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1. Introduction

In this paper we will discuss, within a quantum string-gravity framework, the high-energy

scattering of light particles in a variety of kinematical regimes. We will resume, for this

task, our twenty-years old trans-Planckian S-matrix analysis [1 – 4] and we will extend it

to the situation in which, at a classical level, the initial state is doomed to collapse due to

the appearance of a closed trapped surface [5, 6].

Renewed interest in this problem stems from a growing conviction that a consistent

quantum calculation of a collapse process leading to black-hole formation and to its subse-

quent evaporation is the best –if not the only– way to understand the fate of the apparent
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information paradox [7]; or, better, the apparent loss of quantum coherence implied by

black holes. Hybrid quantum arguments in terms of classical gravitational solutions do

not meet, in our opinion, the necessary consistency requirements. It has indeed been sug-

gested [8] that pure quantum states would not produce gravitational collapse even if the

energy distribution would classically predict it to happen. And, even more drastically, it

has been proposed that quantum back-reaction on the metric in apparently collapse-prone

processes, would generate everywhere regular solutions without singularities and event hori-

zons [9]. Finally, topologically non-trivial (i.e collapse-like) classical configurations may

turn out to be irrelevant in the quantum formulation of the physical process [10].

Hints of what may actually happen has to come from the actual treatment of a collaps-

ing system in a consistent quantum theory of gravity. Unfortunately, there are not many

candidates for such a theory. To our point of view, among them, string theory is the only

one allowing for a treatment of the problem in perturbative, as well is non-perturbative

regimes, despite the fact (or perhaps, because of the fact) that it is not, to start with, a

general relativistic theory describing space-time dynamics. Strings can only be consistently

quantized in appropriate backgrounds, those that do not introduce two-dimensional Weyl

anomalies. As in our previous papers, we will study the scattering process in D = 10

superstring theory in Minkowski space-time -after compactifying n dimensions on string-

size tori- and look at possible (perhaps even approximate) interpretations of the results in

terms of an effective metric best describing the quantum process.

Let us briefly recall our (ACV hereafter) approach and results. Scattering of two

massless strings (e.g. of two gravitons) was considered at centre of mass energy 2E =√
s ≫ MPlanck and impact parameter b in d-dimensional Minkowski spacetime, where

d = 10 − n. In this paper we shall work in d = 4, but we expect that the extension to

d > 4 will not present major problems. We shall also focus on a regime in which string-size

effects are relatively small, while the gravitational interactions can be strong. In order to

define this more precisely, let us recall that, in string-gravity, the fundamental scale is the

string length λs =
√

α′~, in terms of which the Planck length and the Newton constant

are expressed as λP =
√

G~ = gλs, where g ≪ 1 is the string loop expansion parameter,

assumed to be small.

On the other hand, at very high energies
√

s, the gravitational (Schwarzschild) radius

R = 4GE = 2G
√

s plays an important role. In our small-coupling, high-energy regime,

defined by Gs ≫ ~, R is much larger than λP , but can be smaller or larger than λs, because

the ratio R/λs = g
√

Gs/~ involves the small coupling constant g. As a consequence, there

are three distinct regimes according to which one of the three length scales b, R, or λs

exceeds the other two.

If b ≫ R,λs one deals with small deflection-angle scattering. This is well decribed by a

leading eikonal approximation with small string-size and classical corrections corresponding

to the expansion parameters (λs/b)
2 and (R/b)2, respectively. The former are quite easily

taken into account [1] and can best be interpreted [11] as string excitations due to the

tidal forces induced on each string by the effective (Aichelburgh-Sexl) shock-wave metric

produced by the other string. They have been analyzed by ourselves in the past [1] and,

most recently, in [12]
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In the regime λs ≫ b,R, also investigated through fixed-angle scattering [13], string

effects soften gravity according to the generalized uncertainty relation [14, 2]

∆x >
~

∆p
+ α′∆p > λs. (1.1)

As a consequence, the minimal observable size of the system is λs itself, which exceeds R,

and classical gravitational collapse conditions are never met. It is possible, however, to push

the analysis of this regime towards its boundary λs → R > b, which should correspond to

the threshold for black hole formation Ethreshold ∼ Msg
−2 ∼ MP g−1. One finds [15, 1] that,

even if no black-hole is formed, the final state, in the energy region MP < E < Ethreshold

starts to vaguely resemble that of an evaporating black hole of mass
√

s with typical final

momenta of order M2
P /

√
s ≃ ~/R. In other words, a precocious black-hole-like behaviour

is found to occur even below the expected threshold for their actual production.

By contrast, for R > λs, new semiclassical phenomena take place. They extend be-

yond the impact parameter at which string fluctuations, including those due to diffractive

excitations, are large. This is the regime that we attempt to treat in this paper, for various

values of the impact parameter b > λs of the colliding strings. The interesting region is the

one in which b approaches R from above and possibly goes below it, a situation in which,

classically, a gravitational collapse would take place [5]. A general framework for describing

this most difficult regime was proposed in [16], where the S-matrix was connected to prop-

erties of a classical solution at past and future null infinity (the so-called Bondi masses).

However, in spite of its conceptual appeal, going beyond the leading eikonal in that for-

malism has proven prohibitively difficult. Here we shall use instead our key observation [1]

that, because of the softness of multi-loop string amplitudes, the S-matrix exponentiates

in terms of an eikonal function of order Gs/~ which, in turn, can be expanded in powers

of R2/b2 for b > R. The outcome has a diagrammatic interpretation that can be encoded

into an effective action. If string effects are neglected, that action agrees with Lipatov’s

effective action [17] (see also [18]) and reproduces [4] the previously computed leading-order

correction to the eikonal [3].

Therefore, the effective Lagrangian that we investigate in this paper is motivated by

our string-gravity expansion, even if it does not contain explicit string corrections. It is a

function of appropriate components of the metric hµν(x) which are apt to describe the high-

energy regime, interact among themselves via the effective coupling R/b, and are coupled

to sources provided by the energetic scattering particles. The solutions of the (nonlinear)

lagrangian equations provide an effective metric (which appears as the outcome of quantum

backreaction effects) in terms of which the action, and thus the S-matrix, is expressed and

computed. The unitarity of the approach implies an absorption in the elastic amplitude

due to particle production, whose inclusive properties (spectra, correlations, etc. . . ) may

be analyzed.

Within this framework, we treat here the region b & R and we attempt to tackle the

most interesting region b . R where still one should be able to compute the scattering

amplitudes and the effective metric. We cannot claim to have fully achieved that goal,

but we have progressed pretty far towards it, even beyond expectations. We thus believe

– 3 –



J
H
E
P
0
2
(
2
0
0
8
)
0
4
9

that the analysis of our results should provide at least some hints as to whether - in this

consistent quantum approach - there is any sign of a trapped region or event horizon and

what is the “unitary evaporation” that is produced without loss of quantum coherence.

The rest of the paper is organized as follows:

In section 2 we recall the eikonal expansion, the form of the first correction to its leading

term, and the effective action that should generate through its tree diagrams the higher or-

der corrections. We then define a somewhat simpler problem in which a “rescattering” term,

the related “double-diffractive” string excitation, as well as one of the emitted-graviton po-

larizations, are neglected. The above approximations will be used throughout the paper,

although, in section 6, we will give an educated guess on how the second (infrared-sensitive)

polarization can be included.

In section 3 we discuss the axisymmetric case in which the field equations become

ordinary differential equations. We first consider a class of analytical solutions to the field

equations in the case of point-particle collisions at b = 0. We are aware of the fact that

this is a most difficult regime for justifying some of our approximations, in particular the

neglect of string corrections, which should be restored later on. Nevertheless, this class of

b = 0 solutions — which is surprisingly simple and robust, but quite non-perturbative —

turns out to tune up the discussion on the boundary conditions to be set in order to match

perturbation theory at larger values of b & R. Furthermore, they are likely to be essential

for the overall interpretation of the problem for λs < b ≪ R. As an amusing digression

we will also discuss here the central collision of two extended sources (taken to be two

identical homogeneous disks of radius Σ for simplicity) where the problem can be solved

analytically and shows the existence of a critical ratio Σ/R. This case could also be a way

to represent string-string collisions with Σ ∼ λs.

In section 4 we turn to the case of generic values of b where, within some technical

approximations, we are still able to solve the problem analytically. We find that, while at

b ≫ R the perturbative expansion is qualitatively correct, the expansion diverges at some

calculable critical value of b = bc ∼ R. We also discuss possible ways to define solutions

below b = bc.

In section 5 we reformulate the problem in momentum space as a set of integral equa-

tions lending themselves to an iterative solution. We reach conclusions that are in very

good agreement with those obtained in the position space approach of the previous section:

in particular, the iterative solution only converges above a critical value of b/R.

In section 6 we turn our attention to the construction of a unitary S-matrix, to the

properties of the final state and to the expectation value of the metric in that state. Once

more, the properties of the final state appear to resemble those due to an evaporating black

hole as we approach bc.

In section 7 we describe (and try to interpret) our proposal to define the scattering

amplitude and effective metric for b < bc, which is based on the analysis of properly iden-

tified complex-valued solutions of the field equations. Finally, in section 8, we summarize

our main results and give a brief outlook.
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Figure 1: The leading eikonal rescattering series. Crosses denote on-shell propagation

2. Eikonal expansion and effective action

In string-gravity, ACV found that the S-matrix in the impact parameter representation

has an eikonal form where the eikonal operator can be expanded in the parameter R2/b2.

For b ≫ R > λs, the eikonal resums all powers of Gs due to multigraviton exchanges, as

follows (see also [19]):

S(b, s) = exp 2iδ0(b, s), δ0 =
Gs

~
log

(

L

b

)

, (2.1)

where L is an infrared cutoff related to the well known infinite Coulomb phase. String

effects in this region are simply taken into account [1] by an operator shift of the impact

parameter variable

δ0 → δ̂0 = δ0(b + X̂u − X̂d, s) , (2.2)

(where an average is performed over the closed string position operators X̂u, X̂d) and give

rise to the diffractive string excitation and fluctuations mentioned before. The soft behavior

of multi-loop string amplitudes is itself responsible for the dominance of eikonal iteration

in the results (2.1), (2.2). In fact, eq. (2.1) can be interpreted (figure (1)) as a multiple

scattering series, in which the (small) deflection angle θ = 2R/b - corresponding to a

possibly large momentum transfer t ≃ Gs~/b2 - is built up by many graviton-exchange

processes of small momentum transfer, of order ts ≃ (~/b)2 ≪ (~/λs)
2.

When R/b becomes sizeable, ACV found that the eikonal can be expanded in a power

series in R2/b2 and, possibly, λ2
s/b

2. The terms (R2/b2)n of such a series are in correspon-

dence with connected tree diagrams interacting with the colliding strings via the exchange

of 2n (reggeized) gravitons, as shown in figure (2). Besides the one-loop correction δ1(b, s),

ACV found that the lowest term in such a series is the so-called H-diagram of figure (3),

contributing at two loop level to the real part of δ2

δ1(b, s) =
Gs

~

6λ2
s

πb2
; Reδ2(b, s) =

Gs

~

R2

2b2
. (2.3)

This extra contribution to the phaseshift modifies the Einstein deflection angle of energetic

(massless) particles in the form:

sin
θcl

2
=

R

b

(

1 +
R2

b2
+ . . .

)

. (2.4)
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Figure 2: Diagrammatic structure of 2n-loop irreducible contributions to the eikonal

Further terms in the expansion are expected, and will be calculated here in a framework

to be defined shortly.

ACV found also inelastic effects contributing to the imaginary part of the phaseshift.

There is an infrared divergent contribution, connected with soft graviton bremsstrahlung,

not explicitly discussed here, and a finite part Imδ2 = 2 log s Reδ2/π, connected with hard

graviton emission, which will be generalized in the following.

2.1 H-diagram: amplitude and emission field

In order to extract from the H-diagram in figure 3 a computational method for higher

orders in R2/b2 of the eikonal operator, we have introduced in ref. [4] an effective action

approach. An essential ingredient in it are the high-energy graviton [20] and string [21]

emission vertices, which lead to the emission amplitude that we now recall.

While the leading eikonal exponential is generated by the exchange among the colliding

particles’ sources of an arbitrary number of (longitudinal) gravitons, the ∼ R2/b2 correction

is represented by a graviton being emitted by two exchanged ones and then absorbed by

two others. We shall see that this intermediate graviton, in its transverse polarization, will

play an important role in the scattering process. To this purpose, let us define the following

two independent transverse-traceless polarization tensors for a graviton of momentum k

(bold-case notation referring to transverse momenta):

ǫµν
TT = (ǫµ

T ǫν
T − ǫµ

Lǫν
L) , ǫµν

LT = (ǫµ
Lǫν

T + ǫµ
T ǫν

L), ǫi
µνǫµν

j = 2δi
j (i, j = TT,LT ) , (2.5)

where:

ǫµ
L + iǫµ

T ≡ ηµ(k) =

(

k3

|k| , iǫ,
k0

|k|

)

, (2.6)

and ǫ is the unit polarization vector transverse to k.

At high energies, on the basis of the vertices in [20, 21], the graviton emission amplitude

of figure (3) takes the form (~ = 1)

Aµν =
κ3s2

k2
1k

2
2k

2
Re[(k2

1k∗
2
2 − |k1|2|k2|2)ηµην ] (2.7)

=
2κ3s2

k2
[sin2 θ12ǫ

µν
TT − sin θ12 cos θ12ǫ

µν
LT ] ,

where we have defined κ2 = 8πG and k = k1 + k2 = k3 + k4. From eq. (2.7) we derive the

– 6 –
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Figure 3: Regge-Gribov H-diagram, yielding the first subleading correction to the eikonal; dashed

(wavy) lines denote exchanged (emitted) gravitons corresponding to the fields a0 and ā0 (h0 or φ0)

imaginary part of the H-diagram [3]

ImAH(s,q2)

s
=

Y

16πs2

∫

d[k1]d[k2]A
µν(1, 2)A∗

µν (3, 4) , (2.8)

where d[k] = d2k/(2π)2, Y = log s and q = k2 − k3. We then obtain the real part by

a dispersion relation which amounts to multiplication by π/2Y , and finally the impact

parameter amplitude by a Fourier transform:1

Re δH(b, s) =
(8πG)3s2

16

∫

d[k1]d[k2]d[q]
e−ibq

k4

(

sin2 θ12sin
2 θ34+

sin 2θ12 sin 2θ34

4

)

. (2.9)

By then introducing a k4-integration through a delta-function δ(k1 + k2 −k3 −k4) we

can rewrite eq. (2.9) in two different convenient forms. The first, to be used in sections 5

and 6, uses the simple identity 2q = (k2 − k1) + (k4 − k3) to yield the factorized form:

Re δH(b, s) =
π

2Y
Im δH(b, s) =

π

2
Gs(πR)2

∫

d[k]
(

|hTT (k)|2 + |hLT (k)|2
)

, (2.10)

where we have introduced the contributions of the TT and LT polarizations in eq. (2.5):

hTT (b,k) = 16π2

∫

d[k1]d[k2]

k2
δ(k − k1 − k2) exp (ibk2)) sin2 θ12 , (2.11)

hLT (b,k) = 16π2

∫

d[k1]d[k2]

k2
δ(k − k1 − k2) exp (ibk2)) sin θ12 cos θ12 . (2.12)

Alternatively, we can rewrite eq. (2.9) as an x-space integral

Re δH(b, s) = πGs
(πR)2

2

∫

d2x(|hTT (b,x)|2 + |hLT (b,x)|2) , (2.13)

where the analogous contributions of the TT and LT polarizations in positions space read:

hTT (b,x) = 4

∫

d[k1]d[k2]

(k1 + k2)2
sin2 θ12 exp i(k2b − kx) =

1

π2

sin2 θbx

|b − x|2 (2.14)

hLT (b,x) = 4

∫

d[k1]d[k2]

(k1 + k2)2
sin θ12 cos θ12 exp i(k2b − kx) .

1We use conventions in which 4sδ(b, s) =
R

d[q] e−ibqA(q, s) and ImA(0, s) = sσtot.
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Here we note that hTT in eq. (2.14) has a simple expression, which curiously reproduces

the form of its Fourier transform and has a 1/x2 behaviour at large distances. On the

other hand, hLT is more involved and shows a 1/|x| = 1/r behaviour for r ≫ b that, in

turn, produces the well-known logarithmic infrared divergence in eq (2.9), due to graviton

bremsstrahlung. Indeed, one can show [3] that the LT polarization is responsible for the

Weinberg current [22]. The corresponding infrared behaviour was discussed in detail in

ref. [3], where a subtraction in dimensional regularization was performed in order to obtain

the finite result in eq. (2.3) for δ2. On the other hand, here we are interested in the possibly

collapsing energy, not in the one which is peripherally radiated away. Therefore, in most

of the following, we will subtract the LT polarization altogether, by restricting ourselves

to the TT one, which is IR safe.

Let us note some interesting properties of the h-fields just introduced. By defining

z = x1 + ix2 and ∂ = ∂/∂z, we find that the complex combination h0 = hTT + ihLT , by the

i sin θ12 exp(−iθ12) form of the couplings in eq. (2.14), satisfies the differential equation

2|∂|2h0(b,x) = 4(∂2a0∂
∗2ā0 − |∂|2a0|∂|2ā0) =

1

π2

1

z∗2(b − z)2
, (2.15)

where we have defined the fields a0 and ā0 — to be related to longitudinal gravitons — by

a0(z) = − 1

2π
log(

|z|2
L2

), ā0 = a0(b − z); |∂|2a0 = −1

2
δ(x) . (2.16)

One may also double check that the expression for hTT given in (2.14) satisfies the real

part of (2.15) i.e.

∇2Reh0 = ∇2hTT =
2

π2x2(b − x)2

(

2 (x(b − x))2

x2(b − x)2
− 1

)

. (2.17)

Furthermore, one can define the Fourier transform of eq. (2.7):

Ãµν = 2κ3s2

∫

d[k1]d[k2]

(k1 + k2)2

(

sin2 θ12 ǫµν
TT − 1

2
sin 2θ12 ǫµν

LT

)

exp i(k2b − kx) , (2.18)

and an effective gravitational field related to the H-diagram. This can be written in terms

of the h0 field as

Ãij

s
=

κ3s

2
h̃ij

0 (x) =
κ3s

2
Re[ǫ̂iǫ̂jh0(b,x)], h̃ij

0 = ǫ̂iǫ̂jh0(b,x) =
δij∇2 − ∂i∂j

∇2
h0 , (2.19)

where we have promoted the polarizations ǫi to operators in x-space. The result is better

rewritten by introducing a (generally) complex scalar field φ such that.2

h = 4|∂|2φ = ∇2φ; h̃ij = (δij∇2 − ∂i∂j)φ . (2.20)

In this language, restricting to the IR safe polarization means considering Reφ only, or

the φ field to be real. By replacing in eq. (2.13) the corresponding expression of hTT in

eq. (2.14), we obtain:

[ReδH(b, s)]TT = πGs
(πR)2

2

∫

d2x(∇2Reφ0)
2 = Gs

3R2

8b2
, (2.21)

2Here the field φ has a more convenient normalization, for writing the action, than that of ref. [4].
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Figure 4: Regge-Gribov double-H diagram, contributing at order R4/b4 to the eikonal; dashed

(wavy) lines denote exchanged (emitted) gravitons

to be compared to the full result Reδ2(b, s) = Gs R2

2b2 of eq. (2.3), the difference being due

to the (neglected) LT polarization.

2.2 The reduced effective action

Further terms in the R2/b2-expansion are obtained by considering both multi-H diagrams

combining multiple emissions (figure (4)) and rescattering diagrams in which emitted gravi-

tons reinteract by a longitudinal exchange (figure( 5)). Here we shall limit ourselves to the

first class of diagrams, that will be treated to all orders, while the second class - which

starts at order R4/b4 - will be briefly discussed in the next subsection.

Multi-H diagrams are described by a (reduced) two-dimensional action introduced in

ref. [4] in which the longitudinal fields a and ā and the mostly transverse field h occur, by

generalizing the contributions of eqs. (2.15) and (2.16). By restricting ourselves to the IR

safe polarization, h and φ are now supposed to be real valued and the reduced action takes

the form

A
2πGs

= a(b) + ā(0) − 1

2

∫

d2x∇ā∇a +
(πR)2

2

∫

d2x(−(∇2φ)2 + 2H∇2φ)

−∇2H ≡ ∇2a ∇2ā −∇i∇ja ∇i∇j ā . (2.22)

Here the longitudinal fields a(x), ā(x) interact with point-like sources placed at x = b

and x = 0, respectively. The field φ is generated by the current H, which is defined

by a generalization of eq. (2.15) and expressed through vector derivatives, as it’s more

appropriate for real-valued fields. Note in (2.22) the appearance of the effective coupling

R2 = 4G2s, which controls the dependence of the solutions on the expansion parameter

R2/b2.

The coupled lagrangian equations derived from eq. (2.22) read

∇2a + 2δ(x) = 2(πR)2(∇2a ∇2φ −∇i∇ja ∇i∇jφ), ā(x) = a(b − x)

∇2H = ∇4φ = −(∇2a ∇2ā −∇i∇ja ∇i∇j ā) . (2.23)
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It is soon apparent that H = h = ∇2φ on the equations of motion, so that the “on-shell”

action reads

A(b, s)

2πGs
= a(b2) + ā(0) − 1

2

∫

d2x∇ā∇a +
(πR)2

2

∫

d2x(∇2φ)2

= 2a(b) + Ia + Iφ . (2.24)

By performing the first perturbative iteration, we find thet a, ā and h reduce to the

expressions in eqs. (2.16) and (2.15), while the low order contributions to the action become

I(0)
a = −a0(b), I(1)

a = −2a1(b) = −4I
(1)
φ , (2.25)

so that, by collecting all terms, they partly cancel and finally yield

A(b, s) = 2πGs(a0(b) + I
(1)
φ ) = 2πGs a0(b) + 2Re aH = 2Gs

(

log
L

b
+

3R2

8b2

)

, (2.26)

thus reproducing the perturbative result for the TT part.

The framework defined by eqs. (2.22) and (2.23) is the one we shall analyze in detail

in the following, including its features in the gravitational collapse region in which the

effective coupling R may exceed the physical size of the system b, larger than the string

size λs. Besides lacking the LT polarization — that we have argued to be related mostly

to an infrared, peripheral phenomenon — the above model lacks rescattering and string

effects, whose form we shall briefly recall in the framework of an effective action [17, 18]

which includes the dependence on the light-cone variables x± ≡ x0 ± x3. This will allow

us to relate the reduced action to a shock-wave solution having a particular form in the

x+, x− plane.

2.3 Shock-wave interpretation

The reduced action model introduced above can be viewed as a particular limit of Lipatov’s

effective action [17, 18], which in turn provides a formal description of the diagrammatic

series in figure (2) in the limit in which all subenergies among emitted gravitons are large

and string excitations are neglected. The corresponding Lagrangian contains, besides a

field Φ (related to the previously introduced φ), the longitudinal fields h̃++ and h̃−− which

are similarly related to a and ā and are coupled to the external sources of the impinging

particles (gravitons or strings).3

In the effective action framework, the elastic S-matrix of the tree diagrams in figure (2)

is given in terms of the classical solutions of the lagrangian equations of motion as

S(b, s) = exp

[

i

~
A(hµν

cl )

]

; (2.27)

A(h̃++, h̃−−,Φ) =

∫

d4x(L0 + Le + Lr + T++h̃++ + T−−h̃−−) ,

3As better explained in section 6, our fields are related to the usual metric components by: hµνdxµdxν ≡
ds2 − ηµνdxµdxν = 2κ(h̃++(dx+)2 + h̃

−−
(dx−)2) + (κ/4)(ǫTT

µν ∆ReΦ − ǫLT
µν ∆ImΦ)dxµdxν
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Figure 5: Typical Regge-Gribov rescattering diagram, contributing at higher orders to the eikonal;

dashed (wavy) lines denote exchanged (emitted) gravitons which have mostly transverse (longitu-

dinal) propagators.

where Φ(x+, x−,x) generalizes φ(x) to four dimensions, and

T−− = κEδ(x−)δ(x), T++ = κEδ(x+)δ(x − b) (2.28)

represent (up to an unconventional but convenient factor of 2κ), the energy-momentum

tensor of the colliding particles. The lagrangian consists of a kinetic term

L0 = −∂∗h̃++∂h̃−− + 4∂+∂∗2Φ∂−∂2Φ∗ , (2.29)

where the longitudinal fields have a mostly transverse propagator and the (complex) Φ

field a mostly longitudinal one, of a graviton emission term

Le = κ(J |∂|2Φ∗ + J ∗|∂|2Φ); |∂|2J = [∂∗2h̃++∂2h̃−− − |∂|2h̃++|∂|2h̃−−] (2.30)

related to the reduced one in eq. (2.22), and, finally, of a rescattering term

Lr = κ(h̃++∂∗2Φ∗∂+
2∂2Φ + h̃−−∂2Φ∗∂−

2∂∗2Φ) , (2.31)

which is supposed to take into account the rescattering diagrams of figure (5). This term

is quadratic in Φ, and is likely to play a role when the latter is large.

Here we do not treat the action (2.27) in detail, but we would like to discuss a couple

of important points. First of all, it was shown in [4] that the reduced action and equations

of section (2.2) correspond to a shock-wave solution of the present lagrangian equations

without rescattering terms, of the form

h̃++ = κ
√

s δ(x−)a(x), h̃−− = κ
√

s δ(x+)ā(x); (2.32)

Φ =
κ3s

4
Θ(x+x−)φ(x) ,

where now the longitudinal fields a, ā and the transverse field φ appear as profile functions

in front of the x+, x− dependence. Note that, while the longitudinal part is of Aichelburg-

Sexl type, the transverse part has support inside the whole light-cone. This propagation,
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of retarded plus advanced type, corresponds to the principal value part of the Feynman

propagator and is appropriate for the real part of the amplitude.4

The shock-wave interpretation of the reduced action framework allows to embed it in

spacetime, and to provide, in particular, the effective metric produced by the solutions of

the lagrangian equations. The explicit x±-dependence in eq. (2.32) allows to calculate the

longitudinal components of the metric induced by the Φ field by generalizing eqs. (2.18)

and (2.19) to x±-space and by using the longitudinal components of the TT polarization

ǫTT
++ = − ∂+

4∂−
, ǫTT

−− = − ∂−
4∂+

, ǫTT
+− =

1

4
. (2.33)

Taking into account the different normalization of the metric components mentioned before,

this procedure leads to the following expression for the induced metric in terms of a, ā and

a real-valued φ:

ds2 = −dx+dx−
(

1 − 1

2
(πR)2Θ(x+x−)∇2φ

)

+2πR
(

a(z)δ(x−)(dx−)2+ā(z)δ(x+)(dx+)2
)

−1

4
(πR)2∇2φ

(

|x+|δ(x−)(dx−)2 + |x−|δ(x+)(dx+)2
)

+ ds2
T

ds2
T = |dz|2 + (πR)2Θ(x+x−)(2|∂|2φ |dz|2 − ∂2φ dz2 − ∂∗2φ dz∗2) (2.34)

= |dz|2 + (πR)2Θ(x+x−)
(

δij∇2 −∇i∇j

)

φ dxidxj .

It is easy to check that the perturbation of the metric proportional to φ is transverse and

traceless: it has exactly the form of the TT polarized gravitational field introduced in

section (2.1), and is meant to describe the intermediate h field contributing to the real part

of the amplitude. A discussion of the features of the above effective metric is postponed

to section (4), when explicit solutions will be available.

Note finally that we shall not consider in the following rescattering and string contri-

butions to higher orders of the eikonal expansion. This is an acceptable approximation for

the small φ regime R . b, but is likely to be insufficient when looking at distances smaller

than R and approaching the string length, when φ becomes large (cf. section (3)). Note

that in this region rescattering and string effects are probably intertwined, because of the

eikonal couplings occurring in the rescattering vertex of eq. (2.31). They produce factors

of k+k− in the numerator of the corresponding diagrams and thus make the latter formally

divergent, by emphasizing the role of large intermediate masses. Therefore, string exci-

tations are required in order to regularize the sum over intermediate masses, and become

non negligible. We have here a situation similar to normal diffractive excitation of string

massive states by initial particles, where string corrections are taken into account, even-

tually, by the simple shift in eq. (2.2). In the present case it is the intermediate graviton

to be excited in a sort of double-diffractive string excitation. We similarly hope that the

present effects will turn out to be calculable, perhaps by introducing, in the framework of

section (2.2), the Regge-graviton string emission vertices of ref [21].

4Restoring the transverse propagation corrections to the Φ field solution amounts to effectively cutoff

the wave inside the light-cone around x+x− ≃ x2 ≃ R2 without modifying the wave-front, and thus the

derivation of the reduced action.
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3. Axisymmetric solutions

3.1 Particle-particle scattering at b = 0

We start considering the reduced action of section (2.2) in the complementary region to the

perturbative one we started with in section (2.1), by taking λs ≪ b ≪ R. Since b > λs we

shall not consider string corrections explicitly, even if the string has played an important

role in assessing the validity of the model. This means — since R is the only explicit

coupling being considered– that we actually take the b = 0 limit of a head-on collision.

This is a fully non-perturbative regime whose interpretation requires a non-trivial matching

with the perturbative regime that we shall discuss in the following sections.

In the b = 0 limit, we can look for axisymmetric solutions a = ā and φ which are

functions of r2 = x2 only. Surprisingly, the nonlinear equations (2.23) take a particularly

simple form that will allow a complete treatment of their solutions. Indeed, by setting

ȧ ≡ ∂a/∂r2 etc. . . , they read, for r 6= 0,

∂

∂r2
[r2ȧ(1 − (2πR)2φ̇)] = 0, (3.1)

∂

∂r2
[r2(

¨
r2φ̇)] +

1

2

∂

∂r2
(r2ȧ2) = 0 , (3.2)

thus providing, by inspection, two constants of motion with respect to the “time” variable

r2. The first one in eq. (3.1) is fixed by the Gauss theorem on the delta function in (2.23)

to be −1/2π and the other vanishes by the same token, so that we have

r2ȧ(1 − (2πR)2φ̇) = C1 = − 1

2π
, r2

(

¨
r2φ̇ +

1

2
ȧ2

)

= C2 = 0 . (3.3)

It is now convenient to introduce the function:

ρ(r2) ≡ r2(1 − (2πR)2φ̇) , (3.4)

which has dimension of a squared length, and embodies the effect of the (transverse)

emission field which will play an important role in the following. By expressing φ̇ and ȧ in

eq. (3.3) in terms of ρ we have

ȧ(r2) = − 1

2πρ(r2)
, (3.5)

ρ̈(r2) − R2

2ρ2
= 0, ρ̇2 +

R2

ρ
= C3 , (3.6)

where the constant C3 will be determined by requiring consistency with the perturbative

expansion for r2 ≫ R2. Indeed, in this limit, the system of eqs. (2.23) reduces to eqs. (2.16)

and (2.15) thus showing, by (2.14), the large-r behaviour

a(r2) = ā(r2) ≃ − 1

2π
log r2; r2φ̇ ≃ 1

8π2
log r2, ρ(r2) ≃ r2 − R2

2
log r2 , (3.7)

which implies ρ̇ → 1 at large distances and thus C3 = 1 in eq. (3.6), yielding finally

ρ̇2 +
R2

ρ
= 1, ȧ = − 1

2πρ
. (3.8)
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We conclude that our nonlinear problem reduces to the classical Coulomb problem for

the “radius” ρ(r2) at “time” r2. Since the “Coulomb potential” in eq. (3.8) is repulsive,

we can say from start that, coming from a positive ρ(r2) ∼ r2 at large distances, the

generalized radius ρ(r2) ≥ R2 will never vanish during r2-evolution, even at r2 = 0. This

means that ȧ in eq (3.5) is not singular at r2 = 0 — contrary to its perturbative behaviour

— and that, by eq. (3.3), (2πR)2φ̇ ≃ −ρ(0)/r2 must be singular instead, a feature which

is non-perturbative as well.

The above non-perturbative behaviour of ȧ and φ̇ is somewhat puzzling. It means that

in the first eq. (3.3) the outgoing flux of ∇a is traded for that of ∇φ, with increase of the

φ field at small distances and a non-vanishing value of r2φ̇, due to ρ(0) 6= 0. It is caused

by the large curvature ρ̈ for small values of ρ which forbids ρ(0) = 0 for non-negative,

real-valued solutions. On the other hand, the condition ρ(0) = 0 is not only a property

of the perturbative behaviour, but appears to be required in order to avoid or to treat

properly a boundary term at r = 0 in the reduced action, as discussed in the appendix. We

shall see that only for b & R we will be able, in the next section, to meet that condition

for real-valued solutions, thus obtaining a nonsingular φ̇. Alternatively, we can give up

the reality requirement suggested by the metric interpretation, and look for complex b = 0

solutions. We shall motivate and explore such possibility in section 7.

The explicit solutions of eqs. (3.8) for ρ and ā = a are obtained by standard methods

in terms of a hyperbolic angle χ(r2) as follows

ρ(r2) = R2 cosh2 χ(r2);

r2 = R2(χ + cosh χ sinhχ − χ0 − cosh χ0 sinh χ0) (3.9)

a(r2) =
1

2π

∫ L2

r2

dr2

ρ(r2)

=
1

π
(χ(L2) − χ(r2)) , (3.10)

where χ0 = χ(0) is the arbitrary value of χ at the origin. Its presence is not surprising,

because we have set only one boundary condition, providing matching to perturbation

theory at large distances (ρ̇(∞) = 1). The explicit solution (3.9) shows that the boundary

condition ρ(0) = 0 can only be met by a complex value of χ0 (like χ0 = −iπ/2) — a

case that will be discussed in detail in section 7. For the moment we treat χ0 as a free

parameter, even if a way to determine a real value for it will be discussed in the next

section, as an alternative to ρ(0) = 0 for b . R.

Since χ(r2) is a monotonically increasing function, there are two kinds of real-valued

solutions, depending on the sign of χ0. If χ0 > 0, ρ(r2) increases monotonically to ρ ∼ r2 at

large distances, while for χ0 < 0 ρ decreases first to its minimum ρ = R2 — corresponding

to χ = 0 — and then increases to ∞. The scale of the large-r2 behaviour of ρ is itself

dependent on χ0. Indeed, a simple iterative evaluation of eq. (3.9) yields the more detailed
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behaviour

ρ(r2) ≃ r2 − R2

2
log

4r2

r̄2(χ0)
; r̄2(χ0) = R2 exp(1 + 2χ0 + sinh 2χ0) (3.11)

φ̇ ≃ 1

8π2r2
log

4r2

r̄2(χ0)
; φ ≃ 1

16π2
log2 4r2

r̄2(χ0)
; (3.12)

a(r2) =
1

2π

(

log
L2

r2
+

R2

2r2
log

4r2

r̄2

)

, (3.13)

which is actually valid for any value of χ0.

Let us remark that the arbitrary constant occurring in the integration of (3.8) for a(r2)

has been traded, in eq. (3.10), for a scale L, defined by a(L2) = 0, that will play the role

of infrared scale, as in eq. (2.16). The latter is then fixed to be the same IR cutoff L ≫ R

needed for the evaluation of the action below, so that a(0) carries the large logarithm

χ(L2) ≃ log 2L
R .

The reduced action of eq. (2.24) can be explicitly evaluated on the axisymmetric solu-

tions, and takes the form

A(0, s)

2πGs
= a(0) + ā(0) − 2π

∫ L2

0
dr2 r2 ȧ2 + 2π(2πR)2

∫

dr2

[

d(r2φ̇)

dr2

]2

(3.14)

= 2a(0) + Ia + Iφ ,

where the integral Ia is IR divergent, but can be made finite by combining it with a(0) as

follows

Ia + a(0) =
1

2π

∫ L2

0

dr2

ρ

(

1 − r2

ρ

)

=
1

2π
(1 − e−2χ0); (3.15)

Iφ =
1

2πR2

∫ ∞

0
dr2(1 − ρ̇)2 =

exp(−2χ0)

2π
,

where the finite L → ∞ limit of Ia + a(0) and Iφ have been easily evaluated by use of

eqs. (3.9) and (3.10). After simple algebra we obtain

A(0, s) = Gs (2πa(0) + 1) = 2Gs

(

χ(L2) − χ0 +
1

2

)

≃ 2Gs

(

log
2L

R
− χ0 +

1

2

)

, (3.16)

which shows a simple additive dependence on χ0 and the expected IR divergent Coulomb

phase. The latter is unrenormalized, and can be factorized away in the S-matrix, as usual.

Inserting the solution (3.9), (3.10) in eq. (2.34) we obtain an explicit expression for

the metric where we note the appearance, besides that of ∆φ, of the field φ̇ that — if

ρ(0) 6= 0 — generates the behaviour r−2 in some metric components. Further comments

on this issue and a discussion of the effective metric will be given after having extended

our analysis to generic values of b.

3.2 Central collision of two homogeneous beams

An interesting case that can also be solved analytically but, unlike the previous one, con-

tains a tunable parameter is that of the central collision of two homogeneous, finite-size
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beams of massless particles. The point here is that our effective-action method should

retain its valididity even when the point-like sources are replaced by smooth (null) energy

distributions on the transverse plane. A particularly simple case is that of two circular

homogeneous beams of radius Σ (area πΣ2), each one carrying a total amount E of energy,

and undergoing a head-on collision. The problem is again axisymmetric and is character-

ized by the dimensionless parameter:

R

Σ
= 4

GE

Σ
= 4πGǫΣ =

Σ

2f
, (3.17)

where ǫ is the energy density per unit area and f = (8πGǫ)−1 is the focal distance for

geodesics impinging on the beam-shaped shock wave (see e.g. [23]).

At classical GR level, the problem of determining when a closed trapped surface (CTS)

is produced by the collision led to the conclusion [6] that a CTS forms when the above

ratio exceeds a critical value, for which an upper limit was established:

(

R

Σ

)

CTS

=

(

Σ

2f

)

CTS

< 1 . (3.18)

It is quite interesting to investigate this problem within our present quantum approach.

It is straightforward to adjust our effective action equations (3.3) to this new situation.

They get simply modified as follows:

r2ȧ(1 − (2πR)2φ̇) = − 1

2π
θ(r − Σ) − r2

2πΣ2
θ(Σ − r), ¨r2φ̇ +

1

2
ȧ2 = 0 , (3.19)

from which, using again ρ as defined in (3.4), we obtain

ρ̈(r2) =
R2

2ρ2
θ(r − Σ) +

R2r4

2Σ4ρ2
θ(Σ − r) . (3.20)

In other words, the equation for ρ is unchanged at large r > Σ but is strongly modified

(though in a continuous way) for r < Σ. At small r the equation has a regular solution

with ρ(0) = 0 and a nice, analytic expansion around r2 = 0, which can be computed after

inserting some value for ρ̇(0). This solution, however, should match the one from r > Σ at

the r = Σ boundary. In this latter solution one has, as before,

ρ̇ = +

√

1 − R2

ρ
⇒ ρ̇(Σ2) = +

√

1 − R2

ρ(Σ2)
= tanh χΣ, (χΣ ≡ χ(Σ2)) , (3.21)

and thus the initial condition on ρ̇(0) has to be chosen so as to satisfy (3.21). This, however,

turns out to be impossible if:

Σ2ρ̇(Σ2) = Σ2 tanh χΣ < ρ(Σ2) = R2 cosh2 χΣ , (3.22)

simply because the concavity of the ρ-curve (due to ρ̈(r2) ≥ 0) will prevent such a curve

to pass through the origin, similarly to the previously discussed b = 0 case. Such a simple

concavity argument gives an upper limit on the value of R/Σ for which the condition
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ρ(0) = 0 can be imposed for real-valued solutions. Equivalently, it gives a lower bound

for the critical value of Σ, Σc, for that to happen. It is easily computed to be given by

(R/Σ)c < 21/23−3/4 ≃ 0.62.

On the other hand, we can also provide an upper bound on Σc, and thus prove the

existence of two distinct regimes, by noting that, by eq. (3.20),

0 < Σ2ρ̇(Σ2) − ρ(Σ2) =
R2

2Σ4

∫ Σ2

0
dr2 r6

ρ2(r2)
<

R2

4ρ̇2(0)
≃ R2

4ρ̇2(Σ2)
. (3.23)

By replacing in (3.23) the values of the solution for r > Σ, we get the relation

0 < Σ2 tanh χΣ − R2 cosh2 χΣ .
R2

4 tanh2 χΣ

, (3.24)

where we realize that the r.h.s. is of order R2, without any particular enhancement when

Σ & R increases, so that a solution for R/Σc can be found. Therefore, for Σ > Σc, the

condition ρ(0) = 0 can be met by real-valued field solutions.

In order to get a more precise estimate of (R/Σ)c we have solved numerically the

differential equation (3.20) and looked for a critical value above which it is no longer

possible to impose the condition ρ(0) = 0. The result of such an analysis gives:

(R/Σ)c ∼ 0.47 , (3.25)

in line with the classical CTS-bound (3.18).

The above discussion suggests a (loose?) correspondence between “untrapped” clas-

sical GR solutions and our real-valued field solutions that satisfy ρ(0) = 0 and match

perturbation theory at large distances. In either case such solutions cease to be available

when the beam size is smaller than some critical radius below which gravitational trap-

ping occurs on the classical side, and the small-r φ̇- singularity develops on the other. We

shall find a similar phenomenon in the case of particle-particle scattering at b > 0, to be

discussed next.

4. Extension to b > 0 and critical impact parameter

For nonvanishing b the solutions, of course, are not axisymmetric and show a nontrivial

azimuthal dependence on θ = θbx. We shall simplify the issue by performing an azimuthal

average on θ and, furthermore, by performing a spin-0 projection of the ā ↔ a relationship.

Instead of the simple translation x → (b − x) we shall take the relation (better expressed

for the Fourier transform ã(k))

ā(b,x) =

∫

d[k]ã(k) exp(ikx)J0(b|k|) , (4.1)

which has no memory of the direction of b and is equivalent to an azimuthal average if ã

only depends on k2, b2. Note that this procedure singles out the vector x corresponding

to the source at x = 0 with respect to the vector b − x and is therefore asymmetrical
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with respect to a and ā. We can interpret it by saying that we look at the x2-dependence

of a in the average field of ā, which is much similar to the collision of a point-particle

with a ring-shaped source. Then, the symmetrical result will be obtained if we look at the

(b − x)2-dependence of ā in the average field of a.

By replacing eq. (4.1) in eqs. (2.23) we soon realize that the ansatz a = a(x2 = r2),

ā = ā(r2) = 〈a((b−x)2)〉θ is self-consistent and, by the same manipulations as in section 3,

we obtain the equations

∂

∂r2

[

r2(
∂

∂r2
)2
(

r2φ̇

)]

= − 1

2

∂

∂r2
(r2ȧ ˙̄a), (4.2)

∂

∂r2

[

r2ȧ(1 − (2πR)2φ̇)

]

= 0

and, therefore, using again the function ρ of (3.4):

ȧρ(r2) = − 1

2π
, ρ̈ = 2(πR)2ȧ ˙̄a . (4.3)

4.1 Solutions for b > 0 and perturbative expansion

Eqs. (4.3) differ from those valid at b = 0 by the replacement of a factor of ȧ by ˙̄a. In order

to relate ā = 〈a((b−x)2)〉θ to a let us note that eq. (4.1) has two distinct regimes, according

to whether r ≫ b (r ≪ b). In such regimes one can set, approximately, b = 0 (r = 0) in

the right hand side. Therefore, we are led to replace ā with the simple approximation

ā(r2) ≃ a(r2)Θ(r2 − b2) + a(b2)Θ(b2 − r2); ˙̄a(r2) ≃ Θ(r2 − b2)ȧ(r2) . (4.4)

Note that this approximation is exact for a0 of eq. (2.16) and for the collision with the

ring-shaped source envisaged before.

Introducing the above approximation in eqs. (4.3) one has

ρ̈(r2) =
R2

2ρ2
Θ(r2 − b2) , (4.5)

so that, for r2 < b2, the “repulsive” Coulomb potential is absent and ρ̈ = 0. This in turn

leads to the solution

ρ = R2 cosh2 χ(r2), (r2 > b2); ρ = ρ(b2) + ρ̇(b2)(r2 − b2), (r2 ≤ b2); (4.6)

r2 = b2 + R2(χ + sinhχ cosh χ − χb − sinh χb cosh χb) ,

where we have introduced the hyperbolic angle χ = χ(r2, b) and the notation χb ≡ χ(b2).

The corresponding longitudinal and transverse fields are

a(r2) =
1

2π

∫ L2

r2

dr2

ρ(r2)
=

1

π
(χ(L2) − χ(r2)) (r ≥ b) (4.7)

=
1

π
(χ(L2) − χb) +

1

2πtb
log

ρ(b2)

ρ(0) + tbr2
(r < b)

hTT = h(r2) = 4|∂|2φ =
1 − ρ̇

(πR)2
=

1 − tanh χ(r2)

(πR)2
, (4.8)
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where tb ≡ tanh χb, ρ(0) = ρ(b2) − b2tb, and we have fixed the additive constant in the

longitudinal field by requiring a(L2) = 0, L being the IR cutoff parameter.

Because of the linear behaviour of ρ(r2) for r2 < b2, eq. (4.6) leads to the possibility

of enforcing the boundary condition ρ(0) = 0, typical of the perturbative expansion, and

required for self-consistency by the reduced action itself (see appendix). For that to happen

we must have

ρ(b2) = R2 cosh2 χb = b2ρ̇(b2) = b2 tanh χb;
R2

b2
= tb(1 − t2b) , (4.9)

a condition which resembles eq. (3.23) found before.

The criticality equation (4.9) is cubic in the tb parameter and determines the branches

of possible solutions with ρ(0) = 0. At the critical value b2
c = 3

√
3R2/2 of the impact

parameter, the equation is stationary. For b > bc, there are two solutions with nonnegative

ρ, one with tb → 1 for b ≫ bc - which will be related to the perturbative one - and the other

with tb → 0. The third formal solution,with tb < −1 is actually to be discarded because

it would require ρ(r2) < 0 at large distances as well. For b ≫ bc, the solution with larger

χb → ∞ matches the perturbative solution at large distances. In fact, a simple iterative

evaluation of eq. (4.6) yields the large-r behaviour

ρ(r2) ≃ r2 − R2

2
log

4r2

r̄2(χb)
: r̄2(χb) = R2 exp

(

1 + 2χb + sinh 2χb −
2b2

R2

)

. (4.10)

Since exp 2χb ≃ 4b2/R2 for b ≫ bc, it follows that r̄2(χb)/4 ≃ b2 is just the scale of the

perturbative solution in section 2.1, as anticipated.

On the other hand, for b < bc, there are no real valued solutions to eq. (4.9) with

ρ(b2) ≥ 0 nor, equivalently, to the boundary condition ρ(0) = 0. It is not clear how to

replace this boundary condition and thus to define a meaningful real valued solution for

b < bc. For instance — since we cannot reach ρ(0) = 0 — we can try to do our best and

look for a χm(b) such that ρ(b2) − b2ρ̇(b2) is minimal. This yields the condition

b2

2R2
= cosh3 χm sinhχm =

tm
(1 − t2m)2

, (4.11)

which, for any b < bc, admits real solutions such that, while b decreases, χm decreases from

χm(bc) = χc to χm(0) = 0 and ρ(0) increases from 0 to R2. Therefore, this kind of solution

determines χ0 = 0 as its b = 0 limit. However, there appears to be no compelling reason

for this choice, except perhaps that, among the real-valued solutions, the “distance” of this

one to the ρ(0) = 0 complex solution to be studied in section 7 is smallest.

We remark that in this b > 0 case, like in the problem discussed in section 3.2, the

critical impact parameter bc separates — in the real-valued domain — the class of “weak-

field” solutions having ρ(0) = 0 (for b > bc) from that of “strong-field” solutions with

ρ(0) > 0 and a small-r φ̇-singularity (for b < bc). The latter solutions, however, appear to

be somewhat ill-defined.
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4.2 The on-shell action and its singularities

By evaluating the action in eq. (2.22) on the solutions (4.6) we find the expression

A(b, s)

2πGs
= a(b2) + ā(0) − 1

2

∫

d2x∇ā∇a +
(πR)2

2

∫

d2x(∇2φ)2 (4.12)

= 2a(b2) + Ia(b) + Iφ(b) ,

where we have used ā(0) = a(b2) and we have evaluated the integrals

Ia(b) + a(b2) =
1

2π

∫ ∞

b2

dr2

ρ(r2)

(

1 − r2

ρ(r2)

)

=
1

2π

(

1 − e−2χb − 2b2e−χb

R2 cosh χb

)

;

Iφ(b) =
1

2πR2

∫ ∞

0
dr2(1 − ρ̇)2 =

exp(−2χb)

2π

(

1 +
b2

R2 cosh2 χb

)

. (4.13)

In the actual evaluation, we find that the integrals (4.13) are related by an integration by

parts yielding Iφ = −(Ia + a(b2))/2, except for a boundary contribution ∼ ρ(0)(1 − ρ̇(0)).

The latter is discussed in more detail in the appendix, where we argue that its consistent

treatment would require ρ(0) = 0 in all instances, even at the cost of picking up complex

solutions of the field equations. Nevertheless, if we decide to keep it, we obtain, after simple

algebra

A(b, s) = Gs

(

2(χ(L2) − χb) + 1 − b2

R2 cosh2 χb

)

. (4.14)

It is amusing to note that the above expression for the action is stationary with respect

to χb at fixed b precisely when the “criticality condition” (4.9) holds. This suggests an

alternative interpretation of the condition ρ(0) = 0, namely that of requiring stationarity

in a “sum over solutions” (or perhaps better over collective coordinates contained in the

solutions) definition of the S-matrix

S(b, s) =

∫

dχbµ(χb) exp(iA(b, s;χb)) , (4.15)

where however the integration measure µ(χb), possibly related to a functional fluctuation

determinant around the given solution, is actually not available.

Sticking for the moment to real-valued solutions, and using, for b > bc, the criticality

equation in order to eliminate b2 in terms of χb, we finally get the convenient expression

A(b, s) = Gs
(

2(χ(L2) − χb) + 1 − 1/tb
)

; (b > bc) . (4.16)

By evaluating χb from (4.9) we find the large-b behaviour A ≃ 2Gs(log L
b + R2

4b2
), which

checks with the perturbative expansion, the slight difference of the R2/b2-correction being

due to the azimuthal averaging procedure.

The known b-dependence of the action allows to find the elastic scattering amplitude

A(s,q2) by a Fourier transform, and the related classical deflection angle by a stationarity

equation in b:

1

s
A(s,q2) = − 2i

∫

d2b exp iA(b, s) exp ibq (4.17)

qcl = −∇bA(b, s) . (4.18)
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By applying eq. (4.18), a simple calculation on eq. (4.14) yields the expression of the

deflection angle

sin
θcl

2
=

qcl√
s

=
Rb

ρ(b2)
=

R

b tanh χb
≃ R

b

(

1 +
R2

2b2
+ . . .

)

(b ≥ bc) , (4.19)

which determines the (resummed) corrections to the Einstein deflection as function of b,

starting from large impact parameters down to the critical radius b = bc. Actually, the

deflection becomes maximal (θcl = π) at some b > bc, the limiting value of the r.h.s. of (4.19)

being (4/3)1/4 > 1, showing that at such large angles the impact parameter framework is

not fully meaningful. Alternatively, if we interpret A(b, s) as A(J = b
√

s/2, s), and we

transform back to energy and scattering angle by convoluting A with PJ(cosθ), we arrive

at the (perhaps more physical) result:

θcl(b = bc) = 2 (4/3)1/4 > π/2 , (4.20)

meaning that, at b = bc, the two particles already invert the sign of their relative momen-

tum.

Note that the action (4.16) develops a branch cut singularity at b2 = b2
c = 6

√
3 G2s.

It is soon realized, using (4.16), that, while tb has a square-root singularity at tb = tc, the

action branch-cut is of type ∼ (b − bc)
3/2, because the total derivative dA/dχb vanishes

also at χb = χc, being sinh2 χc = 1/2. In other words, the action is stationary in χb at

that point, just like the criticality equation (4.9). We expect this feature to be even more

general than the present model, because, were the action stationary close to Ac but at a

different value, there would be another pinch of two solutions besides the one we know at

χb = χc. For the two to coincide, the action expansion around Ac should start at order

(χb − χc)
2, the first nonanalytic piece being (χb − χc)

3. The action for b → b+
c turns out

to have the following expansion

A−Ac

Gs
= − 2

√
3(χb − χc)

2 +
16

3
(χb − χc)

3 + O((χb − χc)
4) (4.21)

=
√

3

(

1 − b2

b2
c

)

+
2
√

2

3

(

b2

b2
c

− 1

)3/2

,

where the analytic piece dominates around b ≃ bc and provides the deflection we have just

discussed.

4.3 The effective metric

The metric describing Reδ and the reduced action is obtained from eq. (2.34) by specializing

to the axisymmetric solutions a(r2) and φ(r2), which are exact at b = 0 and averaged out

at b > 0. We then obtain

ds2 = −dx+dx−
(

1 − 2(πR)2Θ(x+x−)
∂(r2φ̇)

∂r2

)

+2πR
(

a(r2)δ(x−)(dx−)2 + ā(r2)δ(x+)(dx+)2
)
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−(πR)2
∂(r2φ̇)

∂r2

(

|x+|δ(x−)(dx−)2 + |x−|δ(x+)(dx+)2
)

+ ds2
T

ds2
T = (1 + 2(πR)2Θ(x+x−)φ̇)dr2 + r2(1 + 2(πR)2Θ(x+x−)(φ̇ + 2r2φ̈))dθ2 , (4.22)

where, for b > 0, the azimuthal averaging is done at fixed x2 ≡ r2.

We think that the effective metric so defined is really meaningful on the real valued

lagrangian solutions for b > bc only. In fact, in such a case, we have matched the solution

with larger χb to the perturbative expansion at large distances and, furthermore, the fields

of eqs. (4.6) and (4.7) are well behaved in the small-r region also. In particular, in the

transverse part of the metric, the fields

φ̇ ≃ − (φ̇ + 2r2φ̈) ≃ 1

8π2r2
log

4r2

r̄2(χb)
(r ≫ R) (4.23)

have the role of decreasing the circumference over radius ratio at large distances, while

φ̇ = 1 − tb becomes just a constant at small distances.

On the other hand, if we take the real-valued solution defined above for b < bc, the

situation does not change much at large distances but, at short distances, the fields of

eq. (4.23) both develop a −ρ(0)/r2 singularity whose interpretation is doubtful, because

of the rescattering and string corrections neglected in the present approach. Should we

take that singularity seriously, the coefficient of dr2 would become negative at some r ≪ R

without any major change in the rest of the metric, because d(r2φ̇)/dr2 is instead regular,

except possibly at r = 0. This is perhaps one more reason to stick to the condition ρ(0) = 0

for b < bc also, even if that means considering complex solutions (cf. section 7).

5. Momentum space formulation

5.1 Effective action and equations of motion

In order to reformulate the problem in momentum space and to make some symmetries

more manifest it is convenient to place the sources for the fields a and ā at some generic

points in transverse space b1 and b2. Normalizing Fourier transforms as:

a(k) =

∫

dxeikxa(x) ⇒ a(x) =
1

4π2

∫

d2ke−ikxa(k) ≡
∫

[dk]e−ikxa(k) , (5.1)

the reduced effective action (2.22) for the IR-safe polarization and after neglecting rescat-

tering can be rewritten in momentum space as follows:

πA

Gs
=

∫

d2k

k2

[

eik(b1−b2)γ1(k) + eik(b2−b1)γ2(k) − eik(b1−b2)γ1(k)γ2(−k)
]

−(πR)2

2

∫

d2k

[

1

2
h(k)h(−k) − h(−k)H(k)

]

. (5.2)

Here γi(k) and h(k) are related to the Fourier transforms of a, ā and h(x) by:

γ1(k) =
k2a(k)

2
e−ikb1 ; γ2(k) =

k2ā(k)

2
e−ikb2 , h(k) = −k2φ(k) , (5.3)
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and

H(k) ≡ 1

π2k2

∫

d2k1d
2k2δ(k − k1 − k2)γ1(k1)γ2(k2)e

i(k1b1+k2b2) sin2 θ12 . (5.4)

The equations of motion that follow from this action read:

h(k) = H(k) → hTT (k) for b1 → 0, b2 → b (5.5)

γ1(p) = 1 +
R2

2
p2

∫

d2k

k2
h(−k)γ1(k + p)eikb1 sin2 θp/k+p (5.6)

γ2(p) = 1 +
R2

2
p2

∫

d2k

k2
h(−k)γ2(k + p)eikb2 sin2 θp/k+p . (5.7)

Eliminating h(k) through (5.5) we get two coupled equations involving just γ1 and γ2:

γ1(p) = 1 +
R2

2π2
p2

∫

d2k

(k2)2
d2k1d

2k2δ(k + k1 + k2)

γ1(k1)γ2(k2)γ1(k + p)eik2(b2−b1) sin2 θ12 sin2 θp/k+p ,

γ2(p) = 1 +
R2

2π2
p2

∫

d2k

(k2)2
d2k1d

2k2δ(k + k1 + k2)

γ1(k1)γ2(k2)γ2(k + p)eik1(b1−b2) sin2 θ12 sin2 θp/k+p . (5.8)

At least perturbatively, these equations imply the relations:

γ2(p) = γ1(−p) = γ∗
1(p) , h(−p) = h∗(p) . (5.9)

Setting finally b2 = −b1 = b/2 we get the basic integral equations:

h(−k) =
1

π2k2

∫

d2k1d
2k2δ(k + k1 + k2)e

i(k2−k1)b/2γ1(k1)γ
∗
1(k2) sin2 θ12 (5.10)

γ1(p) = 1 +
R2

2
p2

∫

d2k

k2
h(−k)γ1(k + p)e−ikb/2 sin2 θp/k+p , (5.11)

which can be reduced to an integral equation for γ1(p) (or γ2(p)) alone:

γ1(p) = 1 +
R2

2π2
p2

∫

d2k

(k2)2
d2k1d

2k2δ(k + k1 + k2)

γ1(k1)γ
∗
1(k2)γ1(k + p)eik2b sin2 θ12 sin2 θp/k+p . (5.12)

It is also quite easy to check that the action, on the e.o.m. takes the simpler form:

AEOM =
Gs

4π

∫

d2k

k2

[

3(e−ikbγ1(k) + eikbγ2(k)) − 2e−ikbγ1(k)γ2(−k)
]

. (5.13)

An easy way to prove this is to note that our action, after elimination of φ, is a functional

of the γi of the form:

A = A1 + A2 + A4 (5.14)

where An is homogeneous in γi of degree n. By Euler’s theorem:
∫

dkγi
δA

δγi
= A1 + 2A2 + 4A4 . (5.15)
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On the equations of motion this combination must be zero and therefore we can eliminate

A4 in terms of A1 and A2:

A4 = −A1/4 − A2/2 , (5.16)

which gives the claimed result. This argument only works modulo boundary (surface)

terms. And, indeed, in the case discussed in the previous sections in which ρ(0) 6= 0, such

boundary terms can be shown to be present since their absence would imply the relation:

Iφ = −1

2
[Ia + a(b2)] , (5.17)

which only holds if ρ(0) = 0. There are indications that the momentum-space approach

automatically implies such a relation. Indeed, unless there is some singularity at small

momenta, total derivative terms are set automatically to zero by momentum conservation.

The boundary terms due to ρ(0) 6= 0, on the other hand, come from a short-distance

boundary which does not look to be present in the momentum approach.

In principle, the above integral equations can be solved by iteration on a computer.

The advantage, with respect to the position-space formulation, is that the iterative solution

carries automatically with it perturbative boundary conditions. The iteration procedure

is expected to converge only for sufficiently small values of R/b where it should reproduce

the perturbative expansion.

Some preliminary numerical results have only been obtained [24] under the assumption

that γ(k) and h(k) depend only on k2 and b2 but not on k · b. This is only consistent

with the field equations if we average them over the direction of b, i.e. if we make the

replacement:

eik2b → J0(kb) , (5.18)

which is the momentum space version of the the azimuthal averaging procedure made in

section 4.

A first interesting indication following from the numerical analysis [24] is that, at

sufficiently large b where the iteration converges, γ(k) approaches unity at small k and a

b-dependent constant larger than unity at large k. This is fully consistent with the position

space small-r result:

ȧ ≃ − 1

2πρ̇(b)r2
, ρ̇(b) = tanh χb = 1 − O(R2/b2) , (5.19)

and confirms that, in the momentum-space approach, one has automatically incorporated

the condition ρ(0) = 0.

At some critical value of R/b the iterative solution is found not to converge any more,

showing again the existence of a critical value for that ratio. One finds [24] (b/R)c ≃ 1.6±0.1

a number that matches well (even too well!) our analytic estimate: (b/R)c ≃ 2−1/233/4 ≃
1.61. A more accurate numerical calculation that does not use azimuthal averaging appears

to give [25] a slightly higher value, (b/R)c ≃ 2.28. All these results are compatible with

the CTS lower bound given in [5], i.e. (b/R)CTS
c > 0.80.

We conclude that the momentum-space approach gives numerical results for the bound-

ary of the perturbative regime and the estimate of a critical (b/R)c that confirm those of
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the previous sections and are also compatible with the classical CTS-based collapse crite-

ria. We should stress, however, that numerical momentum-space techniques, being based

on an iterative procedure, cannot be easily extended below b = bc. Searching for complex

solutions remains a serious challenge.

5.2 Arguments for the existence of a critical b/R ratio

A quick — though approximate — way to argue for the existence of a critical R/b comes by

considering the integral equation (5.12) for p ∼ 1/R < 1/b and to realize that, in this case,

the integrals should be dominated by the regions in which all the arguments are roughly

of the same order ∼ 1/R. The equation for this “average” γ̄ then takes the form:

γ̄ = 1 + K2(R/b)2γ̄3 , (5.20)

where K is a numerical constant of O(1). It is easy to see that the perturbative solution

γ̄ = 1 + . . . ceases to exist above a critical value of R/b, (R/b)c = 2
3
√

3K
. Near this critical

point the action becomes singular with a (b − bc)
3/2 behaviour similar to the one found in

section 4.

It is perhaps worthwhile to notice at this point an intriguing relation between eq. (5.20)

and the equation determining the turning point r = r∗ for a null geodesic impinging on a

Schwarzschild metric of radius R at impact parameter b. In this latter case the equation

reads:
R

b
= x − x3 , x ≡ r∗

b
, (5.21)

giving the well-known result that the turning point disappears for b < bc = 3
√

3
2 R. Similarly,

eq. (5.20) can be put in the form:

K
R

b
= y − y3 , y ≡ K(R/b)γ̄ , (5.22)

giving, for K = 1, the same critical value for b/R.

Amusingly, eq. (4.9) takes a similar form, this time in terms of R2/b2, i.e.

R2

b2
= z − z3 , z ≡ ρ̇(b2) , (5.23)

and thus gives again the critical value 3
√

3
2 , though for R2/b2.

The above reasoning suggests that a more rigorous argument for the existence of a

critical b/R could possibly be constructed along the following lines. In eq. (5.12) rescale

all momenta by a factor |b| and distinguish the new dimensionless momenta from the old

ones by a tilde. Also, multiply both sides of the equation by a factor R/b and define

β = (R/b)γ1: Then eq. (5.12) takes the form:

R

b
= β(p̃) − p̃2

2π2

∫

d2k̃

(k̃2)2
d2k̃1d

2k̃2δ(k̃ + k̃1 + k̃2)

β(k̃1)β
∗(k̃2)β(k̃ + p̃)eik̃2e sin2 θ12 sin2 θp/q+p , (5.24)
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where e is the unit vector in the direction of b.

The rhs of the new equation is a functional of β and a function of p̃. When the lhs

R/b is very small the equation can be solved by taking β small so that the cubic term on

the rhs is negligible. But when R/b is sufficiently large this is no longer the case. Taking β

large and of order R/b may not help to find a solution if the cubic term takes over and has

the wrong sign. Hence it should not be impossible to show, by some functional analysis,

that this equation does not have perturbative solutions for sufficiently large values of R/b.

We do not attempt such a proof here.

6. Particle production and inelastic unitarity

So far we have neglected the imaginary part of δ, i.e. the phenomena associated with the

production of gravitons. Even when we limit ourselves to the IR-safe (TT) polarization

there are at least two interesting issues to be addressed: one concerns the spectrum of the

produced gravitons (as a function of their transverse momentum); the other is the damping

of the elastic amplitude caused by the opening of inelastic channels. We would like to study

both effects as a function of b (or actually b/R) in order to see whether some interesting

physics shows up as we approach a critical value.

A convenient way to study production amplitudes within our effective action approach

is to introduce an auxiliary source J coupled to the field h that corresponds to the physical

TT graviton. At the same time, in order to ensure full inelastic unitarity, contributions to

the action from Im δ have to be included. The standard procedure would be to do all this

at the level of the 4-dimensional action (2.27) by coupling the source J to the canonically

normalized 4-D field 1
4∇2Φ. We shall instead use a “shortcut” and modify directly the

reduced action (2.22) as follows:

πA
Gs

→ πÃ
Gs

=
πA
Gs

+
(πR)2

2

∫

d2k

(

1

2
h(k)h(−k)

2iY

π
+ h(−k)

2
√

Y

πR
√

Gs
J(k)

)

, (6.1)

where the explicit Y = log s dependence takes effectively into account longitudinal phase

space. We will also interpret the additional terms in the action as being defined “on-shell”

i.e. on the equations of motion of the unperturbed action. This is correct as far as the

additional source term is concerned, but probably an oversimplification for the additional

imaginary part in (6.1) which presumably changes the field equations. With this caveat

we shall now proceed to the computation of the full (inelastic) S-matrix.

The functional:

eiW (J) = eiÃeom(J) , (6.2)

will generate, through its functional derivatives with respect to J , the scattering amplitudes

for producing an arbitrary number of gravitons:

S(2 → 2 + k1 + k2 + . . . kn) =

(

δn

δJ(−k1) . . . δJ(−kn)
eiW (J)

)

J=0

. (6.3)
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This prescription can be checked to reproduce, at lowest order, the one-TT-graviton pro-

duction cross section –and hence the imaginary part of the elastic scattering amplitude–

as given both by the H-diagram. In order to consider the general multi-graviton produc-

tion amplitude we note that, at sufficiently high energies, a WKB-like approximation holds

(since, at very high energies, δ2W/(δJ)2 ≪ (δW/δJ)2, etc):

(

δn

δJ(−k1) . . . δJ(−kn)
eiW (J)

)

J=0

=

(

eiW (J)
)

J=0

(

iδW

δJ(k1)

)

J=0

. . .

(

iδW

δJ(kn)

)

J=0

+ subleading terms . (6.4)

As a consequence, the emitted gravitons are approximately uncorrelated and the multi-

graviton amplitude factorizes. Furthermore since, on the equations of motion,

(

iδÃ
δJ(−k)

)

J=0

= i
√

GsY R h(k)J=0 , (6.5)

we find:

S(2 → 2 + k1 + k2 + . . . kn) =
(

eiW (J)
)

J=0
(i
√

GsY R)n
∏

i

h(ki)J=0 , (6.6)

and

1

σel

dσ(2 → 2 + k1 + k2 + . . . kn)

d2k1 . . . d2kn
= (GsY R2)n

∏

i

|h(ki)J=0|2 , (6.7)

with h(k) given in eq. (5.5). It is easy to double check that, at the lowest level and for

n = 1, this reproduces the one-graviton cross section discussed in section 2.

At the same time, the elastic amplitude will be absorbed. Its absolute square will be

controlled by the imaginary part of the on-shell action at J = 0 and can be easily computed

again in terms of h(k). We find:

σel = |S(2 → 2)|2 = exp(−2ImÃJ=0) = exp

(

−GsR2Y

∫

d2k|h(k)|2
)

, (6.8)

i.e. precisely in such a way as to ensure the inelastic unitarity of the S-matrix.

These results can be summarized by writing the S-matrix in an operator form involving

also the longitudinal-momentum degrees of freedom:

S = exp

(

i
√

GsR

∫

d3k√
k0

(h(k)âk + h(k)∗â†k)

)

= exp

(

−GsR2

∫

d3k

2k0
|h(k)|2

)

exp

(

i
√

GsR

∫

d3k√
k0

h(k)∗â†k

)

exp

(

i
√

GsR

∫

d3k√
k0

h(k)âk

)

, (6.9)

where âk , â†k are canonically-normalized destruction and creation operators of physical

gravitons of momentum k and IR-safe polarization and we have left out for simplicity an

overall c-number phase exp iA(b, s) containing the on-shell uncorrected action. This gives
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back, for instance, eq. (6.8) after realizing that the longitudinal momentum integration just

provides a factor Y = log s.

The S-matrix (6.9) when acting on the Fock vacuum of the âk , â†k operators creates a

coherent state of physical gravitons in which we can compute the expectation value of the

associated canonical quantum field that we denote by hcan. This is best done by using the

LSZ formalism according to which:

S(2 → 2 + k) =
√

2k0〈2|aout|2〉 = i

∫

d4x

(2π)3/2
eikx∂µ∂µ〈2|hcan(x)|2〉|k2→0 , (6.10)

where, in our case, the canonical TT -graviton field is given by:

hcan = (8πG)−1/2 ǫµν
TT√
2

hµν(x) , (6.11)

and the extra factor 1/
√

2 comes from our normalization of the polarization tensors.

Using properties of the coherent state generated by (6.9) it is easy to check that the

following metric fluctuation satisfies (6.10):

〈h(x)µν〉 = − R2

4π2

∫

d4k

k2 + iǫ
ǫTT
µν h(k)e−ikx , (6.12)

where, as previously explained, ǫTT
µν act as differential operators and we have inserted an

iǫ prescription although the LSZ formula is only sensitive to the principal part of the

propagator.

Equation (6.12) should be consistent with the effective metric of eq. (2.34) and, at

lowest order in R/b, with the one that follows from eq. (2.14). Indeed, if one looks at the

principal part contribution, one finds, in the small-k limit5 implicit in our procedure:

〈h(x)µν〉 = (πR)2
∫

d[k]ǫTT
µν h(k)Θ(x+x−)e−ikx = (πR)2ǫTT

µν Θ(x+x−)∇2φ , (6.13)

which explains the normalization of the φ field used in eq. (2.34).

Using the small-k limit of h(k) we find hcl(x) ∼ R2/r2 at large r, in agreement

with (2.14) but in apparent disagreement with the standard quadrupole formula, which

would require hcl(x) ∼ R2/br. This can possibly be explained by the fact that the TT

polarization is emitted mainly in the forward and backward direction |k| ≫ |k| so that

there is still a non-trivial flux of TT-gravitons at null infinity. On the other hand, the

(IR-unsafe) polarization that we neglected exibits a 1/r behaviour in agreement with the

fact that IR singularities are associated with classical radiation.

It is very tempting, at this point, to guess a generalization of our result (6.9) to include

the IR-sensitive polarization. This would read:

S = exp

(√
GsR

∫

d3k√
k0

(

ihTT (k)âk − hLT (k)b̂k − h.c.
)

)

, (6.14)

5Keeping the k-dependence amounts to multiplying the Θ-function by J0(|k|
√

x+x−), which implies the

cutoff x+x− . R2 mentioned in section 2.3.
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where hTT = h and:

hLT =
1

π2k2

∫

d2k1d
2k2δ(k + k1 + k2)e

i(k2−k1)b/2γ1(k1)γ2(k2) sin θ12 cos θ12 . (6.15)

This would provide a unitary S-matrix whose matrix elements, however, are only finite

within particular coherent states that include soft bremmstrahlung, a well-know situation

in perturbative QED and quantum gravity, already discussed in [3]. Once this is properly

done there should be no major conceptual obstacle in including the effects of the LT

polarization on the gravitational collapse problem.

What remains to be done is to evaluate h(k) in different regimes in order to extract

both the spectrum of the emitted gravitons and the absorption of the elastic amplitude as

a function of b/R. This can only be done, of course, after solving the classical equations,

similarly to what already done for ReA in position space. We can summarize our present

understanding on this matter as follows:

• At b ≫ R the spectra have a logarithmic behaviour at small k and an exponential

damping at k ≫ b−1. In other words the typical tranverse momenta of the produced

gravitons are, not surprisingly, of the same order as those of the exchanged gravitons

(see the discussion in section 2). In turn, the elastic amplitude is suppressed by

exp (−GsY R2/b2). Note that, for R > ls, such a suppression dominates over the one

due to string excitation, that we have neglected.

• As one approaches the region b → bc ∼ R from above, physics appears to be rather

smooth. Nevertheless, the graviton spectrum is now cutoff at momenta of order

1/R (i.e. of order of the Hawking temperature of a BH of mass
√

s) and the elastic

amplitude is suppressed by an exponential factor exp (−cGsY ) (with c some constant

of O(1)) which, modulo the factor Y = log s corresponds to exp (−S), with S the

Bekenstein-Hawking BH entropy

• It would be very interesting to find out what happens if one goes to the region

b ≪ R, in particular whether the cut-off on momenta keeps growing like 1/b or

remains “frozen” at 1/R as black-hole evaporation would suggest. It is not yet fully

clear how that region can be studied. The possibility of an analytic continuation of

S-matrix elements and effective action solutions for b < bc is discussed in the next

section.

7. Action and complex solutions for b < bc

We have realized in section 4 that real-valued field solutions with ρ(0) = 0 exist only for

b > bc, and that, below bc, they become complex. We have also shown that the action has

a branch-point singularity at b = bc, presumably due to the pinch of two such solutions of

the criticality equation (4.9). The problem then arises of how to define both S-matrix and

solutions for b < bc.

It is tempting to try the simplest possibility, and to continue analytically the S-matrix

on the basis of the form ∼ (b2 − 6
√

3G2s)3/2 of the branch-cut, by choosing a physical
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energy-sheet reached by an s + iǫ prescription. According to the expansion (4.21) this one

corresponds to the χb−χc determination having a negative imaginary part and contributes

a positive imaginary part to the action. This criterion tells us to take that particular

complex solution as the physical one on which the action, and thus the S-matrix, should

be computed.

An additional argument for this choice comes from the tentative interpretation of the

ρ(0) = 0 condition as stationarity equation of the integral over χb in eq. (4.15). If we

define the analytic continuation of the action by that integral — which, for b < bc has

two complex conjugate stationarity points — we should take the one for which the saddle

point is stable. Then, by ignoring the measure factor, calling χb the stationarity point and

simply χ the integration variable, we have the expansion

A(b, s;χ) −A(b, s;χb)

Gs
= 2

(

− 1 +
b2 sinhχb

R2 cosh3 χb

)

(χ − χb) (7.1)

+
b2

R2
(1 − t2b)(1 − 3t2b)(χ − χb)

2 + O((χ − χb)
3) .

We note again that the action is stationary on the solutions of (4.9) and that the fluctuation

coefficient in eq. (7.1) becomes, for small b − bc,

1

tb
(1 − 3t2b) ≃ ∓2

√
2i

√

1 − b2

b2
c

, (tb − tc) ≃ ±i

√
2

3

√

1 − b2

b2
c

. (7.2)

The saddle point is then stable when the above coefficient is positive imaginary, corre-

sponding to damped fluctuations, yielding again the solution with Imtb < 0 for which the

action acquires a positive imaginary part, as noticed before.

By then taking for b . bc the complex solution for tb or χb with negative imaginary

part, we obtain, from eq. (4.21),

ImA(b, s)

Gs
=

2
√

2

3

(

1 − b2

b2
c

)3/2

, |S(b, s|2 ≃ exp

(

−2
√

2

3

R
√

s

~

(

1 − b2

b2
c

)3/2
)

. (7.3)

Equation (7.3) implies that the S-matrix, when analytically continued to b < bc, acquires

an additional absorptive part (on top of the one due to TT-graviton production discussed in

the previous section) whose interpretation calls for the opening up of some extra channels

in this new regime. It is tempting to think of these as quantum analogs of the black-holes

that are expected to be formed on glassical grounds [5]. At the same time, the dominant

solution is also complex-valued, with Imρ(r2) ≤ 0 for r ≃ R.

The above features are confirmed by evolving the complex solution to smaller values

of b. In the b → 0 limit the stable determination becomes, by eqs. (4.9) and (7.2),

tb ≃ e−iπ/3

(

R

b

)2/3

, χb = −i
π

2
+ eiπ/3

(

b

R

)2/3

, (b ≪ R) , (7.4)

while the complex conjugate solution is unstable. Correspondingly, the action for b ≪ R

takes the form

A(b, s) = Gs

(

2χ(L2) + iπ − 3eiπ/3

(

b

R

)2/3)

, |Sel(b, s|2 ≃ e−R
√

s(π−
√

6(b/R)2/3) . (7.5)
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For b = 0 the suppression factor in the elastic cross section is just exp(−SBH(
√

s/2)), with

SBH(M) the Bekenstein-Hawking entropy of a Schwarzschild black hole of mass M . This is

compatible with a statistical interpretation where a fraction 1/
√

2 of the incoming energy

goes into forming a black hole, even if the relationship of our S-matrix framework to such

a semi-classical statistical picture is yet to be clarified.

On the other hand, the suppression (7.3) of the elastic amplitude appears to die off as

(1− b2

b2c
)3/2 for b → b−c . This looks like an interesting (and we believe robust) result calling

for a physical interpretation. From a classical standpoint, this limit should correspond to

the production of a nearly extremal Kerr black hole with J ≤ Jc = GM2. If the mass of the

produced black hole would remain finite in this limit its entropy would approach a finite

value (just half of that of a Schwarzschild black hole of the same mass) and the statistical

interpretation invoked earlier for b ∼ 0 would fail. However, it is conceivable (although, to

the best of our knowledge, still not proven) that in a nearly critical-collapse situation most

of the initial energy and angular momentum are radiated away to infinity leaving only a

vanishing mass and angular momentum to collapse at the critical point. In this case, if

we insist on identifying our elastic suppression with an entropy factor, we have to assume

that the mass of the Kerr black hole being formed in the collision vanishes like (bc − b)3/4

for b → b−c . This would imply a “Choptuik exponent” of 0.75 in our critical collapse, i.e.

about twice the original exponent of ∼ 0.37 found in Choptuik’s original paper [26].6

Corresponding to the small-b parameters (7.4), the expression for the physical field

solution ρ(r2) has the initial value

ρ(b2)

R2
=

b2

R2
tb = e−iπ/3

(

b

R

)4/3

, (7.6)

which is consistent with ρ(0) = 0 and has a small, positive real part also. This is sufficient

to have an r2-evolution of ρ(r2) with increasing real part and negative imaginary part,

which tunnels to a perturbative, real valued behaviour at large distances. We can further

check that the action integrals in (4.13) are well defined on the physical solution, and their

evaluation holds unchanged, except that ρ(0) = 0 is now built in, so that the result (4.14),

and thus (7.3) and (7.5) obtain automatically, with the appropriate (complex) values of χb

and tb.

In order to better understand the r2-evolution, it is convenient to come back to the

axisymmetric b = 0 case, by looking for possibly complex solutions satisfying the boundary

condition ρ(0) = 0. Since the parametric expressions in eqs. (3.9) and (3.10) are still valid,

we obtain ρ(0) = 0 by setting χ0 = −iπ/2. With this boundary value, for r ≪ R it is

convenient to look for solutions χ(r2) ≡ −iπ/2 + η(r2) such that, by (3.9),

2
r2

R2
= 2χ + sinh 2χ + iπ = 2η − sinh 2η ≃ −4

3
η3 + O(η5) . (7.7)

6One of us (G.V.) would like to thank Steve Giddings and Don Marolf for interesting discussions about

this possibility.
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This equation admits in turn three branches, according to the values ǫ = (e±iπ/3,−1) of

the three cubic roots of (−1), as follows

η(r2) ≃ ǫ

(

3r2

2R2

)
1

3

,
ρ(r2)

R2
≃ −η2 ≃ ǫ∗

(

3r2

R2

)
2

3

, (r ≪ R) (7.8)

R2ȧ ≃ − 1

2π
ǫ

(

3r2

2R2

)−2/3

, (2πr)2φ̇ ≃ − ρ

R2
≃ −ǫ∗

(

3r2

2R2

)
2

3

.

We thus see that the solution with ǫ = eiπ/3 matches the physical one discussed above in the

b → 0 limit. We also see that the small-r2 exponents are fractional, and the delta-function

flux from r = 0 in (3.3) is shared between ȧ and φ̇. Note that there is also a real-valued

solution (the one with ρ ≤ 0 noticed before), which however is unphysical: it is quite

nonperturbative (ρ̇ = −1 in the large-r limit) and yields a quadratic IR divergence in the

action. Note finally that the large-r2 behaviour of the physical fields is instead perturbative,

the value of χ0 = −iπ/2 contributing (via the scale r̄2 in (3.11)) some subleading imaginary

part.

For b > 0, we note that the small-r behaviour of φ changes in the r < b region. In fact,

since in this region ρ̈ = 0, then ρ̇ = tb must be a constant and, due to ρ(0) = 0, φ̇ will be

a constant too:

(2πR)2φ̇ = 1 − tb = 1 − ǫ∗
(

b2

R2

)−1/3

; φ̈ = 0 (r < b) . (7.9)

Therefore, b > 0 acts effectively as a cutoff for the small-distance behavior φ̇ ∼
d(r2φ̇)/dr2 ∼ r−2/3 occurring at b = 0. The φ̇ field becomes completely regular.

We thus see that the small-r behaviour of the complex physical solution has now

changed — compared to the real-valued ones — to a “weak-field” profile,7 due essentially

to the ρ(0) = 0 property. The latter condition acts in this context as a quantization rule,

yielding a well-defined solution whose classical counterpart, if any, one should classify as

being “untrapped”. Therefore, at quantum level, the physical solutions for b < bc show no

evidence of a field being confined behind the would-be horizon.

The main challenge remains, of course, the interpretation of such complex solutions

and of the extra absorption found in the elastic channel. A possible way to proceed is to

continue below bc the production amplitudes of the multi-particle channels considered so

far, and look for unitarity integrals that could make up for the extra absorption. Since

the field h ∼ 1 − ρ̇ acquires an imaginary part, the latter could perhaps be interpreted

according to the h-definition in section (2.1): the imaginary part would then simply be the

LT polarization which, though excluded in the beginning, is turned on necessarily below bc.

In any case, within this interpretation, the Hawking evaporation required by the additional

absorptive part should be looked for in the various contributions of such imaginary part to

the multi-graviton spectra. Since there is no ∼ log s longitudinal phase space enhancement,

it should be quite central, with k3 ∼ |k| ∼ 1/R and an emission yield ∼ ImA.

7We use inverted commas here since the perturbation of the metric is actually still large at r ∼ R and

even more so at r ∼ b.

– 32 –



J
H
E
P
0
2
(
2
0
0
8
)
0
4
9

Another possible interpretation (see previous discussion in this section) is that the

missing probability goes into the formation of some new bound states. One may object

that such bound states, being very massive, should decay into light particles (gravitons

in our case), behave as resonances, and that consequently the S-matrix should already

be unitary in the multigraviton Hilbert space. However, it is quite possible that, within

our approximation that neglects corrections of relative order ~/Gs ≡ M2
P /s ≪ 1, such

resonances are actually stable and have to be included in the possible final states in order

to ensure unitarity. For instance, according to standard lore, black-holes have a lifetime of

order R and thus propagators of the type (s−M2
BH + iM2

P )−1. If objects of this kind, even

if not necessarily to be identified as black holes, were responsible for the extra absorption

below bc, their finite-width effects would be lost in our semiclassical regime, Gs/~ ≫ 1.

8. Summary and outlook

Let us summarize the method we have used, and the main assumptions and results of our

investigation.

Working in the superstring approach to scattering amplitudes in the transplanckian

regime Gs ≫ ~ [1 – 3], we have used the effective action framework justified in [4] for the

case R, b ≫ λs, in which string-size effects are not very important. We have then neglected

the so-called rescattering terms (as it should be justified for fixed (not too small) b/R)

and, in order to avoid the known [3] but technical treatment of the IR problem, we have

considered the emission of only one graviton polarization, the IR-safe one, described here

by the scalar field φ. Both are technical simplifications that could in principle be waived

one by one.

In the framework just described (section 2), the dependence of the effective action and

fields on the longitudinal coordinates simplifies, so that the problem reduces to a transverse

two-dimensional effective action, that we have considered in both configuration (sections

3, 4) and momentum space (sections 5, 6). In momentum space, an iterative procedure for

solving the equations of motion has been set up, and is suitable for numerical computations.

In configuration space, the equations are studied in the axisymmetric case, in which they

reduce to ordinary differential equations. Of course, axisymmetric solutions are directly

relevant only in the b = 0 limit, while for b > 0 they imply the azimuthal averaging

procedure explained in section 4.

A key point we have discussed throughout the paper is about the boundary conditions

to be set in order to determine both field solutions and action. One is provided by matching

the perturbative behaviour for r ≫ b,R. The other (ρ(0) = 0) is expressed in terms of the

auxiliary field ρ = r2(1− (2πR)2φ̇) and is still suggested by the weak coupling regime valid

for b ≫ R. In addition, we argue that it has to be valid in the non-perturbative regime

also, as the only consistent way to treat the r = 0 boundary. Under such conditions, we

are able to provide analytic field solutions, the corresponding action and effective metric

and then the phaseshift operator resumming the R2/b2 corrections to the eikonal and the

S-matrix.
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The perturbative resummation diverges at a critical value of the impact parameter

b = bc ∼ R = 2G
√

s, which separates the class of real-valued (b > bc, section 4) and

complex-valued (b < bc, section 7) solutions, all satisfying the boundary condition ρ(0) = 0

which plays the role of quantization condition of the problem. We also find that our

estimates of the bc/R ratio are compatible with the classical lower bound for CTS formation,

suggesting that our non-perturbative regime is likely to be in correspondence to classical

collapse.

For b > bc, the S-matrix has essentially the form of a unitary coherent state oper-

ator from which elastic absorption and inelastic spectra can be computed. For b ≃ bc,

the graviton spectrum is cutoff at transverse momenta of order ~/R = TH , the Hawk-

ing temperature of a black hole of mass
√

s, and the corresponding elastic absorption is

∼ exp(−const. GsY ).

For b < bc, the analytically continued physical field solution with ρ(0) = 0 is complex,

and yields an additional elastic absorption compared to that just mentioned. The absorp-

tive suppression is exponential, and the exponent vanishes like Gs(1− b2/b2
c)

3/2 for b → bc

and, for b = 0, is just 2πGs. This behaviour is compatible, as order of magnitude, with

the entropy of a black hole of properly chosen mass, as argued in section 7, even if the

relationship of our S-matrix coherent state to such a classical object is yet to be clarified.

Our field solutions provide an effective metric also, which is of shock wave type for the

longitudinal fields, and of finite wavefront for the mostly transverse one. For b > bc, the

profile function of the transverse field φ is everywhere regular in the transverse r coordinate.

For b < bc some metric components become complex and their interpretation is open to

discussion but, surprisingly, the φ field keeps being regular for 0 < b < bc also, and has

a mild fractional r = 0 singularity for b = 0. We refer to this feature as a “weak field”

situation (see however our footnote in section 7). In this sense, our physical solutions, for

any value of b, show no evidence of a field being confined in the small-r region.

For b < bc, we have studied real valued field solutions also, which exist at the expense

of violating the boundary condition ρ(0) = 0. They have in fact a positive ρ(0) and thus

show a φ̇ ≃ −ρ(0)/r2 singularity and a “strong field” situation. Such solutions are however

ill-defined (depending on the value of an arbitrary parameter), just because the ρ(0) = 0

condition is not met. For this reason, we believe them to be unphysical. Then, if the above

“quantization” condition is imposed, the solutions for b < bc become complex and change

to the “weak field” profile discussed before. The correct solution is therefore no longer

confined, in a way suggestive of a quantum tunnel effect.

The additional absorption found before for b < bc calls for extra production channels

for the S-matrix to be unitary, on whose nature we have made a couple of guesses in section

7. Here, further work is needed in order to continue the appropriate production amplitudes

below bc and thus to check whether inelastic unitarity is really verified: in this respect, our

results are only partial. Nevertheless, we feel that some new physics is emerging in this

simplified, but consistent quantum-gravity treatment that we have proposed. The picture

outlined by our results suggests that this is the right framework for at least asking the

questions, even if we only have some of the answers.
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A. Boundary terms and the ρ(0) = 0 condition

Here we investigate the boundary terms present in the definition (2.22) with the purpose

of understanding in a more formal way the boundary condition ρ(0) = 0. The expres-

sion (2.22) is nominally of fourth order in the derivatives of φ, but can be reduced to

second order by introducing as fundamental field a first derivative. Furthermore, the ex-

pression depends on the current H which, for generic fields a and ā, is nonlocal. We shall

thus look for a local form of the effective lagrangian, by specializing for simplicity to the

axisymmetric case, in which all fields are functions of r2 only.

We thus express the φ̇ field in eq. (2.22) in terms of the ρ function introduced in

eq. (4.3),namely

ρ(r2) ≡ r2(1 − (2πR)2φ̇(r2)) , (A.1)

and we solve for H(r2) in terms of ȧ ˙̄a by the same manipulations of sections 3 and 4. We

then obtain

A
2πGs

= a(b2) + ā(0) + 2π

∫ ∞

0
dr2

(

−r2ȧ ˙̄a + 2H(r2)(1 − ρ̇) − (1 − ρ̇)2

(2πR)2

)

; (A.2)

2H(r2) =

∫ ∞

r2

dr2ȧ(r2) ˙̄a(r2) , (A.3)

where we have specialized to the determination of H which vanishes at large distances —

similarly to what we have done for ȧ on the equations of motion — in order to recover the

perturbative behaviour in that region. We then perform an integration by parts in order

to eliminate the r2-integral in the expression of H
∫ ∞

0
dr2 2H(r2)(1 − ρ̇) − ȧ(r2) ˙̄a(r2)(r2 − ρ(r2)) = ρ(0)

∫ ∞

0
dr2ȧ(r2) ˙̄a(r2) , (A.4)

and we thus obtain, in the right hand side, the boundary term we were looking for. Note

that the latter is strictly speaking nonlocal as well, because it couples ρ(0) to all values of

a(r2). So, if we require locality, we must set ρ(0) = 0
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Nevertheless, if we decide to keep the boundary term and the ρ(0) parameter, by

replacing (A.4) in (A.2) we get a more conventional form of the action

A
2πGs

= a(b2) + ā(0) + 2π

∫ ∞

0
dr2

(

−ȧ(r2) ˙̄a(r2) (ρ(r2) − ρ(0)) − (1 − ρ̇)2

(2πR)2

)

. (A.5)

We note at this point that the form (A.5) of the action yields the same lagrangian equations

as in sections 3 and 4 but with ρ replaced by ρ̃ ≡ ρ(r2) − ρ(0), which must vanish at the

origin. This is yet another reason for this boundary condition, which can be met by real

solutions for b > bc and by complex ones for b < bc.

Furthermore, the action is functional of ρ̃ only and, evaluated on the equations of

motion takes the form

A(b, s) = 2πGs

(

a(b2) +
(Ia + a(b2)

2

)

= 2πGs(a(b2) − Iφ)

= Gs

(

2(χ(L2) − χb) + 1 − 1

tb

)

, (A.6)

in agreement with eq. (4.16) and with the momentum space relationships. Thus, in this

alternative point of view, ρ(0) is an additive constant in the definition of the field r2φ̇ in

terms of h ∼ (1 − ρ̇), which appears in the effective metric but not in the action. Since

this constant is not there in the perturbative regime b & R, it should finally be absent

altogether.
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