
Towards Application of Cuckoo Filters in
Network Security Monitoring

Jan Grashöfer, Florian Jacob, Hannes Hartenstein
Institute of Telematics

Karlsruhe Institute of Technology
jan.grashoefer@kit.edu, florian.jacob@student.kit.edu, hannes.hartenstein@kit.edu

Abstract—In this paper, we study the feasibility of applying the
recently proposed cuckoo filters to improve space efficiency for
set membership testing in Network Security Monitoring, focusing
on the example of Threat Intelligence matching. We present
conceptual insights for the practical application of cuckoo filters
and provide a cuckoo filter implementation that allows runtime
configuration. To evaluate the practical applicability of cuckoo
filters, we integrate our implementation into the Bro Network
Security Monitor, compare it to traditional data structures and
conduct a brief operational evaluation. We find that cuckoo filters
allow remarkable memory savings, while potential performance
trade-offs, caused by introducing false positives, have to be
carefully evaluated on a case-by-case basis.

I. INTRODUCTION

Set membership testing is a common operation in Network
Security Monitoring (NSM). Determining whether a given
datum is known to be of special relevance or has been seen
before are prevalent use cases.

A prominent example of set membership testing is intrusion
detection: Despite recent advances in machine learning based
anomaly detection, intrusion detection in multi-purpose net-
works relies on misuse detection. The patterns to be watched
for have evolved from simple byte signatures to higher-level
Indicators Of Compromise (IOCs) like hashes of transferred
files. The effectiveness of this approach depends on the quality
of the input data. Hence, the term Threat Intelligence was
coined to emphasize that proper misuse detection requires
refined, high quality data. While the effectiveness of misuse
detection relies on data quality, the efficiency of matching
IOCs is key for practical applications. Consequently, data
structures that maximize lookup performance and minimize
space costs are of particular interest in this domain.

The use of probabilistic data structures, like the well-known
Bloom filter [1], is a common approach to reduce space
costs and improve performance of set membership tests. This
is achieved by relaxing the task of set membership testing
to so called approximate set membership testing, allowing
a bearable number of false positives. That means, the data
structure might consider an element part of the set that was
never added. Unfortunately, traditional probabilistic data struc-
tures do not support deletion of elements without introducing
significant overhead, leaving them impractical for many real-
world scenarios. In 2014, Fan et al. introduced cuckoo filters
[2], which promise to overcome these shortcomings.

Given the huge and still growing scales of today’s computer
networks, the efficient matching of Threat Intelligence is a
key challenge in network security. In this paper, we study
the feasibility of cuckoo filters to improve space efficiency
in network security monitoring, focusing on the example of
Threat Intelligence matching.

II. RELATED WORK & FUNDAMENTALS

In this section, we will discuss related work (II-A) and
explain the basic concepts behind cuckoo filters (II-B).

A. Related Work

Probabilistic data structures have a comprehensive history
regarding applications in networking [3]. A recurring pattern
in their use is to establish a filtering step prior to a complex
processing tasks. For example, Dharmapurikar et al. make
use of Bloom filters for matching byte signatures in network
traffic [4]. False positives are mitigated by a downstream1

analyzer, which applies a computational complex deterministic
algorithm to verify matches. Upstream filtering to reduce the
pressure on downstream processing is a common approach in
context of the wide-spread manager-worker-pattern as shown
in Figure 1. But, in case of Threat Intelligence matching,
todays IOC sets are rapidly evolving. Hence, appropriate prob-
abilistic data structures are required to support manipulating
operations, i.e. insertions and deletions, without impeding
continuous operation.

In 2014, Fan et al. introduced cuckoo filters [2], a proba-
bilistic data structure for approximate set membership testing.
Contrary to Bloom filters, cuckoo filters allow item removal
without rebuilding the whole data structure or introducing
false negatives. Interestingly, for many common applications
cuckoo filters perform even better than Bloom filters and their
removal-supporting alternatives in terms of space cost and
lookup performance [2]. Consequently, cuckoo filters have
been brought up in the networking context [5].

B. Cuckoo Filters

Cuckoo filters are based on a variant of cuckoo hash tables
[6]. Like traditional hash tables, a cuckoo hash table con-
sists of buckets that may contain several keys each. Usually,
each key is associated to a value, which can be omitted

1Please note that we use the terms upstream & downstream to refer to the
order of processing steps.

c© IFIP, 2018. This is the author’s version of the work. It is posted here by permission of IFIP for your personal use. Not for redistribution.
The definitive version was published in 14th International Conference on Network and Service Management (CNSM), 2165-963X, November
2018, http://dl.ifip.org/db/conf/cnsm/cnsm2018.



Fig. 1. Manager-worker-pattern for scaling processing of streamed data (e.g.,
network traffic).

for set membership testing. In contrast to traditional hash
tables, cuckoo hash tables use independent hash functions
to determine multiple candidate buckets for a given key. On
insertion, if the first candidate bucket is already occupied, the
next bucket can be used. If all candidate buckets are filled,
the key to insert pushes an already inserted key out of its
bucket (hence the name cuckoo hashing). In this case, the
insertion algorithm continues by trying to insert the displaced
key into one of its alternative buckets, which might trigger
further relocations. After a specified number of relocations, the
insertion is considered to be failed. The lookup of a given key
can be performed in constant time, by checking all candidate
buckets.

Cuckoo filters reduce space costs by storing only a short
hash p = f(x) called fingerprint, instead of the complete key
x. Mapping the set of keys to a significantly smaller target
set introduces the possibility of false positives. Furthermore,
in case of relocation the original key is not available for
calculating the corresponding alternative bucket, as the key
cannot be reconstructed from the stored fingerprint. To enable
relocation, Fan et al. make use of partial-key cuckoo hashing,
by defining the two hash functions to obtain the candidate
buckets as follows:

h1(x) := hash(x)

h2(x) := h1(x)⊕ hash(f(x))

Figure 2 shows the insertion of an item x at index 2 using h1
and the calculation of h2 based on the stored fingerprint. As
the xor operation is an involution, i.e. it is its own inverse, the
alternative bucket for a fingerprint p stored in bucket i can be
universally calculated as halt(i, p) = i⊕ hash(p).

The false-positive rate ε of a cuckoo filter is influenced
by the size of fingerprint sf [bits], the bucket capacity e
[entries] and the load factor α. By increasing the size of the
fingerprints, the probability of fingerprint collisions and thus
false-positives decreases. By increasing the number of entries
per bucket, a fingerprint collision gets likelier; and obviously,
the more items are inserted, i.e. the higher the load factor, the
higher the chance to see fingerprint collisions2. The achievable
load factor and the false-positive probability are conflicting

2Note that the number of entries per bucket also influences the achievable
load factor [2].

Fig. 2. The insertion of an item x into a cuckoo filter stores x’s fingerprint.
hash() is used to obtain the bucket hash and f() is used to generate
fingerprints. The alternative bucket can be calculated based on the bucket
index and the stored fingerprint value.

optimization goals. In [2], Fan et al. focus on cuckoo filters
using two candidate buckets and four entries per bucket, as
this configuration performs best in terms of space efficiency
for target false-positive rates between 0.002 and 0.00001. In
the following, we will focus on this configuration as well and
use the fingerprint size to adjust false-positive rates.

III. CONCEPTUAL INSIGHTS

While Fan et al. provide a reference implementation of
cuckoo filters3, we chose to implement cuckoo filters ourselves
to allow runtime configuration of the false-positive rate
influencing parameters. The reference implementation uses
a fixed bucket size e = 4 and a C++-template parameter
to specify the fingerprint size. Although a cuckoo filter is
theoretically able to hold the same item multiple times [2],
we assume that every element is stored only once. Given that
we use the filter to lower the pressure on downstream data
structures, these can keep track of element counts if needed.
Our C++ implementation, called cuculiform4, is available
under an open source license. In this section we will discuss
conceptual insights we gained during implementation.

Dimensioning constraints: As the number of buckets varies
for different cuckoo filter instances, the larger target set of h1
and h2 has to be mapped to the actual number of buckets.
Mapping the set to the corresponding residue class (mod m
where m is the number of buckets) is not generally applicable,
as xor is not well-defined and therefore does not represent an
involution for all residue classes:

∃ a, b,m : [a⊕ b]m 6= [a]m ⊕ [b]m

Intuitively this can be explained by the fact that xor operates
bitwise. In case a ⊕ b > m, the modulo operation might
change the resulting bit-pattern in different ways on both sides
of the inequation above. If m = 2k, the modulo operation
corresponds to a bitwise and of 2k − 1, which keeps the
remaining bit-pattern stable. Thus, partial-key cuckoo hashing
with xor requires the number of buckets to be a power of
two. Regarding space costs, this might result in a worst case
scenario of a filter that is over-provisioned by a factor of nearly

3https://github.com/efficient/cuckoofilter
4https://github.com/kit-dsn/cuculiform



two. On the other hand, the smaller load factor reduces the
filter’s false-positive rate.

Impact of choice of hash function: While Fan et al.
suggest to use CityHash5, their reference implementation im-
plements a much simpler universal hashing algorithm explored
by Dietzfelbinger [7]. Our benchmarks revealed that Dietzfel-
binger’s algorithm, if used to obtain the bucket hash, causes a
high variance in the filter’s false positive rate across runs, while
achieving the expected mean rate. This can be explained by the
probabilistic nature of universal hashing. As a high variance
is undesirable for practical applications, we recommend to use
deterministic hash functions. Furthermore, the performance of
a cuckoo filter is dominated by the applied hash functions. For
example, using Highwayhash6, which provides even stronger
quality guarantees than CityHash, does not improve the filter’s
load factor. However, lookup performance degraded due to its
increased complexity. Although this is an expected behavior, as
it represents a core property of cuckoo hashing [6], we would
like to emphasize the fact due to its operational relevance.

Representation of empty cells: The fact that there is no
element at a given position in a bucket has to be represented.
Naturally, this is done by setting all bits to zero, a value that
is also part of the fingerprint hash function’s codomain. A
straight-forward solution to avoid collisions would be to add
a bit for each element that indicates the cell’s occupancy state.
But, in the context of minimizing space costs, an additional bit
is disadvantageous. Hence, the reference implementation maps
zero-fingerprints to the value one. This yields a deliberately
imbalanced distribution of fingerprint hash values, which,
however, does not restrain practical application. Note that the
effect becomes relevant for smaller fingerprint sizes.

Finally, the actual capacity of a cuckoo filter depends on
the inserted elements. As described in section II-B, the filter
is considered full after an insertion triggered the relocation
threshold. In this case, the element to insert is incorporated
into the filter in the first step and further relocations displace
arbitrary elements. To prevent the filter from removing an
element unpredictably, the reference implementation maintains
an eviction cache, which stores the remaining element after the
maximum number of relocations has been performed.

IV. APPLICATION IN NSM

For many applications in Network Security Monitoring,
even a small number of false-positives might be unacceptable.
Nevertheless, cuckoo filters can be extremely valuable for
processing high bandwidth data streams: A common pattern is
to use probabilistic data structures upstream, to filter out a vast
amount of irrelevant queries. The remaining false-positives can
be handled by traditional data structures used in the backend.

To study applications of cuckoo filters in Network Security
Monitoring, we integrated cuckoo filters into Bro [8], a popular
open-source network monitoring software. In the following,
we will introduce Bro and its Threat Intelligence monitoring

5https://github.com/google/cityhash
6https://github.com/google/highwayhash

capabilities (IV-A), compare three cuckoo filter implementa-
tions to the conventional data structures used in Bro (IV-B)
and provide a brief operational evaluation (IV-C).

A. The Bro NSM

The Bro Network Security Monitor serves as a flexible plat-
form for the analysis of network traffic. Incoming packets are
processed by an event engine that utilizes protocol analyzers
to parse the traffic and generate a high-level event stream.
The event stream gets processed by a policy script interpreter
that executes scripts written in the Bro scripting language. The
Bro scripting language is a domain-specific, Turing-complete
language, tailored to fit the needs of NSM. Bro ships with a
comprehensive set of scripts, organized in frameworks.

Bro’s architecture is designed to scale horizontally by
supporting a clustered setup [9], following the manager-
worker-pattern depicted in Figure 1. Traffic is load-balanced
per connection across multiple workers, which perform per-
connection analysis. A central manager node is used to dis-
tribute information and aggregate results. As Bro implements
a multi-process design, each node represents a dedicated Bro
instance. This approach applies in particular to multi-core
setups in single-machine deployments.

In 2012, Amann et al. introduced the means to implement
Threat Intelligence matching with Bro [10]. Since version 2.2,
Bro ships with the Intelligence Framework, a collection of
scripts for managing intelligence data. In a clustered setup,
the manager node maintains an in-memory representation of
IOCs and their corresponding meta data using hash tables. To
perform the matching, worker nodes only need to keep the
IOCs, which is realized using more space-efficient hash sets.
In case a worker detects an IOC, the hit is reported to the
manager, who looks up the associated meta data and logs the
match enriched with context information and IOC meta data.

B. Comparison of Different Implementations

In preparation of operational testing, we evaluate our imple-
mentation in the context of the intended area of application.
We compare cuculiform to the reference implementation and
a reimplementation in Rust7, as well as to the built-in Bro
data types table and set. Our measurements are performed
using a Bro-script and Bro in version 2.5.3. To provide script-
level access to the cuckoo filter implementations, we utilize
Bro’s plugin interface. All measurements have been performed
on HP ProLiantTM DL160 G6 machines, equipped with two
2GHz Intel R© Xeon R© E5504 processors (4 cores each) and 24
GB DDR3 memory.

Table I shows the results of our measurements and parame-
terization details. For each cuckoo filter we add items until it is
filled. All cuckoo filter implementations achieve similar load
factors of about 96%. The false-positive rate is determined
by querying 1 Mi items that have not been added, whereas
lookup-time calculation is based on twice as many queries,
half of which are guaranteed to succeed. Under the given

7https://github.com/seiflotfy/rust-cuckoofilter



TABLE I
COMPARISON OF CUCKOO FILTER IMPLEMENTATIONS

Implementation
Structure Size FP-Rate Lookup-Time

[KiByte] [%] [µs]

Bro Hashtable 211 202.8 - 1.7589
Bro Hashset 145 666.8 - 1.9281
Reference 1 024.0 2.9794 0.9637
Rust 1 024.0 2.9789 1.0847
Cuculiform 1 024.0 2.9787 1.3746

Fingerprint size 8 bit, 4 elements per bucket, 1 Mi elements capacity,
mean of 1 000 runs (confidence intervals negligible)

parameterization, the examined cuckoo filter implementations
differ only slightly in lookup-time. Cuculiform is the slowest,
trading runtime-configuration flexibility for performance, but
still faster than Bro’s built-in table and set types. The main
advantage of cuckoo filters over the traditional data structures
manifests in their size of 1 MiB compared to at least 145 MiB
in case of the hashset.

C. Operational Evaluation

The essential advantage of cuckoo filters over Bro’s tra-
ditional data structures is the reduced memory consumption.
In IV-B, we have shown that cuckoo filters outperform Bro’s
hash sets by a factor of about 140 in terms of memory
costs8. Considering the Intelligence Framework, this effect
applies per worker, as each worker node requires a copy
of the structure to match IOCs. As recent Bro deployments
scale up to 50 workers and more [11], memory savings in
practical operation might exceed 10 GB for this single use
case. Given the genericness of the manager-worker-pattern,
we expect comparable improvements for further use cases in
Bro and beyond.

The memory savings come at the cost of introducing false
positives, which have to be handled. To prove the practical
applicability of cuckoo filters, we conducted a brief operational
evaluation, investigating the overhead imposed on the cluster.
To this end, we integrated cuckoo filters into Bro’s Intelligence
Framework and compared the approach to the traditional
one. For our tests we established a link between two of the
previously described machines, one of the machines serving as
traffic generator, the other hosting a single-worker Bro cluster
distributing worker and manager across different cores. We
ingested 16 000 IPs as IOCs into the Intelligence Framework,
which roughly corresponds to filling a filter with a capacity
of 214 in case of using a cuckoo filter. Finally, we created
an artificially extreme scenario by designing the experiment
to yield a true positive rate of 10% and an intended false
positive rate of 3% for the cuckoo filter variant.

Interestingly, the false positives introduced by cuckoo filters
do not significantly influence the CPU load of the manager.
This can be explained by the fact that the manager immediately
detects false positives and omits any further processing, which

8Note that the actual space efficiency depends on an accurate forecast of
the total number of elements to insert.

0 1 2 3 4 5 6
Time [min]

30

40

50

60

70

80

90

100

CP
U-

Us
ag

e 
[%

]

Traditional (10% HR)
Traditional (13% HR)
Cuckoo Filter (10% HR, 3% FP)

Fig. 3. CPU load of the worker processing ∼ 270 000 connections per minute
for cuckoo filter variant with 3% false positive rate (FP), traditional variant
and traditional variant with increased hit rate (HR).

would be required for true positives. In contrast, the worker
exhibits a higher CPU load in case of the cuckoo filter variant.
Figure 3 shows that the increased load correlates to the number
of hits, which have to be processed. The high processing costs
of hits on the worker can be explained as the worker sends
a considerable amount of meta data related to each hit to
the manager. Hence, the overhead caused by false positives
affects Bro’s workers rather than the manager. All in all, the
application of cuckoo filters trades space costs for processing
time as a function of processed traffic. As cuckoo filters
easily achieve false positives rates below 0.1% and the overall
overhead is distributed across all workers, we consider cuckoo
filters a promising alternative to Bro’s built-in data types.

V. CONCLUSION & FUTURE WORK

In this paper, we investigated the practical applicability of
cuckoo filters in Network Security Monitoring. We provided
insights for the practical application of cuckoo filters not
covered by the original paper. In particular, we would like
to emphasize the dimensioning constraints of cuckoo filters,
whose size has to be a power of two, and the impact of the hash
function choice. Both aspects substantially influence practical
operation.

By integrating our cuckoo filter implementation into Bro,
we demonstrated the feasibility of applying cuckoo filters
to Network Security Monitoring. We verified that the im-
plementation can compete with traditional data structures in
terms of computational performance and allows a remarkable
reduction of space costs. In addition, we found that the
overhead introduced by false positives affects workers rather
than the manager in case of intelligence matching with Bro.
While the conceivable memory savings underline the massive
impact in case of typical NSM architectures, we showed that
the performance trade-offs have to be carefully evaluated case
by case.

For future work, we plan to conduct a case study on real-
world deployments to deepen the understanding of practical
requirements and establish parameterization strategies. In this
context we want to evaluate the recently proposed adaptive
cuckoo filters [12], which allow to mitigate the effect of
recurring false positives. Furthermore, we will address the
dimensioning constraints of cuckoo filters.



ACKNOWLEDGMENT

The authors would like to thank Matthias Vallentin for
pointing out cuckoo filters as a notable Bloom filter alternative.

REFERENCES

[1] B. H. Bloom, “Space/time trade-offs in hash coding
with allowable errors,” Communications of the ACM,
vol. 13, no. 7, pp. 422–426, Jul. 1, 1970, ISSN:
00010782. DOI: 10.1145/362686.362692.

[2] B. Fan, D. G. Andersen, M. Kaminsky, and M. D.
Mitzenmacher, “Cuckoo filter: Practically better than
bloom,” in Proceedings of the 10th ACM International
on Conference on Emerging Networking Experiments
and Technologies, ser. CoNEXT ’14, 2014, pp. 75–88,
ISBN: 978-1-4503-3279-8. DOI: 10 . 1145 / 2674005 .
2674994.

[3] A. Broder and M. Mitzenmacher, “Network applica-
tions of bloom filters: A survey,” Internet Mathematics,
vol. 1, no. 4, pp. 485–509, Jan. 2004, ISSN: 1542-7951,
1944-9488. DOI: 10.1080/15427951.2004.10129096.

[4] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and
J. Lockwood, “Deep packet inspection using parallel
bloom filters,” in 11th Symposium on High Perfor-
mance Interconnects, 2003, pp. 44–51, ISBN: 978-0-
7695-2012-4. DOI: 10.1109/CONECT.2003.1231477.

[5] M. Al-hisnawi and M. Ahmadi, “Deep packet inspection
using cuckoo filter,” in 2017 Annual Conference on New
Trends in Information Communications Technology Ap-
plications (NTICT), Mar. 2017, pp. 197–202, ISBN: 978-
1-5386-2962-8. DOI: 10.1109/NTICT.2017.7976111.

[6] R. Pagh and F. F. Rodler, “Cuckoo hashing,” Journal
of Algorithms, vol. 51, no. 2, pp. 122–144, May 2004,
ISSN: 01966774. DOI: 10.1016/j.jalgor.2003.12.002.

[7] M. Dietzfelbinger, “Universal hashing and k-wise inde-
pendent random variables via integer arithmetic without
primes,” in Annual Symposium on Theoretical Aspects
of Computer Science (STACS 96), vol. 1046, Springer
Berlin Heidelberg, 1996, pp. 567–580, ISBN: 978-3-
540-60922-3. DOI: 10.1007/3-540-60922-9 46.

[8] V. Paxson, “Bro: A system for detecting network intrud-
ers in real-time,” Computer Networks, vol. 31, no. 23,
pp. 2435–2463, 1999.

[9] M. Vallentin, R. Sommer, J. Lee, C. Leres, V. Paxson,
and B. Tierney, “The NIDS cluster: Scalable, stateful
network intrusion detection on commodity hardware,”
in Recent Advances in Intrusion Detection (RAID),
vol. 4637, Springer Berlin Heidelberg, 2007, pp. 107–
126, ISBN: 978-3-540-74320-0. DOI: 10.1007/978- 3-
540-74320-0 6.

[10] J. Amann, R. Sommer, A. Sharma, and S. Hall, “A lone
wolf no more: Supporting network intrusion detection
with real-time intelligence,” in Research in Attacks,
Intrusions, and Defenses (RAID), vol. 7462, Springer
Berlin Heidelberg, 2012, pp. 314–333, ISBN: 978-3-
642-33338-5. DOI: 10.1007/978-3-642-33338-5 16.

[11] V. Stoffer, A. Sharma, and J. Krous, “100g intru-
sion detection,” Lawrence Berkeley National Labo-
ratory (LBL), 2015. [Online]. Available: https : / /
commons . lbl .gov /download /attachments /120063098 /
100GIntrusionDetection.pdf.

[12] M. Mitzenmacher, S. Pontarelli, and P. Reviriego,
“Adaptive cuckoo filters,” in 2018 Proceedings of the
Twentieth Workshop on Algorithm Engineering and Ex-
periments (ALENEX), 2018, pp. 36–47. DOI: 10.1137/
1.9781611975055.4.


