was a decimal 
number (e.g. 15 x 0 75) yielded 57% success, while those 
consisting of a decimal number in the multiplicand (0.75 X 
15) yielded 79% success Fischbein's group attributed this 
to the fact that the intuitive model of multiplication as 
repeated addition does not allow fOr a non-integral 
number as a multiplier 

Similarly, in division contexts when the numbers pres­
ented in the word problem were such that the students had 
to divide a smaller number by a larger one, they 1eversed 
the order and divided the larger one by the smaller, so that 
it would fit their previous notions of division. It also 
became apparent in this series of studies that students hold 
the misconception that "multiplication always makes 
bigger" [Bell eta!, 1981, Hart, 1981] Fischbein's research 
paradigm has been repeated several times with different 
populations, always yielding the same results. [Greer and 
Mangan, 1984; Greer, 1985; Tirosh, Graeber and Glover, 
1986; Zeldis-Avissar, 1985] 

This set of misconceptions, again, is not easy to detect 
This is where research can directly affect school teaching. 
The probability of the occunence of multiplication and 
division word problems in the textbooks that detect such 
misconceptions is low In the absence of items or problems 
purposely directed to detect misconceptions we are shoot­
ing in the dark We are likely to put too much emphasis on 
trivial issues while overlooking serious misconceptions. 

There is another lesson from these studies which is 
harder to implement. We can trace the sources of majm 
misconceptions in prior learning. Most of them are over­
generalizations of previously learned, limited knowledge 
which is now wrongly applied Is it possible to teach in a 
manner that will encompass future applications? Probably 
not. If so, we need our beacons, in the fOrm of enors, that 

mark fOr us the constraints and limitations of our 
knowledge 

IV. So far what I have said suggests that teachers should 
be more aware of their students' possible misconceptions 
and incorporate them into their instructional considera­
tions But this is not sufficient, and I would like to return to 
the example of the second graders working on the reflec­
tion transfOrmation. 

Let us suppose that in designing the pin-puncture booklet 
the teacher was a ware of the possible misconceptions and 
included all the discriminating items she could think of. 
However, another significant characteristic of the booklet is 
that it enables the child to decide for himself whether he is 
right or wrong and in what respect is wrong. This is possi­
ble because the rules by which the pin-puncture behaves 
are dependent only on mathematical reality and not on the 
learner's beliefs The fact that the rules of mathematics and 
one's set of beliefS are independent allows for discrepancies 
between them Therefore when the student holds a false 
belief, or a false conjecture, it clashes with ''reality" as 
exemplified in the booklet. This kind of instructional 
device enables the child to pursue his own inquiry and 
discover truths about the reflection transformation, and at 
the same time make etrors resulting from his misconcep­
tions, some of which could not have been anticipated by 
the teacher He is working within what I call a Leaming 
System, a conception to which I will devote the rest of my 
talk. 

A Learning System (LS) is based on the following two 
components: 

I) an articulation of the unit of knowledge to be taught, 
based upon expert knowledge, which is referred to as 
the knowledge component of the system, and 

2) an illustrative domain, homomorphic to the knowl­
edge component, and purposely selected to serve as the 
exemplification component 

Although "microworld" may seem a natmal choice of 
term fm a Leatning System, I prefer to use a different term 
since ""microworld" is sometimes identified with the exem­
plification component only, and sometimes with the entire 
Learning System I have therefore introduced the term 
"Learning System" to ensure we understand that a micro­
world encompasses both components. Various concrete 
materials employed in the past, such as Cuisenaire Rods, or 
Dienes' Blocks [Gattegno, 1962; Dienes, 1960] serve as 
illustrative aspects of Learning Systems. Moreover, I 
believe that the rapid progress of computers in the last 
decade, with their tremendous feedback power, will lead to 
the development of many mme such Learning Systems. 

The knowledge component in a Learning System is articu­
lated, not by experts who are scientists in that field, but 
rather by those who can tailor the body of knowledge to 
the learner's particular constraints (age, ability, etc) and 
fOrm the learning sequence. In order for the exemplification 
component to fUlfil its role, it must be familiar to the 
learner He should intuitively grasp the truths within this 
component It is necessary that the learner while still ignor-
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ant about the piece of knowledge to be learned, be well 
acquainted with the exemplification so that he can predict 
the results of his actions within this domain and easily 
detect unexpected outcomes the familiar aspects of the 
Learning System provide an anchor to which to connect an 
understanding of the new concepts and new relations to be 
learned. 

Familiarity, however, is not sufficient The selection of 
the exemplification component should ensure that the rela­
tions and the operations among the objects be amenable to 
complete correspondence with the knowledge component 
to be taught For example, in the case of teaching and 
reflection transformation, the exemplification by the pin­
puncture corresponds more to the knowledge component 
than a mirror does which enables reflection of only one half 
of the plane on the other (There are some other advantages 
as well which I will not go into here.) 

The gist of the Learning System is that we have a system 
with a component familiar to the child, from previous 
experience, which will be his stepping stone to learn nen­
concepts and relationships, as defined by the expert in the 
knowledge component A system becomes a Learning S ys­
tem once the knowledge component and the exemplification 
component are tied together by a set of well-defined coHes­
pondence (mapping) rules. These rules map the objects, 
relations and operations in one component on to the 
objects, relations, and operations of the other component 

Functioning as a model, the exemplification component 
of a Learning System must fulfil the requirements des­
cribed by Suppes [ 1974], i e. it must be simple and abstract 
to a greater extent than the phenomena it intends to model 
so that it can connect all the parts of the theory in a way 
that enables one to test the coherence and consistency of 
the entire system This forms the basis for the child's ability 
to judge for himself the truth-value ofany given mathemat­
ical conjecture in a specific domain. It provides the learner 
with an environment within which he can continuously 
obtain comprehensible feedback on his actions, as was 
apparent from the second graders' behavim 

I believe that arriving at mathematical truths is the 
essence of what we do in teaching mathematics This brings 
me back to the question I raised at the beginning of my talk 
about mathematical truths. This is a deep philosophical 
question that I will not delve into here, recalling instead 
Russell's formulation on the correspondence theory of 
truth Russell [1959/1912] clarifies the fact that truth con­
sists in some form of a correspondence between belief and 
fact Thus, though the notion of truth is tied to an 
expressed thought 01 belief, by no means can be it deter­
mined by it. An independent system of facts is needed 
against which it is tested. This, however, is not the only 
themy of truth In the same chapter Russell also mentions a 
theory of truth that rests on coherence He writes that the 
mark of falsehood is a failure of coherence in the body of 
our beliefs 

How children arrive at truths is problematic Clearly the 
child cannot reach conclusions about the truths of mathe­
matics with such rigorous methods as those applied by a 
pure mathematician While mathematicians can demon-
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strate the truth of a given sentence by proving its coherence 
within the entire mathematical system, young children can­
not If a young child is to gain some knowledge about 
truths in mathematics not based on authmitative sources, 
he must rely on the correspondence theory of truth rather 
than on the coherence theory. Thus he should examine the 
correspondence between his belief and the state of events in 
the mathematical world In our example this correspon­
dence is between his conjecture- where to draw the image 
of a reflection- and the result of his pin-puncture, repres­
enting mathematical reality 

But this approach is not without its difficulties. Employ­
ing exemplifications as the source of verification commits 
one to introducing mathematics as an empirical science 
rather than a deductive one. On the other hand, I believe 
that young children and even many not so young will be 
unable to reach mathematical truths merely by chains of 
deduction without first engaging in constructing and feel­
ing intuitively the thrust of these truths Therefore I think 
that constructing a world in which the learner is able to 
examine the truth of mathematical sentences via an inde­
pendent state of events is the major task for any future 
theory of mathematical instruction. Such a world, which I 
have labelled a Learning System, is one in which all our 
knowledge about true conjectures as well as of misconcep­
tions are built in as its major constraints. Limited by the 
System's constraints, the child will learn by experimenta­
tion and explmation the limitations and the constraints of 
the mathematical tiUths in question .. On this basis can he 
later attend to the more rigorous demands of deductive 
reasomng 

V. In summary I would like to recapitulate several points 
touched on today At the moment, unlike the promise in 
the title of this presentation, my remarks do not look like a 
theory at all; rather they specify some assumptions that, in 
my view, will underlie any future instructional theory. 

a) The learner should be able, in the process of learning, 
to test the limitations and constraints of a given piece 
of knowledge This can be enhanced by developing 
learning environments functioning as feedback sys­
tems within which the learner is hee to explore his 
beliefS and obtain specific feedback on his actions 

b) In cases where the learner receives unexpected feed­
back, if not condemned for it, he will be intrigued and 
motivated to pursue an inquiry 

c) The teacher cannot fully predict the effect of the stu­
dent's earlier knowledge system in a new environment 
TherefOre before he completes his instruction, he 
should provide opportunity to the student to manifest 
his misconceptions, and then relate his subsequent 
instruction to these misconceptions 

d) Misconceptions are usually an outgrowth of an 
already acquired system of concepts and beliefs 
wrongly applied to an extended domain They should 
not be treated as terrible things to be uprooted since 
this may confuse the Ieamer and shake his confidence 



in his previous knowledge. Instead, the new knowl­
edge should be connected to the student's previous 
conceptual framework and put in the right perspec­
tive 

e) Misconceptions are found not only behind erroneous 
performance, but also lurking behind many cases of 
correct performance. Any instructional theory will 
have to shift its focus from erroneous perfOrmance to 
an understanding of the student's whole knowledge 
system from which he derives his guiding principles 

f) The diagnostic items that discriminate between proper 
concepts and misconceptions are not necessarily the 
ones that we traditionally use in exercises and tests in 
schools. A special research effort should be made to 
construct diagnostic items that disclose the specific 
nature of the misconceptions 

I have tried to examine instructional issues from the mis­
conception angle The examination consisted of more than 
an analysis of pedagogical problems; it had to penetrate 
epistemological questions concerning truth and falsehood 
Delving into questions of knowledge has traditionally been 
the prerogative of philosophy, particularly epistemology 
Mental representation and the acquisition of knowledge, 
on the other hand, have been dealt with in the field of 
cognitive psychology Obviously, each discipline adopts a 
different stance when dealing with the study of knowledge. 
While philosophers are concerned with questions related 
to the sources of knowledge, evidence and truth, cognitive 
scientists are mainly interested in questions related to the 
representation of knowledge within human memory and to 
understanding the higher mental activities 

The educational questions are quite different The 
agenda in education is to facilitate the acquisition and 
construction of knowledge by the younger members of 
society While scholars of cognitive science and recently of 
artificial intelligence are interested mainly in the perfor­
mance of experts who are already skilled in various 
domains, educators, on the contrary, are interested in 
naive learners, or novices and how they develop into 
experts .. My claim is that the road to a state of expertise is 
paved with e11ors and misconceptions Each en or has the 
potential to become a significant milestone in learning Let 
these errors be welcomed 
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Appendix A 

A Random Comparison Decimal Test 
(Numbers up to three decimal digits) 

.66 
254 
122 
101 
885 
.238 
233 
713 
245 
806 

154 
045 
002 
067 
106 
433 
244 
838 
885 
702 

Appendix B 

Discriminating Jeremy's rule 
Not discriminating 
Not discriminating 
Not discriminating 
Not discriminating 
Not discriminating 
Not discriminating 
Not discriminating 
Not discriminating 
Not discriminating 

Knowledge of Oeei••l Fnct.fons: Identlhlng Place Value of Individual OI&Hs 

Elnents or Oeclal Knovtedce 
Correspond tnt Ele.ent.s or 
Wllole ttu•er Knovledce 

A Colull'l Values: A Coruan Values: 
1 Correspotlcl to eolu• n1.es 1 Correspond to colu., n11es 
2 Decre1se u IOJe I to r 2 Dtcruse as .owe I to r 
3 Eacll colu.n Is 10 tl.es 3 Eacll colua'l Is 10 tiHs 

treater l.h1n colum to r creat.er t.han coluan t.o r 
4 Decruse 1s IOJe llfiJ' fro. 4 Increase as IOYe IVIJ fro• 

declal point ones colu., (dectul ,oint.) 

Coluan Nnes: 
1 End In <t.lls> 
2 Stnt with t.ent.lls 
3 Kning sequence (r.ent.lls, 

hundredths .. )110ns I to r 
4 Reading sequence Is t.ent.lls 

hundredUis UlousandUis 

Role of Zero: 
1 Does not affect digits 

to Its len 
2 Pushes digits to Its ri&llt 

to nut lower plan nEue 

8 Colu.n Nnes: 
1 End In <s> 
2 Stut with units 
3 Hilling sequence (tens, 

huncrre<ls ... ) 10ns r to I 
4 Reading sequence Is thousan<ls 

hun<lreds .. tens ones 

Role of Zero: 
1 Does not affect digits 

to Its right 
2 Pushes dlgl~ to Its left 

to nett lligtler place ulue 

D Reading Rules: Reading Rules 

40 

1 The nuaOer can be rnd 
dther as a s1ngle quantit7 
(tenths for ooe place, 
hunttredths for t11o places 
etc) or IS I COilPOSltlon 
(tenths plu• hundredths etc ) 

1 The nuaOer can be re1d as 1 

sin~tle quantit7 and as a 
coapositwn at- the sue ti11e 
( e g • l~:tlen hundred 1iztv 
hvo aeans seven hundre~s plus 
six tens plus t11o) 

• or -' 

A Random Comparison Decimals Test 
(Unequal lengths of numbe11 up to three deumal digits) 

15 
.185 

51 
31 
861 
606 
72 
08 
814 
404 

114 
.06 

446 
438 
33 
82 
722 
.822 
46 
33 

Discriminating Jeremy's rule 
Discriminating Ned's rule 
(Not discussed here) 
Discriminating Jeremy's rule 
Discriminating Ruth's rule 
Discriminating Ruth's rule 
Discriminating Jeremy's rule 
Discriminating Ruth's rule 
Discriminating Ned's rule 
Discriminating Ruth's rule 
Discriminating Ruth's rule 

Knowledge of Deciaa! Fr3ctlons Uentlfrln~t: P11ce Value or JndiYidual Ditits 

Eleaents or Fractional 
~cluJ Knovledp 

Corresponding Eleaents of 
!lrdlnarJ Fraction Knowledge 

E Fraction Values: E Fraction Values: 
1 EJ:presses a nlue 1 Expresses a ntue 

lletveen o and 1 lletnen o and 1 
2 Tile .are parts a 11hole Is 2 The .are parts a 11hoh Is 

divided into the suller dhided Into tile suller 
Is each part Is each part 

3 There are Infinite decltals 3 There tre Infinite fractions 
bet11een 0 tnd 1 

F Fraction N:aaes: 
1 The nulller or part.s dhlded 

Into Is giten l~llcltiJ IIJ 
tile coluan position 

2 The nulller or parts Included 
in the frictional quantltJ 
are the oniJ nuunls 
elpllcltiJ st.atelll 

3 The whole Is dltidd oniJ 
Into powers of 10 puts 

4 The ending "-til" (•tentll") Is 

typical ror a fractional pan 

'Supports(··); contra~lcts {-) 

betnen o tnd 1 

F Friction Hales: 
1 The nuUer of parts dhlded 

lnt.o Is glwen expllcltiJ bJ 
the clenotlnat.or 

2 The nulller of puts Included 
In the fract-Ional quantltJ 
are the nu1erator of 
the fraction 

3 The vhote Is ctl•lded Into 
anJ nulller or parts 

4 The ending •-til" ("fourth") Is 
tJplcal for 1 fractional part 

+ or ··' 


