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ABSTRACT: 
 
This paper proposes an ontology to structure and describe processing chains in the remote sensing field. These chains are made up of 
elementary elements (operations) organized in collections. The collection notion, including information about order and repeatability 
of the elements, is widely defined by using the relations between their constituting items and relations to the whole data store. 
Applications of the ontology are illustrated with web services provided by a platform for users and providers of processing chains. A 
graphical interface facilitates data integration in a RDF triple store. Thanks to the management of metadata (ISO19115-3), relevant 
information can be requested by intelligent search engines. Graph analysis, errors management and consistency rules are computed 
in order to gather coherent information from the different sources. Results of these analyses are then used by machine learning 
algorithms for new knowledge discovery. 
 

1. INTRODUCTION 

Nowadays, remote sensing is increasingly used in 
administrations and private sector. The pooling of knowledge 
engaged with the apparition of web platforms dedicated in 
remote sensing increases. Such platforms are used both by users 
for specific services retrieval and by providers to publish tools 
and applications.  
 
All the difficulty in such a use lies in the fact that not only the 
conceptualization but also the terms definitions needs to be 
considered with the most relevant vocabulary according to the 
users and the providers. This vocabulary needs to be consistent 
and leaves as little openness as possible to interpretations. A 
unique vocabulary needs to be set to facilitate comparison, 
retrieval and publishing in these platforms. 
 
The remainder of this paper is structured as follows. First, we 
develop the methodology to create and manage the creation of a 
formal ontology dedicated to the structuring of processing 
chains in remote sensing. Then, the different considerations that 
lead to the graph structure are depicted. Consistency analysis 
and rules are the next logical step. The development of a user-
friendly interface favours the use of the ontologies, which are 
usually restricted to specialized staff. Creation, modification 
and removal of instances in the database are also available and 
this is a step further for ontologies integration in many tools. 
Finally, these considerations are illustrated through the creation 
of a user-friendly interface and knowledge graph mining. 
 

2. STATE OF THE ART 

The definition in a formalized and well-documented structure of 
the different objects allows the comparison of the different 
elements, as for instance in social graphs (Braun, Cuzzocrea, 
Leung, Pazdor, and Tran, 2016). In computer science terms (as 
it pertains to knowledge graphs) an ontology formally describes 
the types, properties and interrelationships between entities of 
real-world concepts. In other words it is „an explicit 
specification of a conceptualization“ (Gruber, 1993). Those are 

usually used to restrict elaboration and organize data into 
information than into knowledge, as defined in (Rowley, 2007). 
 
Once the ontology implemented in a NoSQL graph database, 
data can also be processed for business intelligence and new 
knowledge discovery in databases (KDD) purposes (Fayyad, 
Piatetsky-Saphiro, and Smyth, 1996). 
 
Knowledge discovery faces long runtime and difficulties to 
compute efficient mining algorithm (Han and Kamber, 2012; 
Miller and Han, 2009). Ontologies are usually used as support 
material to guide such a retrieval (Gómez-Pérez, Fernández-
López, and Corcho, 2010; Inokuchi, Washio, and Motoda, 
2000), especially for geographic databases (Bogorny, Engel, 
and Alvares, 2007). In biomedical studies, where ontologies 
have firstly been used, semantic patterns retrieval provide 
meaningful structure analysis (Hilario, Nguyen, Do, Woznica, 
and Kalousis, 2011; Huang, Dou, He, Hayes, and Dang, 2010; 
Shen and Lee, 2016). 
 
The use of ontologies also allows the merging of the knowledge 
base described by the ontology with other knowledge bases 
(Noy and Musen, 2003; Stumme and Maedche, 2001). It is part 
of the pooling of knowledge started in Linked Open Data. 
Moreover, data are computable by other projects and reusable in 
different contexts. 
 
In remote sensing, ontologies are usually used to support 
entities classification or image segmentation (Andrés, Arvor, 
Mougenot, Libourel, and Durieux, 2017; Andres, Arvor, and 
Pierkot, 2012). Many works have presented different 
conceptualizations and hierarchies to describe the links between 
the entities in images (Oliva-Santos, Maciá-Pérez, and Garea-
Llano, 2014). Satellite imagery metadata are also structured in 
ontologies to support search engine (Lin, Xu, and Bai, 2017). 
 
Creating a new ontology is a time-consuming and complex 
process.  A rigorous methodology is thus necessary. Most of the 
time, such ontologies are created by knowledge engineers, who 
are familiar with the tools and standard hypothesis in ontologies 
conception. However, these are usually not experts in the 
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application domain covered by the ontology. It is therefore 
needful to reduce this gap  by designing the most relevant 
conceptualization (Denaux, Dolbear, Hart, Dimitrova, and 
Cohn, 2011). 
 
Moreover, despite the ontology creation for a dedicated 
application, it is important not to forget that the invested efforts 
are commonly destined to be reused, enhanced and shared. It is 
important to consider the correctness, applicability and usability 
during the creation of such an ontology. Protégé is a tool 
particularly suited for the evaluation and the creation of an 
ontology in the most complete way (Tan, Adlemo, Tarasov, and 
Johansson, 2017). 
  
The description of processing chains is a common 
preoccupation and many solutions have already been proposed 
in the literature. Several projects propose a semi-automatic 
creation of processing chains for web services using semantic 
web technologies (Sirin, Hendler, and Parsia, 2003; Srivastava 
and Koehler, 2003). The building of such services is based on 
the concatenation of pre-existing subservices linked together by 
inputs and outputs data. It is a simple but relevant chain. 
 
The next logical phase needs this step to be automatized and 
consistency checked. Indeed, rules for sharing and consistency 
analysis are crucial to favour interoperability of concepts and 
their understanding (Grau, Horrocks, Kazakov, and Sattler, 
2008). The consistency will be translated in adapted rules set 
(Yue, Di, Yang, Yu, and Zhao, 2007). 
 
Finally, artificial intelligence, neural networks as an example, 
may make a step further in the automatized creation of 
processing chains and their complexity. Liu, Xue, Guang, and 
Liu (2015) state the possibility to make such a proposition in 
remote sensing. 
 

3. RESEARCH HYPOTHESIS 

According to the state of the art, the creation of a formal 
ontology structuring the proposition of services may improve 
the creation of web platforms dedicated to remote sensing. 
Expressing the different services propositions (i.e. processing 
chains) in a common and well described formalism permits the 
an easy exchange between users and providers. 
 
Implementing such an ontology in a NoSQL graph database and 
providing applications on this basis is also an enhancement that 
leads to comparison, error detection and automating of 
knowledge discovery. 
 

4. APPLICATION ONTOLOGY 

In its conceptual version, an ontology is represented as an 
oriented graph. The ontology created in this study is a hybrid 
one, made up of two different sub-ontologies, as illustrated in 
Fig. 1. One is used to define the various types of collections, 
and consequently structure the processing chains. The other 
describes the vocabulary and concepts in remote sensing: 
operations, data and services.  
 
The first part (see section 4.1) will be illustrated through the 
instantiation and allows the definition of processing chains, the 
first part (see section 4.2) is a higher-level ontology used to set 
rules about the different subclasses. 
 
What are the benefits of this methodology and its 
implementation in a NoSQL database? The description of each 

service is independent of its level of detail and completeness. 
The absence of information does not need to result of a “No 
Data” value but only the absence of the attribute in the graph. 
This results in a more suitable management of memory usage 
and scalability in users’ experience. 
 
The instanced ontology and instance-clean ontology are hosted 
at: http://www.purl.org/net/eor_ontology. All the instances have 
been declared following the eor: prefix namespace: 
http://www.geo.ulg.ac.be/nys/. It will be used in this article as 
notation simplification. 

 
 

Figure 1. Visualisation of the ontology structure via OntoGraf 
Plugin in Protégé 

 
4.1 Classes definition 

There are three main classes besides domain and provider, 
which both do not need any explanation: Data, Operations and 
Service. These are the constituting elements of the processing 
chains. 
 
4.1.1 eor:Data: It is customary for data to be described by 
metadata. The creation / modification of that metadata is an 
elementary operation. The owner of a data is, besides other 
characteristics, not modified in a processing chain. This kind of 
metadata is designated as “not operable” and is therefore not 
part of this study, unlike the spatial resolution for example. 
  
On the contrary, several metadata are defined as “operable” and 
are the result of an elementary operation, like spatial resolution. 
An elementary operation is thus an operation that creates or 
modifies at least one information. 
 
On the one hand, a data is used as input by an operation. Based 
on this kind of relation, restrictions arise on the data format. 
This is detailed in the consistency rules section. On the other 
hand, the result(s) of an operation is (are) also a data. The 
modification is made on the metadata but not on the nature of 
the element, which is still a data. 
 
Finally, a collection of data, structured or not, is still is a data. 
The difference between both the collection and the data 
themselves is the creation of metadata related to the idea of 
collection (index, temporal resolution between successive 
elements, etc.). See section 4.5 for description of the collection 
concept. 
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4.1.2 eor:Operation: As mentioned above, an elementary 
operation creates at least one information based on the input 
data and results in the creation of a new data, the output. The 
knowledge about an operation allows the analysis of its 
influence on the metadata. Thus, it is possible to determine the 
consistency analysis and quality management of a processing 
chain by splitting it in successive elementary operations. 
 
An operation can be of two natures: 
 
- Algebraic operation. This kind of operation consists in the 
modification of at least one metadata. In this operations family 
stand filters, normalization, resampling, interpolations, map 
algebra, spatial aggregations … In other words, the answer to an 
algebraic operation can be provided by an indisputable formula 
or algorithm. 
 
- Descriptive operation. This kind of operations leads to the 
creation of information but without the modification of the 
initial data. It is typically the case when it is talked about 
classification, count … This type of operation is often subject of 
human expertise and it therefore hardly appreciable and the 
result may differ from the operators. 
 
Although these conceptual differences may provide a good 
hierarchy, the distinction between these two operation families 
is not relevant in the model. Thus, the operation class is generic 
and despite the fact that we consider remote sensing, the notion 
of elementary operations is independent of the application field. 
 
Rather to structure the different subclasses of operations, the 
hierarchy has been selected from the Orfeo Toolbox1. Each 
operation instance is therefore defined as an instance of its 
subclass type. Every subdivision is disjoint from the others. 
 
The notion of operations collection is not as simple as the data 
one. An operation is defined as the creation/modification of an 
information on a data. However, because of the nature of these 
changes, precedence and necessary relations appear. Many 
operations inputs need to be formalised in a particular file 
extension, scaled on a specific reference standard or 
georeferenced for instance. 
 
At a second level, a more detailed classification of operations is 
requisite. Different specializations are thus defined: their 
definitions are more precise and allow a more relevant 
management. It is also at this level of definition that the real 
extensions of the conceptual classes are specified. Those are the 
individuals. 
 
4.1.3 eor:Service: The service class is defined as a 
collection of operations where the order has an importance. 
Operations constituting a service are an ordered list where 
elements are repeatable. The notion of order is independent of 
any notion of index. Indeed, an operation may appear multiple 
times in a service and the relations between the service and its 
operations are not functional (cardinality one-to-one). 
 
Each service is defined by a description following the Dublin 
Core prescriptions (dc:description). A service is also described 
by linking two Classes with ObjectProperties:  
 
- eor:Domain: This class represents the main thematic field of a 
processing chain. As an example, agriculture and subsidence are 

1 https://www.orfeo-toolbox.org/ 

two applications domain in remote sensing. The corresponding 
ObjectProperty is eor:hasDomain. 
 
- eor:Provider: this class  binds a processing chain to a provider. 
Based on this link, a provider can be defined not only by his 
name but by his economic model, certification process … The 
corresponding ObjectProperty is eor:hasProvider. 
 
4.2 Collection concept 

As explained before, the notion of collection is an important 
issu. Collections structure services and describe the arrangement 
between their constituting elements: the operations. 
Nevertheless, collections of data are also customary and 
consequently need to be managed. Two solutions have been 
investigated: 
 
- A simple model defining the collection concept as a reflexive 
relation from the object to the object itself. The objects 
collection is then an object (instance) of the same class. 
Therefore, the modification of an instance as a collection does 
not bring any change to the instance, except the metadata 
updates (temporal resolution of the collection, number of 
elements …). These metadata are thus added as datatype 
properties on the data, which can bring fuzziness in the 
database. 
 
- A more complex definition that develops the semantic 
definition of a collection. This can easily be achieved in a 
formalized ontology. The ontology defines a collection as an 
ordered, or not, succession of identified elements. 
 
The definition of the simple reflexive model is naive. Certainly, 
it greatly facilitates the model design: a collection defines a 
whole whose nature is similar, even identical, to the elements 
that constitute it. The transitivity of such a relation is quite 
relevant. 
 
However, some information, which may be crucial, is 
neglected: order, repeatability or the enumeration of the chains 
of a processing chain for example. Winston and Chaffin 
(Winston, Chaffin, and Herrmann, 1987) propose a taxonomy 
describing the different types of relations between a part and the 
whole-part. The considered categorization by the authors is 
depicted by the combinations of three characteristics: 
 
- Functional/Non-functional: Parts are/are not in a specific 
spatial/temporal position with respect to each other. This 
supports their functional role with respect to the whole. 
- Homeomerous/Non-homeomerous: Parts are similar/dissimilar 
to each other and to the whole (to which they belong). 
- Separable/Inseparable: Parts can/cannot be physically 
disconnected, in principle, from the whole to which they are 
connected. 
 
Based on these elements and their characteristics, different 
types of collections are used in our ontology: 
 
4.2.1 Portion/Mass relation: The definition of the data 
collection is complex. First, the functional aspect of such 
collection, as defined in the previous section, is not questionable 
in the remote sensing field. Indeed, the relative temporal 
referencing of time series elements is important but this aspect 
is already described in the metadata. For instance, the dates of 
acquisition of the different images in the collection are once 
reported in metadata.  
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These elements are therefore not functional. In addition, the 
definition expresses the implementation of position in space and 
time, what is not relevant in this study. The data, as a real 
material object, is not applicable. 
 
Homogeneity leaves little doubt. It is obvious that in our 
conception of a collection, elements are of the same nature. The 
quality of this homogeneity could be less or more precise. The 
more the level of detail precise is, the less homogeneous the 
collection will be. 
 
For instance, let us take a set of images.  If their definition is 
limited to the data format, the data sets will be recognized as 
similar and belonging to the raster category (in opposition to the 
vector category). Let us make a step further in the level of detail 
with the definition of the pixel type: are they coded in 1, 8 32 … 
bits? The first differences appear. Moreover, the number of 
differences between the entities increases with the precision of 
the different defined elements (resolution, thematic, dimensions 
…). 
 
Finally, data are separable. For example, in an aggregation, 
typically a reduction of the temporal resolution of a time series, 
the number of data in the collection will decrease. Nevertheless, 
data are still data and their nature will not change during the 
operation. They are therefore separable and their existence is 
not linked to the notion of collection. 
 
4.2.2 Feature/Activity relation: This type of relation 
directly sets the necessary notion of succession between the 
features in a relevant whole. It is particularly true in a service 
that is a collection of operations. It is necessary for a feature, 
operation n+1, to be preceded by another feature of the 
collection, operation n, whose nature is defined by the 
consistency of the processing chain. 
 
Order has all its importance in the structure of the activity. The 
elements repeatability in this kind of relationship is not blocked 
if it respects the restriction previously stated. Both notions 
(succession and order) belong to another definition level. These 
cannot be considered as a simple connection. They implement a 
reflection and need accordingly a reasoning and additional 
attributes (relations of precedence and antecedence ...). 
 
Several efforts have been made to structure such a notion of 
lists (Pauwels, Terkaj, Krijnen, and Beetz, 2015) and domain 
ontologies have been created. However, the notion of ordered 
list is not sufficient and too little developed in these approaches 
for our considerations. To this end, the approach proposed in the 
Collections Ontology (Ciccarese and Peroni, 2014) has been 
selected and imported. 
 
This high-level ontology brings a structure for the definition of 
collection types and the linking of the constituents’ elements 
between them but also to the whole. A collection is 
characterized by two aspects previously enounced: order and 
repeatability. The article defines subsequently three kinds of 
collections presented in Table 1. : 

 
 Ordered Non-ordered 

Repeatable Lists Multisets/Bags 

Non-repeatable / Sets/Sequences 

 
Table 1. Classification of collections concepts 

 

To this are added rules for the consistency between the different 
categories: 
 
co:Set ⊑ Set 

co:Bag ⊑ Bag 

co:Set ⊓ co:Bag = ∅ 

co:List = co:Bag ⊓ Sequence 

 
Every element, as it happens an operation, has a logical position 
in the collection and its repeatability can be relevant. The choice 
in the definition of the different collections in the Collections 
Ontology is thus focused on the list. 
 
Data are non-repeatable and non-ordered. Their order is not 
directly specified in the ontology but tacitly in the metadata 
(time of acquisition …). It is not necessary to specify this 
arrangement in the ontology. 
 
Moreover, the ontology introduces the concept of 
co:hasFirstItem and co:hasLastItem in the lists as well as the 
precedence and antecedence relations. Semantic Web Rule 
Language (SWRL) restrictions on the logic of necessity and 
sufficiency (specific to these relations of succession) are 
implemented. These relationships lead to the creation of 
subsumptions. SWRL is firstly used to describe rules in 
Description Logic then translated in OWL in a second time. 
 
A modification is yet indispensable for the notion of collection 
in this approach. The collection and its constituting elements are 
defined as disjoint. In other terms, an entity cannot be a 
collection nor a collection of collections itself. It has thus been 
set possible that a concept defined as a collection of this concept 
by a reflexive relation to the collection (1…n). Thus, by 
transitivity of the relation from the part to the whole, a 
collection of collections is viable. 
 
Caution, however, that the transitivity is permit only when the 
relations form the part to the whole are of the same nature. 
Illustrated by the following example (Winston et al., 1987) 
based on the previously defined relations, this affirmation takes 
all its sense and draws attention to the errors that can be 
encountered by a gross syllogistic reflection. 
 
1. Simpson’s arm is a part of Simpson. 
2. Simpson is a part of the Philosophy Department. 

3. Simpson’s arm is a part of Philosophy Department. 

 
It is dangerous to consider that the third affirmation is true 
based on the two previous. The example here is trivial for a 
human: Simpson's arm is obviously not a full member of the 
Department of Philosophy. Nevertheless, the last affirmation 
may seem direct and easy for a machine. Humans perceive the 
differences but computers need to be trained and relations need 
to be well built. It is important to respect the homogeneity of the 
meronymic relations to keep coherence and understanding. 
 
About this consideration, transitivity is not possible between the 
different types of collections in this study since corresponding 
to different relations of the part to the whole. Just as the arm of 
Simpson cannot be part of the Philosophy Department. Thus, 
the transfer of knowledge on different levels of elements is 
prevented and the entities disjoint. 
 
4.3 Inference and error management 

Reasoning on relations and classes hierarchy can lead to 
discover information in knowledge databases. The inferred 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018 

ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. 

https://doi.org/10.5194/isprs-archives-XLII-4-483-2018 | © Authors 2018. CC BY 4.0 License.

 

486



knowledge bases thus allow creating new statements and 
detecting errors in the asserted graph. OWL has description 
logic based language allows reasoning to infer logical 
statements from a set of asserted facts or axioms.  
 
Asserted facts are depicted in both the structure ontology 
(terminological box - TBox) and its individuals (assertional - 
ABox) boxes. In other words, TBox is constituted of classes 
definitions in the EOR ontology. Thanks to edited rules and 
restrictions on classes definitions, those boxes are inferred and 
thus structure the knowledge discovered on logical reasoning. 
Listing X provide a simple example of inference on both boxes. 
An ontology presenting errors or incoherence is defined as 
inconsistent.  
 
The inconsistency is translated by the blocking of all reasoning. 
It would be interesting to be able to overcome this limitation 
and thus permit correction on the wrong-inferred triples. It 
would then be accepted that the use of the ontology is not 
optimal because at least an error remains. The general process is 
then available and can follow is course without being frozen. 
 
This trick is made possible because of the integration of a 
Datatype Property:hasError . This association is a relation 
linking an Individual to a characters chain, as it happens in this 
study: the error message explaining the presence of error. 
 
The appearance of an error message is defined by consistency 
rules expressed in SWRL. Thus, when an error happens, it will 
suffice to query the presence of such a property without 
blocking the use of the knowledge base. 
 
4.4 Consistency rules 

A database can contain contradictions. These contradictions can 
be, in the case of ontologies, the results of bad reasoning on 
inferred information. It is important to keep a logical 
consistency when it comes to description logic and tableau 
based algorithm. Pellet (Sirin, Parsia, Grau, Kalyanpur, and 
Katz, 2007) has been selected as reasoning engine especially 
because of its support of SWRL built-ins. 
 
 Logical consistency is one of the six elements defining the data 
quality as depicted in ISO 19157:2013. This definition divides 
the consistency into four sub-concepts as following: conceptual 
consistency, coherence of value domain, format consistency and 
topological coherence. 
 
Conceptual consistency is characterized by the intrinsic 
ontology definition and their constituting elements themselves. 
It is the responsibility of the knowledge engineer and therefore, 
especially needs the support of domain experts.  
 
The coherence of value domain are described in domains/ranges 
of the relations. Ontologies also give the possibility to set up 
cardinality, reflexivity, transitivity … for the relations. These 
elements define the coherence of value domain also. Format 
consistency is described in general axioms limiting the use of 
data in the different services. In this study, this kind of 
coherence is set up in the general axioms.  
 
Topological coherence is not relevant in this study because of 
the ontology nature itself. Relations therefore guaranty the 
integrity of topology, which is already discussed in the 
conceptual consistency. 
 

4.4.1 General axioms: General axioms translate base 
principles of remote sensing but also rules applied to collections 
types. Considering the Open World Assumption, it is easier to 
define inconsistency rules rather than consistency rules. An 
incoherence will lead to the creation of an error. What are the 
conditions that lead to an error? The general axiom defining the 
incoherence of errors presence states that the number of errors 
need to be zero. 
 
During the reasoning, whenever an error is created (the entity 
then has an Object Property hasError), the description logic 
engine flags an error and gives its explanation. It is then 
considered as inconsistent that an entity has an error as 
property. 
 
As already said, the Collections Ontology is used to define the 
notion of collection but also to limit the range of the classes. 
Many rules in this ontology are general axioms governing the 
whole graph. Despite the trivial nature of these rules, it is 
necessary to precise them because of the Open World 
Assumption. 

 
1. co:Bag and (co:hasItem only co:ListItem) SubClassOf 

co:hasItem only co:ListItem 
2. co:List and (co:hasFirstItem some co:Item) and 

(co:hasLastItem some co:Item) SubClassOf 
co:hasLastItem some co:Item 

3. co:List and (co:hasItem some co:ListItem) SubClassOf 
co:List and (co:hasFirstItem some co:Item) and 
(co:hasLastItem some co:Item) 

4. co:ListItem and (co:hasNextItem exactly 0 owl:Thing) 
SubClassOf co:hasNextItem exactly 0 owl:Thing 

5. co:List and (co:hasItem some co:ListItem) SubClassOf 
co:hasLastItem some co:Item 

6. co:List and (co:hasItem some co:ListItem) SubClassOf 
co:hasItem some co:ListItem 

 
Table 2 SWRL Rules on Collection Ontology 

 
4.5 Operations definition 

Operations are defined as the constituting elements of the 
processing chains, as co:Item of a co:List. The inconsistency 
rules are therefore built around these. 
 
Rule: co:hasPreviousItem(?x, ?y), eor:hasInput(?x, ?a), 
eor:hasOutput(?y, ?b), owl:differentFrom(?a, ?b) -> 
eor:hasError(?x, "Error : The I/O Data are not 
valid."^^xsd:string) 
 
In this context, consistency is established by the integrity of the 
data exchanged between two successive operations in a 
processing chain. It is necessary that an output of the n 
operation is equal to at least one input of the n+1 operation. 
 
Thus, if the I/O of two successive operations do not match, an 
error is created for the second operation. This allows cutting the 
processing chain after the first operation and managing the error 
at the source. 
 
Rule: co:hasPreviousItem(?x, ?x) -> eor:hasError(?x, "Error : 
An item is followed by itself."^^xsd:string) 
 
In this study, an element of a collection cannot be followed by 
itself. For the operations collection, it is obvious that an 
operation cannot be done twice in a row. 
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4.5.1 Spatial reference identifier: The introduction of the 
Spatial Reference Identifier (SRID) in the ontology brings 
tacitly rules. This identifier is used to describe data using a 
Datatype Property. This key-value defines many uses and 
restrictions: 
 
- The geographic coordinates are expressed in degrees 
(decimals, sexagesimal or degrees minutes seconds, degrees 
minutes). 
- The projected coordinates are expressed in meters. 
 
The SRID is unique: the Datatype Property is therefore 
functional (the number of relation is limited to one). 
Additionally, it is specified that the datatype has to be an 
integer. CRS (Coordinates Reference Systems) transformations 
and definitions are the only operations that change the SRID.  
These exceptions lead to a rule that expresses an error if the 
SRID has been changed and the operation is not of “Projection” 
type (transformation or definition). 
 
Rule: eor:hasInput(?x, ?a), eor:hasOutput(?x, ?b), 
eor:hasSRID(?a, ?aSRID), eor:hasSRID(?b, ?bSRID), 
swrlb:notEqual(?aSRID, ?bSRID), (not (Projection))(?x) -> 
eor:hasError(?x, "Error : The I/O Data are not 
valid."^^xsd:string) 
 

5.  KNOWLEDGE DISCOVERY 

The representation of knowledge as a graph can lead to new 
knowledge discovery or even used as knowledge base for 
machine learning algorithms. The subgraph describing the 
operations hierarchy can be more detailed and permit graph 
mining and services comparisons (patterns recognition, 
“hotspots” highlighting …). Semantic patterns are so the 
constituting elements that we focus on. 
 
To be able to determine some consistency from the structured 
graph can lead to rules supporting artificial intelligence 
reasoning. It would then be possible to compare these 
restrictions with human expertise. Some rules, trivial for a 
human, may be transcript within the data. Therefore, it will lead 
to edit an expressive rule for machines understanding. One of 
those tacit rules may set succession between operations. The 
provided example studied the actual services proposition to 
determine succession guidelines: 
 
As it has been defined, services are considered as co:List, which 
are a specialisation of co:Bag. Services bags are neither more 
nor less than unordered sets of elements S. In order to compare 
the services between them, Jaccard’s matrix J has been built. 
Each element J(i, j) of the triangular matrix is computed as the 
Jaccard’s index, which is the ratio of the intersection over the 
union of the two operations sets, service Si and service Sj. The 

ratio is comprised between 0 and 1 both include and is 
computed as following: 

 𝑱(𝒊, 𝒋) =  |𝑺𝒊 ∩ 𝑺𝒋||𝑺𝒊 ∪ 𝑺𝒋| (1) 

 
Similarities become relevant only when operations types are 
concerned. It is important to compare the operations types but 
not the operations themselves. Indeed, instantiation can be made 
by different applications or operators. This thus leads to 
heterogeneity in the data and will not trigger any similarities 
detection. This upper-level of definition is therefore relevant as 
shown on Table 1.  
 

 UNP03 ISP04 UNP02 SeF04 

UNP03 100.00 024.44 087.14 042.86 

ISP04 024.44 100.00 020.00 037.50 

UNP02 087.14 020.00 100.00 012.50 

SeF04 042.86 037.50 012.50 100.00 

 
Table 3 Extract of the Jaccard index matrix 

 
This approach considers that a service is an unordered bag of 
operations. However, order can have an influence on the 
comparison of services and lead to different rules. To study the 
influence of order in the correlation, another algorithm has been 
set. An ontology is a semantic expressive directed graph. It 
means that relations are directed and it is possible to extract 
only the relations of antecedences between the operations. 
 
Collections Ontology specify that a co:List is composed of 
co:Item, which are linked by relation co:hasNextItem and its 
inverse relation co:hasPreviousItem. By browsing the triples 
and extracting the subjects and objects of these relations, it is 
possible to determine an occurrence index. An occurrence of 
100% means that, in the provided processing chains, an 
operation type, the subject, is always followed by the same 
operation type, the object. This indicator is then used to set rules 
for machine learning support and detect errors by reasoning on 
the knowledge base. Table 4. provides an extract of result, for 
the specific operation type “Stacking”: 
 
1. 1 | 0.11 | Stacking follows  DataPreProcessing 
2. 1 | 0.11 | Stacking follows  SARPreProcessing 
3. 2 | 0.22 | Stacking follows  ImageManipulation 
4. 5 | 0.56 | Stacking follows  FeaturesExtraction 
 

Table 4 Code sample of Stacking operations type 
 
In the scope of the project, twenty-one full-described processing 
chains have been developed and structured in the triple store. 
The algorithms at best give 71% of occurrences between two 
successive operations types, which is not sufficient to edit an 
axiom. It is planned to work on bigger datasets to validate the 
methodology. 
 

6. GRAPHICAL USER INTERFACE 

Ontologies are great to structure domain knowledge but they are  
time-consuming and need both an ontology engineer and a 
domain expert (Denaux et al., 2011). However, discussions 
between the two parties often turn into misunderstandings and 
introduce errors, omissions …  

 
 

Figure 2. Graphical User Interface proposition 
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Even if the creation and the management of ontologies are now 
becoming more and more controlled, the proliferation of 
instances is also an important aspect to manage (Stefanidis, 
Chrysakis, and Flouris, 2014). When it comes to create entities 
in an automatic way, the quantity of instances can rapidly 
become a problem and an important resources issue. It is 
important to keep an eye on such a process and to control 
redundancy. Depending on the number of entities, their 
supervision can become very complicated. 
 
About the data sources, information are usually imported from 
relational databases to the graph store using, for example, 
R2RML-F (Debruyne and O’Sullivan, 2016). This particular 
mapping allows the creation of consistent triples from the 
different tuples in the parent relational database. 
 
In some applied examples, data are not created before the 
provision of the applications but during their use. If users have 
direct access to the database but are not familiar with the 
structure of graphs and its nomenclature, it can be useful to 
provide a simplified interface for database management. Such 
an interface can be dedicated to a particular use (automatically 
generated text fields, pre-set lists, etc.). 
 
Because of non-aware users’ interventions, it is also mandatory 
for the database security to lock the access to the servers and 
preserve its integrity. The tool needs thus to limit the 
possibilities and process verifications on the queries before 
interrogating the database. 
 
Users often do not need to manage SPARQL syntax, the 
language dedicated to RDF Graph query, neither its subtleties. 
To compel these to become familiar with a new language can 
reduce their motivation to use new tools. The new proposed tool 
needs to encapsulate SPARQL queries and therefore automatize 
their written.  
 
The proposed graphical user interface (See Fig. 2) is build 
following these considerations: simple, fluid and intuitive. 
The architecture is quite traditional, besides Java Swing for the 
client interface: 
 Ontology API 3.7.0: API to manage RDF graphs. 
 TDB: High performance Triple Store. 
 Fuseki: REST-style SPARQL 1.1 Endpoint access. 
 
These are all part of the Jena Framework. 
 

7. CONCLUSION AND FUTURE WORK 

To structure processing chains in a remote sensing services 
platform, an application ontology has been developed. This 
ontology organizes the services based on their elementary 
constituting elements: the operations. These operations are 
ordered, described and compared within the ontology. Data are 
also described and linked to the operations. 
 
On the one hand, non-specialized users are able to interact with 
the RDF graph store, which implements the ontology and its 
instances, and do not necessary need the help of a knowledge 
engineer. Creating and editing triples are easily apprehended 
through the graphical user interface, in a secure, guided and 
easy way. 
 
On the other hand, knowledge mining in the database is adapted 
because of the graph structure and its expressiveness. 
Knowledge base supporting machine learning can support 

remote sensing engineers and set rules for quality and 
consistency analysis during process. Future work will develop a 
set of axioms to edit new services definitions or optimize those 
already created. 
 
The use of ontologies is part of a dynamic that is increasingly 
focused on the pooling of knowledge: Linked Open Data. For 
this purpose, it is mandatory that the proposed ontology can be 
used in a larger catalogue application. Integrating the model in a 
metadata edit and search functions could facilitate many 
applications and open the possibilities to remote sensing tools to 
be used by a larger community. 
 
The definitions of data and operations are still generic and 
improvements can be made. More metadata can be useful to 
describe the data and enable further research in a large dataset. 
The integration of the ontology of (Lin et al., 2017) can be an 
improvement. Many data and operations properties are 
modelled as Datatype Properties. Switching to Object Properties 
could lead to new knowledge discovery or possibilities. 
However, not all the relations can be switched. 
 
Each service is defined by a description following the Dublin 
Core prescriptions (dc:description). Future work will study the 
possibility to retrieve the most relevant service from the 
ontology, based on a query expressed in natural language by 
non-specialized users in remote sensing. 
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