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Abstract:
Big data and complex analysis workflows (pipelines) are common issues in data driven science such as bioin-
formatics. Large amounts of computational tools are available for data analysis. Additionally, many workflow
management systems to piece together such tools into data analysis pipelines have been developed. For exam-
ple, more than 50 computational tools for read mapping are available representing a large amount of duplicated
effort. Furthermore, it is unclear whether these tools are correct and only a few have a user base large enough to
have encountered and reported most of the potential problems. Bringing together many largely untested tools
in a computational pipeline must lead to unpredictable results. Yet, this is the current state. While presently
data analysis is performed on personal computers/workstations/clusters, the future will see development and
analysis shift to the cloud. None of the workflow management systems is ready for this transition. This presents
the opportunity to build a new system, which will overcome current duplications of effort, introduce proper
testing, allow for development and analysis in public and private clouds, and include reporting features leading
to interactive documents.
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1 Introduction

Bioinformatics, today, is supporting most biological and medical research projects. Bioinformatics examples
will be used in the following as examples for all of data science. At the beginning, bioinformatics was mostly
concerned with sequence alignment and it still is an important task. Additionally, many other tasks have devel-
oped ranging from statistical calculations to image or video analysis. In the last decades many bioinformatics
tools have been developed. For example, sequence alignment can be done with a myriad of tools such as FASTA
[1] and BLAST [2]. In fact, for the task of sequence alignment at least 50 tools have been developed [3]. This du-
plication of effort is also seen in other areas of bioinformatics. In mass spectrometry (MS), for example, there
are at least ten tools for de novo sequencing of MS/MS spectra [4] and at least ten more for database search [5]. It
is impossible to stay on top of the most recent developments for a larger amount of tool categories. Collections
such as JIB Tools [6] try to organize tools into categories, but it is a manual and time consuming task for the tool
editors. The tool DaTo [7] has a very comprehensive collection of tools and databases accessible via an online
interface. Tools and databases for DaTo are automatically discovered but not manually annotated. Therefore,
the information in DaTo is more comprehensive, but it does not provide a quality assessment of the tools and
databases.

1.1 Quality of Computational Tools

The quality of tools in bioinformatics is often hard to assess because gold standard datasets are not available
or cannot be produced for a given problem [8]. Even if good test data is available, often it is not used since
formats are not agreed upon which exacerbates testing of newly developed tools. Some developments such
as OpenMS [9] at least include unit tests for all their modules, but many bioinformatics tools do not include
extensive testing. Instead, they may contain code smells [10], an indication that the software should be re-
designed. Code smells come in many odours [11] for different types of design flaws such as Shotgun Surgery,
which refers to the problem that for making a code change many parts of the project need to be changed at
once. The aforementioned smell, Dead Code, and Divergent Code smells seem to be a common problem today
arising from copy paste of code that work(s/ed) or appear(s/ed) to be. One reason for bioinformatics codes to
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be smelly is that bioinformaticians wear two heads, one for information science and one for biology or related
fields. This problem has long been identified and in an attempt to overcome it, programming schools were
initiated under the software carpentry umbrella [12].

1.2 Software Carpentry

Initiated out of frustration in 1998, software carpentry has become an organization reaching thousands of com-
putational scientists. Its overarching aim is to teach basic lab skills for research computing. As of 2018, software
and data carpentry merged their efforts (The Carpentries: https://carpentries.org/). According to their own
words: “These Carpentries seek to build and grow communities of practice around computational skills de-
velopment for researchers”. Today, there are about 500 accredited instructors teaching about one course on
average and thereby reaching a total of around 16,000 participants. Many skills taught as part of computer
science curricula are never formally disclosed to computational scientists of other disciplines who just hap-
pen to need programming skills for their daily tasks. According to Greg Wilson, a seminal figure for software
carpentry, their courses increase participants’ computational skills by two-fold and make them more effective
programmers in practice [13].

1.3 Programming Languages for Scientific Computing

While it is hard to assess which programming languages have been used in practice, it is likely that over the
last decades any language from Ada to XOTcl has been used to solve a scientific problem computationally. In
bioinformatics, Perl used to be the language of choice and it is still in use today. However, python and R are
more popular than Perl at this point. This should not discard other languages and there are large scale projects
developed in object oriented programming languages such as C++ (SeqAn [14], OpenMS [9]) and Java (biojava
[15]). JavaScript, in the past only a client-side scripting languages in web browsers, is picking up ground and
more than one hundred packages related to bioinformatics are now available on the node package manager.
Also in scientific publications, JavaScript has played an increasing role in the last two decades (Figure 1).

Figure 1: Distribution of the terms bioinformatics and JavaScript on PubMed over the last two decades.

One reason why many different programming languages are used in scientific computing is due to the
background of research scientists or their advisors who are often choosing a language because of prior
exposure. Popularity in the field is another factor and that should lead to a form of consolidation over
time. For the field of bioinformatics that has not happened and many languages are used in parallel. In
fact, many algorithms and tools have been implemented in many programming languages representing a
large duplication of effort. For instance, the Smith-Waterman algorithm for local sequence alignment has
been implemented in Java, C++, Perl, Python, JavaScript and other languages. Undoubtedly, the languages
with the largest amount of available modules (http://www.modulecounts.com/), the biggest community
(http://www.dataists.com/2010/12/ranking-the-popularity-of-programming-langauges/), and top in many
other measurement categories (https://insights.stackoverflow.com/survey/2018/) is JavaScript. One recur-
ring claim, discrediting scripting languages, involves execution speed of the resulting artifacts. This is a topic,
which with just-in-time compilers available for most scripting languages such as Java and JavaScript, should be
alleviated today. It should have become clear that algorithmic tweaking far surpasses benefits from choosing
a particular programming language. Setting aside execution speed, for a particular problem some languages
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may be more suitable than others due to their inherent structure. Workflow management systems (WMS) can
help piece together complex data analysis workflows using tools developed in different languages.

1.4 Workflow Management Systems

While using a single tool for analysis, e.g. aligning a novel sequence to known sequences, is a relatively small
task (ignoring ID conversions and the large amount of available databases), the complexity of data analysis is
ever increasing. On the other hand, there is a call for reproducibility of data analysis. Workflow management
systems (WMS) ensure reproducibility of complex data analysis tasks. Similar to other bioinformatics tools, a
large variety of WMS are available. WMS used in bioinformatics are, for example, Taverna [16], Galaxy [17], and
KNIME [18] but many others exist. Some WMS include collaborative workflow development with versioning
(e.g. KNIME). Most WMS allow the incorporation of new tools. For some WMS that is relatively simple (Galaxy)
and for others it may be a bit more involved (KNIME). While the production of workflows can be versioned, the
tools incorporated in the workflow are generally not. However, this can be achieved using Cuneiform [19], which
can execute a workflow while loading specific tool revisions from git repositories. Unit testing and integration
testing is not generally a part of WMS although building computational data analysis pipelines needs proper
testing just like building any other software artifact. There appear to be attempts to make Galaxy WFs testable
[20]. Galaxy and other WMS are running on a server and can be accessed via the internet. However, none of the
WMS used in bioinformatics leverage the computational power of the server and the client or make online and
offline development seamless. The internet of things has, among other developments, seen the rise of WMS to
enable the analyses of sensor data.

1.5 Challenges

One challenge in the future of scientific computing is the transfer form workstations and desktop computers
to laptops or even smaller units. Additionally, the transition away from programs to online application will
change the way scientific computing is performed today. At the same time, many programs used in scientific
computing are not comprehensively tested and have many alternative forms e.g. developed in different pro-
gramming languages. In the following, I will suggest a system which will overcome current issues in scientific
computing and streamline development of new tools and workflows. This is a call for a science community
effort but also inviting the commercial sector for collaboration.

2 Architecture

The envisioned system will depend on a central application server, or several replicates thereof, to provide ac-
cess to the IoS for development and use. For closed installations, as for example in companies, the application
can be installed on a local server behind a company firewall. The application server holds the main applica-
tion with several modes of accessing the system: (1) as administrator, (2) as reviewer, (3) as developer, (4) as
tester, and (5) as workflow developer or user. Users and workflow developers only have access to success-
fully reviewed tools whereas in other access modes increasingly less strict access models apply. While access
to level 5 is unrestricted, higher level access needs accreditation, for example, from providers such as ORCID.
The application server does not hold data for workflows which should be linked via web-accessible resources
and it does not perform computations for the user workflows. Instead, the execution of the workflows and the
tools will occur elsewhere, on a trusted resource (e.g.: grid), or on all connected users which grant access to
their web browser for computations, as well as public/restricted dedicated computation nodes for the IoS. In
summary, the system consists of a replicated server for the main application and tools, name servers for user
authentication, and different options to assign computational resources for data access and to perform compu-
tations. Thus, the IoS is a cloud based application which also facilitates access to distributed computing with
the reviewed IoS tools on various cloud services. Thereby, it resembles a software as a service at least for the
development of the IoS while the workflow development resembles a platform as a service structure.
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3 Implementation

In order to overcome duplications of effort and to ensure that all tools are fully unit and integration tested, the
community should pick one programming language. To allow for the development of online (server, client) and
desktop applications, JavaScript needs to be the language of choice. Furthermore, JavaScript has an enormous
developer base and the largest amount of existing packages. From the language perspective, it supports different
programming paradigms (procedural, object oriented, and functional) such that most developers can feel at
home. Choosing one programming language ensures that the community can seamlessly develop unit and
integration test for the code and can build on top of comprehensively tested, dependable modules.

It is especially important to prevent errors from propagating into critical data analysis workflows as might
be used for clinical decision-making. Therefore, development and production will be separated and only work-
flows build solely from production level tools will be executable in the community workflow management
system. Tools are promoted from the development system when they (a) pass synthetic and real world test
scenarios and (b) pass the scrutiny of a self-/auto-assembled community review committee (Figure 2). Some
incentives for performing reviews are to be able to in turn use the reviewed tools, extend them, and/or receive
reviews for their own tools. Additionally, efforts such as developing test suites and or providing test data will
be incentivised by associating them with citable digital object identifiers (DOIs).

Figure 2: The possible process of promoting a tool to the production level.
The orange box represents online services such as NCBI’s SRA and gene ontology (GO). To access such services tools can
be developed (blue circles). IoS represents the production level where in this picture only SRA has a connector. The GO
connector node is submitted for inclusion into the production level but has no tests yet and therefore is not scheduled for
the review committee (RK; green box), yet. Developers Dev 1 and Dev 2 both pulled copies of the SRA connector node
for further development while Tester 1 pulled a copy for the development of additional tests. Tests are one evidence for
the decision of the review committee whether to include a tool into the production level but code review and additional
steps should also be taken. The RK requests and reviews tests, as well, to ensure proper procedure. The RK is composed
of researchers form the relevant field, computer scientists and other stakeholders.

Successfully reviewed tools (Figure 2), are part of the production level and can then be used to build data
analytics workflows (Figure 3). Self-made or not reviewed tools can be used as well, for example, by their devel-
opers but should not be acceptable for publication or for any critical data analysis. This model does not hinder
new developments but will speed them up. For example, a doctoral student does not need to develop handlers
or connectors for commonly used data types but can simply build a workflow using existing tools. Adding their
own algorithm to the mix as an extension of existing tools or as novel tools leads to novel workflows which can
then be directly used or encapsulated as modules for use in production after passing due review. Modules
are also very useful for automatic algorithm selection. For example, many algorithms have been developed for
exact pattern matching [21] and their performance varies with the input such that the most effective algorithm
can be selected automatically. Such a scenario can be encapsulated into a module and thereby a huge reduction
in complexity can be achieved shielding the users of such modules from the decision making process of which
particular algorithm to use in the specific situation. This also ensures that everyone contributing to solving a
particular problem with different algorithms can re-use existing tests and can directly benchmark against all
other reviewed solutions using a comprehensive search space, thereby adding to the problem solution without
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increasing apparent complexity. Furthermore, all meaningful portions of code are citable via DOIs making the
code FAIR [22] similar to already established initiatives for FAIR data [23].

Figure 3: The development of data analysis workflows using a mixture of public and private data and tools.
The orange box contains some public data sources (e.g.; GO [24] and KEGG [25]). Some have production level connector
nodes (blue circles, IoS box) while others have private connectors (local). Processing nodes (rounded rectangles) are used
to transform data. As in most WMS, Data can travel but in this system processing nodes can travel as well (dashed blue
lines). Local data (blue parallelogram, e.g.; proprietary) can be processed locally so that it does not need to be uploaded.
Result visualization is just another data transformation (green circle).

Many stakeholders have an interest in data analytics and some can freely share their data while others
cannot. Additionally, some developers are working for profit while others do not. The envisioned platform
accommodates all these and other constraints. For example, data can stay local and can be processed on site by
downloading processors to the local version of the IoS. This is seamless with non-for-profit processing nodes
but for commercial nodes, different licensing models (e.g. prepaid, use once and burn) need to ensure proper
handling. For commercial purposes local modules not submitted to the IoS may present a business case, but
passing the tool through the review process and making it commercial may be more advantageous since the
community may not trust unreviewed tools. This setup and the use of JavaScript hold other promises such as
the sharing of computational resources via processing in connected web browsers, as exemplified by QMachine
[26]. Automatic encapsulation of tools or complete workflows into executables facilitates automatic parallel
execution on larger computer infrastructures.

Reporting is an important part of a computational data analytics workflow. In fact, since the workflow al-
ready defines all inputs, data transformations, and outputs, reporting is fully traceable from any report item to
the underlying raw data. The aim is to integrate workflow outputs into documents which can be collaboratively
developed online. The outputs will allow direct access to the reasoning down to the raw data from within the
document. This type of interactive document completely encapsulates the intent and the approach taken and,
together with the embedded IoS workflows, ensures reproducibility.

For future development of the internet of science, a public repository has been initialized:
https://bitbucket.org/allmer/ios/src/master/. Developers of the IoS system need to be approved to
gain access but read access is public. The IoS will be presented several times in 2019 and towards the beginning
of 2020, a conference is planned to bring together interested parties and to grow the community.

4 Discussion

The main aim of the internet of science is to re-establish collaboration as the first principle of science. The IoS
enables collaborative work on developing and testing software, developing and testing data analysis workflows,
and joint reporting. It binds together all stakeholders while enabling the tracking of individual and joint efforts
via DOIs. The IoS embraces FAIR code and appreciates FAIR data. Documents developed using IoS provide
access to data, the IoS workflow for data analysis and in turn all code involved as well as to the document thus
making information also FAIR.
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