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Abstract— In this paper, a novel human-robot collaborative
framework for mixed case palletizing is presented. The frame-
work addresses several challenges associated with the detection
and localisation of boxes and pallets through visual perception
algorithms, high-level optimisation of the collaborative effort
through effective role-allocation principles, and maximisation of
packing density. A graphical user interface (GUI) is additionally
developed to ensure an intuitive allocation of roles and the op-
timal placement of the boxes on target pallets. The framework
is evaluated in two conditions where humans operate with and
without the support of a Mobile COllaborative robotic Assistant
(MOCA). The results show that the optimised placement can
improve up to the 20% with respect to a manual execution
of the same task, and reveal the high potential of MOCA in
increasing the performance of collaborative palletizing tasks.

I. INTRODUCTION

The e-commerce revolution, whose progress in Europe

is estimated at 10% every year [1], has placed significant

demands on the supply chain performances. In response

to the increasing demand, several industrial sectors have

automated the processes of goods storage and shipment.

In particular, recent robotic palletizing solutions have per-

mitted to increase considerably the processes’ performances

in terms of throughput (products per hour) and time (run

products for longer periods) and contributed to perceiving

the e-commerce benefits. In food and beverage industry,

for instance, palletizing similar package types, using heavy

robotic arms that can lift up to one thousand kilos, has

become a benchmark for quality and high performance [2].

In high-mix environments such as warehouses, however,

not all the processes are automated and human presence

is still a requirement. Heavy manipulators cannot populate

these environments, since they are not safe for humans and,

to avoid potential human injuries, need to be enclosed in

proper fences and to be equipped with reliable safety moni-

toring systems. Besides, in distribution centres, a wide vari-

ety of articles must be placed in boxes and then palletized,

which demand for a certain level of manipulation flexibility.

In such situations, redundant lightweight robotic arms, while

dealing with different case sizes and weight, can ensure

human safety due to the ability to regulate interaction forces

both with humans [3] and with the environment [4]. More

details on the application of cobots in industrial environments

can be found in [5], while a review with recent developments
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Fig. 1. Conceptual illustration of a warehouse environment where MObile
Collaborative Assistants (MOCAs) contribute to mixed case palletizing
autonomously or in collaboration with human partners.

of robotized and autonomous warehouses is presented by

Azadeh et al. [6]. Thanks to their flexibility, cobots can be

exploited for different tasks and easily taught with different

learning techniques. Nevertheless, they lack mobility, which

is a fundamental requirement for warehouse operations.

A possible solution to address the mobility requirements

is to attach the robot base to a mechanism that can roll/slide

along rails. This solution restricts the motion of the base

of the robot to be along the rails, which makes the con-

struction of such warehouses space inefficient and costly.

Other flexible solutions such as humanoid robots, whose

kinematic structure resembles humans, offer a high poten-

tial in dealing with the variability of tasks in warehouses.

However, their performances are still not satisfactory enough

especially when it comes to execute logistics tasks that

demand simultaneous locomotion and manipulation.

A very promising solution towards addressing the problem

of mobility has been the introduction of Autonomous Ground

Vehicles (AGVs), i.e., wheeled mobile robots. AGVs can

achieve repetitive and monotonous transportation of goods

and increase process efficiency, while, at the same time,

sharing their workspace with humans [7]. More advanced

and recent forms of the AGVs have been developed to fulfil

the manipulation requirements. Such platforms, due to robust

loco-manipulation capabilities, have the potential to navigate

in flat indoor environments using planning algorithms [8],

avoid obstacles [9], pick goods from shelves, conveyors, etc.,

and place them in pallets and pushcarts, autonomously or in

collaboration with humans [10].

In this direction, the goal of this work is to evaluate

the potential of a MObile Collaborative robot Assistant

(MOCA) in autonomous palletizing of mixed-size and -

weight box containers (see Fig. 1). We propose a novel



loco-manipulation framework for logistic applications, which

enables MOCA to navigate in free space and, using an

embedded RGB-D camera, to scan all the boxes on a con-

veyor that must be palletized. After recording the sizes and

the weights (through markers) of all boxes, an optimisation

algorithm is activated to maximise the number of boxes that

can be sorted on the detected pallet space. Subsequently, a

role allocation algorithm is activated to designate the carrying

and sorting actions to MOCA, in autonomous mode, or

in collaboration with a human partner. The latter mode is

activated when dealing with large-sized boxes, where single-

arm manipulation poses a limit.

The control of MOCA loco-manipulation in different

phases of the task is achieved by a weighted whole-body

impedance controller, which is also capable of assigning

larger movements to the arm or to the mobile base based

on the task requirements/constraints. The algorithm gives

higher mobility to arm movements in close-proximity reach-

ing/sorting actions, and enables larger base mobility when

navigating in free spaces.

Two different experiments were performed to evaluate the

proposed framework. The first aims to prove that the guid-

ance of the GUI, that displays the solution of the optimised

mixed case palletizing, improves the performances, in terms

of time and throughput. The second one, instead, is a proof-

of-concept collaborative mixed case palletizing, executed by

a human subject and MOCA as a coworker.

II. MODULAR FRAMEWORK FOR THE COLLABORATIVE

MIXED CASE PALLETIZING

We aim to create a modular framework that enables and

optimises the collaborative mixed case palletizing. These

aspects range from the allocation of roles between the

agents (humans and robots), up to exploring the environment,

detecting relevant features from the perception sensors, and

planning (collision-free) motions in space.

The framework consists of three main modules (see Fig 2).

The modules will be listed by their operating frequency, from

the slowest to the fastest. First, a task allocation algorithm,

depending on the throughput of the system, computes, for

each box, the destination of the box (pose in the pallet),

and the agent in charge of the placement. The possible

placement modes, considered in this work, are: (MODE A)

MOCA places the box in the pallet; (MODE B) the human

operator can place the box in the pallet, e.g., for light-

weight boxes, up to his/her choice, to speed up the process,

otherwise MODE A will take over; (MODE C) MOCA and

the human operator place the box in the pallet, sharing

collaboratively the load (e.g., for large boxes where dual-arm

manipulation is a requirement. This cannot be achieved by

MOCA, and might pose health risks to the human workers if

handled individually). Another module consists in the visual

perception system that, using the RGB-D data from the

camera, estimates the poses of the boxes in the conveyor

and the pallet in the area, defined in the same frame of

MOCA. Finally, the motion handler is in charge of gener-

ating feasible paths and sending spatial references for the
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Fig. 2. Scheme of the proposed framework. The mixed case palletization
optimisation consists of a bin packing algorithm, in charge of establishing
the position of each box in the pallet, and a role allocation algorithm, that
select the placement mode. A FSM, coordinates the robot actions, from the
boxes and pallet detection, to the commands to pick and place the boxes,
according to the results of the optimisation algorithm displayed on a GUI,
that informs the human coworker of the current work status.

controller. The controller is a weighted whole-body Cartesian

impedance controller, designed to regulate the behaviour of

the mobile platform with respect to the end-effector task. The

joint space weights of the controller are selected to obtain,

alternately, higher flexibility of the arm in close-proximity

reaching/sorting operations and larger mobile base mobility

when navigating in free spaces. The controller settings, such

as impedance parameters and weights for the priorities can

be changed online. During each operation, the modules are

always active but their services and actions are triggered by

different Finite State Machine (FSM) requests.

A. MOCA: Platform and Control

In this section, the hardware and the prioritised whole-

body impedance control algorithm of the MObile Collab-

orative Assistant is presented. MOCA [11] is a research

platform, designed for human-robot physical collaboration

(HRC), with loco-manipulation capabilities that makes it

potentially suitable for logistic and flexible manufacturing.

It is composed by a lightweight torque-controlled 7-DoFs

Franka Emika Panda robotic arm, equipped with the under-

actuated Pisa/IIT SoftHand, which is mounted on top of a

velocity-controlled 3-DoFs Robotnik SUMMIT-XL STEEL

mobile platform. An ASUS Xtion Pro Live RGB-D camera

supported by a pole is also attached to the mobile base.

In Wu et al. in [11], we presented the first attempt

to deal with the control framework of MOCA. The loco-

manipulation capabilities were addressed using two different

control modes, i.e., the whole-body manipulation mode, that

features a whole-body Cartesian impedance controller for the

manipulation tasks and the locomotion mode, that consists of

a Cartesian impedance controller on the arm uncoupled with

an admittance controller on the base. The latter mode was

implemented to activate uniquely the base mobility while

navigating between two distant points in the environment,



which otherwise would have generated unnecessary arm

movements if the first whole-body mode was exploited.

In this paper, we exploit a similar whole-body control

strategy for MOCA, since the targeted logistics tasks involve

multiple contacts with humans and the external environment.

However, the decoupling of the arm and the base movements

in locomotion phases is not practical anymore, since the

collaborative palletizing actions require simultaneous arm

and mobile base movements and interactions. In addition,

different phases of such logistics tasks require higher arm or

mobile base mobility while maintaining contact at hand, to

ensure their successful execution.

In order to fully exploit the redundancy provided by

MOCA, we designed a two-level priority impedance con-

troller by solving a weighted inverse dynamics problem.

The whole-body decoupled dynamics of MOCA can be

written as the parallel of the admittance controller of an m-

DoFs mobile base and the dynamics of an n-DoFs torque-

controlled arm [11]:
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(1)
where Madm ∈ R

m×m and Dadm ∈ R
m×m are the virtual

inertial and virtual damping, q̇v ∈ R
m is the input velocity

sent to the mobile platform, τ ext
v ∈ R

m and τ vir
v ∈ R

m

are the external and the virtual torque. Concerning the

manipulator, qr ∈ R
n is the joint angles vector, M r ∈ R

n×n

is the symmetric and positive definite inertial matrix of

the arm, Cr ∈ R
n is the Coriolis and centrifugal force,

gr ∈ R
n is the gravity vector, τ r ∈ R

n ,and τ ext
r ∈ R

n

are the commanded torque vector and external torque vector,

respectively.

The two-level priority impedance torque controller is

inspired by the work by Mingo Hoffman et al. [12]. For

the sake of simplicity, the dependencies on q and x will be

dropped from now on. Let’s consider the problem of finding

the closest input torques τ to some desired τ0 that realises

the operational forces F :

min
τ

1

2
‖τ − τ0‖2W s.t. J̄τ = F (2)

where W ∈ R
(n+m)×(n+m) is a positive definite weighting

matrix, J̄ = (JM−1JT )−1JM−1 is the dynamically

consistent pseudo-inverse of J(q), and the constraint J̄τ =
F , is the general relationship between the generalised joint

torques and the operational forces [13]. The set of solutions

of problem (2) can be found using the Lagrangian multipliers

method. Differentiating the following Lagrangian function

L =
1

2
(τ−τ0)TW (τ−τ0)+λT (JM−1JTF−JM−1τ ),

(3)

leads to

τ =

τ task1

︷ ︸︸ ︷

W−1M−1JT
ΛWΛ

−1F +

+ (I − W−1M−1JT
ΛWJM−1)τ0

︸ ︷︷ ︸
τ task2

,
(4)

where

Λ = J−TMJ−1, (5)

and

ΛW = J−TMWMJ−1 (6)

is the weighted Cartesian inertia, analogous to the Cartesian

inertia in Eq. (5). In Eq. (4) it is possible to recognise the

two tasks in the controller, the Cartesian force task F with

higher priority and the joint-space torque τ0 projected in the

null space of the first task through a dynamically consistent

null-space projector. The formulation in (4) contains the

prioritised tasks, but the input torques of the controller need

also to compensate for the other terms that are not present

in (2), like gravity and Coriolis/centrifugal terms:

τ = τ task1
+ τ task2

+ g(q) +C(q, q̇)q̇ (7)

In order to obtain the desired impedance behaviour, we

need to define properly F ext and τ 0. F ext is computed

according to the following relationship

F ext = Λd
¨̃x+Dd

˙̃x+Kdx̃ (8)

where x̃ = xd−x ∈ R
6 is the Cartesian error computed with

respect to the desired Cartesian pose xd, and Kd ∈ R
6×6

and Dd ∈ R
6×6 are the desired Cartesian inertia, damping

and stiffness matrices, respectively. The desired joint-space

impedance behaviour τ 0 ∈ R
n is computed according

to [14],

τ 0 = −D0q̇ −K0(q − q0), (9)

where q̃ = q0−q ∈ R
n is the joint position error computed

with respect to the reference joint position q0, K0 ∈ R
n×n

and D0 ∈ R
n×n are the desired joint-space stiffness and

damping. We used a weight matrix W of the form

W (q) = HTM−1(q)H (10)

where H ∈ R
n×n is the tunable positive semidefinite weight

matrix of the controller. In particular, in this paper, we

select H as a positive definite diagonal matrix, dynamically

selected depending on the task, of the form:

H = diag {ηv1
, . . . , ηvm

, ηr1 , . . . , ηrn} , ηi > 0. (11)

The diagonal elements are tuned to fit each particular task.

For example, in manipulation tasks ηvi
> ηrj , while, during

locomotion, ηvi
< ηrj .

Noteworthy, if H = I , W = M−1, and the equation (4)

can be simplified in the notable result [15]:

τ = JTF + (I − JT
ΛJM−1)τ0. (12)

In other words, the control algorithm proposed by Wu et al.

in [11] is the solution of problem (2) weighted by the inverse

of the joint-space inertia matrix.



B. Vision Module

Despite warehouses can be considered structured envi-

ronments, human presence increases the variability of the

scenario. Moreover, collaborative robots, for safety reasons,

must integrate robust perception systems. For instance, ran-

dom box positions on conveyors and imprecise pallet location

are problems that have to be considered in the framework.

For this reason, a strong and reliable visual feedback is

designed, to increase robot state awareness and accuracy in

the pick and place task. In this section, the vision module is

presented, in charge of the detection of boxes and pallets.

Box Detection: For the depicted task, it was necessary to

detect the pose of several boxes on a conveyor with a high

level of accuracy. These boxes have to be grasped precisely

from the top, and placed on the pallet each one close to the

other; the high precision in the detection of position and

orientation affects the computation of the grasping point,

allowing consistent placement of boxes on the pallet. Current

literature proposes several techniques for general objects

recognition in the scene: for example, in [16] a learning-

based method has been implemented for pose estimation of

various and heterogeneous objects, while in [17] the author

takes advantage of a template matching approach, used for

the same purpose. In this work ,ArUco markers detection

were used, relying on the robustness and speed in the marker

pose computation, as reported in [18] and [19]. Moreover,

since the role allocation algorithm requires information about

box weights and dimensions, such information can be easily

integrated into a list, where each box is identified by its

marker ID. This approach presents promising results since, in

logistic scenarios, boxes are already equipped with markers

or bar codes that specify weight, dimensions, address, etc.

The ArUco markers detection has been performed through

the integration in the module of the aruco detect ROS pack-

age, using the images provided by the Asus Xtion Pro Live

camera mounted on MOCA. Once the ArUco marker pose

is estimated (Fig. 3(a)), the grasping location is computed

through a rigid transformation based on prior information

about boxes dimensions.

Pallet Detection: The second perception requirement con-

sists of the detection and the pose estimation of pallets. In

theory, the exploitation of the ArUco markers on the pallet

could solve also this problem. In general, pallets are not

equipped with such artificial tags and are subjected to wear

over time. In any case, different features can be exploited

for the detection. We implemented a detection algorithm

based on the pallet geometrical dimensions. This algorithm

processes the pointcloud acquired from Orbbec Astra depth

camera integrated on the Robotnik platform. As reported

in [20], in order to perform the pallet recognition, first,

the pointcloud is pre-processed using a pass-through filter

implemented in the used Point Cloud Library (PCL). It is

possible to remove all the points which lie outside a certain

region of interest, defined as d ≤ dthreshold, where dthreshold
is a parameter which defines the dimension of the region

from the ground.The detection is performed by looking at

Fig. 3. (left) Box frames detected by the ArUco marker detector using the
RGB images from the ASUS camera. (right) Coloured point-cloud acquired
by the Orbbec camera. The frame has been placed in the centre of the top
surface of the pallet, after detecting the three wooden blocks.

the long side of the pallet, based on its particular structure:

as a matter of fact, the pallet is characterised by the presence

of three equidistant wooden blocks on its side which are very

specific.The algorithm uses a region growing segmentation,

which merges the points that belong to the same smooth

surface. This approach returns several clusters; to extract

the ones corresponding to the wooden blocks, the procedure

searches for three clusters whose centroids lie on the same

line, as well as at a certain distance one from the other. Once

these clusters are obtained, the pallet is detected. Then, a

frame is placed on the centre of the top surface: the pose can

be obtained through a rigid transformation from the central

wooden block, based on pallet dimensions (Fig. 3(b)).

C. Task Optimisation

In this section, we will discuss how the framework intends

to improve the execution of mixed case palletizing tasks

in terms of time and density of packing and to decrease

heavy lifting requirements for human workers. The mixed

case palletizing problem is NP-complete and the stacking

rules, based on heuristics, must be adapted to each customer

accordingly, taking into account all the system constraints.

Optimising in this way the packing of goods has several

benefits: the packing density is maximised (90% with respect

to the average 70%-80% of the manually packed pallets),

while the number of pallets needed for the same volume

of units is reduced. Usually, the solution is pre-computed

offline and consists of the packing unit pick sequence and

the location in the pallet, where large, heavy products are

placed on the bottom of the pallet while small, lightweight

products on the top. During the package placement design

process, a small gap between the packages is added, as

safety tolerance, to avoid potential collisions. In literature,

the mixed case palletizing problem is formulated as the

well-known Bin Packing problem [21]–[23], which goal

is to orthogonally pack a set of rectangular-shaped items

into the minimum number of identical containers (bins).

Each item can be rotated by 90 degrees on each axis. The

theoretical formulation of the 3D bin packing problem and

the application on the pallet loading problem, including also

technological constraints and stability of the load on the

pallet, is presented by Terno et al. in [22]. Since most 3D

packing heuristics are built upon 2D ones, in this paper, we

focus on solving the 2D problem. To evaluate the packing in

different scenarios, we enabled our framework to run three

different Bin Packing algorithms: the Guillotine algorithm,

the Maximal Rectangles algorithm and the Skyline algorithm.
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configuration.

These algorithms differ mainly on the left space splitting

strategy. A complete description of the implementation and

the computational complexity of the algorithms can be found

in [24]. Once the Bin Packing algorithm returns the desired

box placement, a suitable policy for the role allocation

problem should be designed. Introducing the human-robot

collaboration in such mixed case palletizing tasks, as a matter

of fact, opens to the problem of designating systematically a

suitable agent to perform each box placement in the pallet. To

design the role allocation algorithm, we assign each task ac-

cording to each agent capability. This concept was introduced

by the authors in [25]: exploitation of robots for repetitive

and hard tasks and human employment for monitoring and

solving complex tasks. Among the three metrics proposed,

namely task complexity, agent dexterity and agent effort,

to allocate the pick and place tasks depicted in this work,

just the last one will be addressed. The limitations for the

role allocation are imposed by the size and weight of the

boxes. We assume that the boxes that we are dealing with

weight less than 25 kg (the value is imposed by law as the

maximum weight that can be lifted by a male worker). On

the other hand, the maximum load that MOCA can carry

depends on the payload of the mounted robotic arm. Thus,

the algorithm will negotiate three different modes (MODE

A, B, and C, as explained above) for achieving the task. The

pseudocode can be summarised as: ∀box ∈ list of boxes,

if box.weight > ROBOT PAY LOAD or box.volume >

HIGH V OLUME, then box.agent ← MODE C, else

if box.weight < LOW WEIGHT or box.volume <

LOW V OLUME, then box.agent ← MODE B, else

box.agent ← MODE A. In order to achieve the human-

robot collaboration, the human worker is expected to monitor

Fig. 5. (left) Duration of the manual (blue) and instructed (orange)
palletizing in the first experiment. (right) Likert scale-based questionnaire
scores for the manual (red) and collaborative instructed (green) palletizing
related to both experiments.

periodically the GUI and to acknowledge the execution of

the task. To do that and also achieve a greater level of

cooperation between the agents, minimising waiting times,

mobile devices or AR headsets [25], [26] could be exploited.

III. EXPERIMENTAL RESULTS

The proposed framework was validated with two different

experiments, executed by 6 different naive subjects, not

aware of the scope of the experiments. In the first experiment,

we asked the subjects to place 11 numbered boxes, of

different size and weight, on the surface of a pallet, in such

a way all the boxes fits in the lower layer of the pallet. Later,

with the same settings, we computed the box placement

through the Skyline algorithm and we asked the subjects to

place them according to the algorithm result, displayed in

the GUI. We compared the results in terms of time spent in

completing the palletizing. The results (Fig. 5 (left)) show

that, using such algorithm to help human workers improved

their performance, saving up to the 20% of the execution

time.

The second experiment consists of a proof-of-concept

collaborative mixed case palletizing. In this experiment, the

subject and MOCA have to collaborate to achieve the pallet

loading. Three boxes, marked with an ArUco marker, were

placed on top of a simulated conveyor. The pallet was placed

close to the conveyor (Fig. 4). The placement is computed, as

in the previous experiment, by the Skyline algorithm, using

as input the total number of boxes that are supposed to

be placed in that pallet. Moreover, the agent in charge of

the placement is computed by the role allocation algorithm,

that will assign one of the three modes (MODE A, MODE

B, MODE C). The robot has just a rough idea of the

pallet and conveyor location, and, because of considerable

errors in the odometry, has to re-detect the pose of the

pallet before each new placement. Also, the boxes have

to be detected every new placement, since, in general, the

number of boxes in the conveyor might change, due to newly

delivered boxes. Just the detected boxes will appear in the

GUI, with a different colour depending on the mode (red

for MODE A, green for MODE B, and blue for MODE

C). To enable MOCA to grasp boxes we planned to use

a vacuum gripper, but due to delay in the shipment, we

had to opt for a different momentary solution. We placed

an electromagnet in the wrist of MOCA and a sheet made

of ferromagnetic material on the upper surface of each box.

In this way, we could emulate the functioning of the vacuum

gripper, that was activated in the box picking phase and
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Fig. 6. Snapshots of the second experiment: to detect the boxes in the conveyor, the robot first scans the ArUco markers with locomotion 2 mode (A),
then rotates with locomotion 1 mode to estimate the pallet pose (B). Next, it approaches and grasps each box in manipulation mode (C), then moves
towards the pallet in locomotion 1 mode (D), and finally places the box in manipulation mode (E). Lower plots of the full experiment demonstrate the
prioritised mobility of the arm and the mobile base in these modes.

deactivated in the box placement phase. Finally, the control

parameters were designed. We selected a compliant be-

haviour, keeping a low valued diagonal of Cartesian stiffness

(Kx = Ky = Kz = 300, Kroll = Kpitch = Kyaw =
30), except in the picking and in the placing phase, in

which, to ensure higher precision, we increased the stiffness

in the x-y axis up to 1000. The Cartesian damping was

computed using Double Diagonalisation design [14]. The

weight matrix H of the controller was tailored to define three

main control modes: the manipulation mode, where H =
diag{

√
5,
√
5,
√
5, 1, 1, 1, 1, 1, 1, 1}, the locomotion 1 mode,

a locomotion that exploits all the DoFs provided by the base,

where H = diag{1, 1, 1,
√
5,
√
5,
√
5,
√
5,
√
5,
√
5,
√
5},

and the locomotion 2 mode, a locomotion that tries to

avoid unnecessary rotations of the base about z axis, where

H = diag{1, 1,
√
20,
√
5,
√
5,
√
5,
√
5,
√
5,
√
5,
√
5}. The

snapshots from the footage of the experiment (Fig. 6) depict

the main phases of the experiment. Finally, we asked the

subjects to compile a Likert scale-based questionnaire, to

have a subjective evaluation of the experiments, approved

by the ethics committee Azienda Sanitaria Locale Genovese

(ASL) N.3 (Protocollo IIT HRII 001 (rif. interno:108/2018)).

The questionnaire included 9 sentences. Q.1 The palletizing

task was easy to perform; Q.2 It was physically tiresome

to accomplish the palletizing; Q.3 It was psychologically

tiresome to accomplish the palletizing; Q.4 The cognitive

load to achieve the task was high; Q.5 Overall, I felt

satisfied with the current task performance; Q.6 It was easy

to understand where to place each box in the pallet; Q.7

I felt safe in performing the palletizing with the robot;

Q.8 Overall, I think that using the current collaborative

framework I could perform the same task for a longer

duration and better quality time; Q.9 Given the current task

performance, I think that collaborative robots do not help

to improve such logistic tasks. The participants stated that,

even though the complexity of the task results still acceptable

(Q.1), the manual performance requires greater physical and

psychological effort (Q.2-3), with high cognitive load (Q.4)

with respect to the smart collaborative approach. On the other

hand, the proposed framework, presents promising results in

terms of performance and work quality (Q.8-9), leading to

broader satisfaction with the proposed collaborative system

(Q.5) (Fig. 5 (right)).

IV. CONCLUSION

In this work, we presented a novel human-robot collabora-

tive approach to the mixed case palletizing problem. Several

problems were addressed, from the box and pallet detection

and localisation achieved by the visual perception module,

to the task and role allocation algorithm, that computes

the optimal location in the pallet and agent in charge of

the placement, passing through the design of a Cartesian

impedance controller capable of changing the joint space

behaviour of the robot. The results demonstrated that such

a framework, together with MOCA, have a high potential

in improving human workers productivity and ergonomics,

and represent a promising first step towards an intelligent

collaborative robotic system for mixed case palletizing.
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