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ABSTRACT

Wind profile observations near the surface are rarely assimilated into numerical weather prediction models.

More and more ground-based remote sensing devices for wind profile observations are used to get profiles

up to the hub height of wind turbines. However, an observation impact of LiDAR-like wind profile

measurements on data assimilation in the atmospheric boundary layer is unknown. We show here the

observation impact of boundary layer wind profile measurements on a sub-kilometre-scale data assimilation

system for the metropolitan area of Hamburg. This data assimilation system is based on the Kilometre-scale

ENsemble Data Assimilation system and the COnsortium for Small-scale MOdelling model. In three stably

stratified test cases, we show a positive observation impact of wind profile observations on wind speed in

analyses and for forecasts. The analysis improvements in wind speed are propagated to improvements in

temperature at forecast time in two of three cases. Additional assimilation of temperature and relative

humidity increases the mean absolute increments only by a small amount compared to increments due to

wind profile observations. Wind profile observations in the atmospheric boundary layer have therefore

valuable information for data assimilation on small scales.
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1. Introduction

Wind distributes energy vertically and horizontally in the

atmosphere. Wind measured in 10-meter height is usually

used for numerical weather prediction (NWP) purposes

(Ingleby, 2015). These single-level observations are not

enough to get information about wind profiles. To meas-

ure these profiles, we need additional observation devices

like wind profilers. Most wind profilers in Europe are

designed for wind measurements of the upper tropo-

sphere, which show large-scale wind tendencies. In upper

tropospheric heights, these wind profilers have their high-

est observation impact on data assimilation (Benjamin

et al., 2004; St-James and Laroche, 2005). In contrast,

profilers for the lower troposphere show influences on the

atmospheric boundary layer, which is governed by small-

scale processes (Stull, 1988). The spatial observation

impact is hence limited, but these measurements could be

used for information about the stratification or low-level

jets. The measurements are further interesting for renew-

able energy sources. Nevertheless, lower troposphere

wind profilers are rarely used for data assimilation, and

there are only few studies about their impact on the

atmospheric boundary layer (ABL) forecast.

It was shown that assimilation of lower troposphere

wind profilers improves the skill of predicted near-surface

stratification by more than 6% in northern China (Hu

et al., 2017). Wind profiler observations are further more

important than radiosonde data for forecasts of wind

speed and direction in coastal areas (Park et al., 2010).

Forecast nudging to single station wind profile
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observations also leads to an error decrease of 27% for

an unobserved station in the North Sea with the Weather

Research and Forecasting model (Mylonas et al., 2018).

Nevertheless, model wind biases in the lower troposphere

can cause a negative impact of SODAR observations on

wind power forecasts in a mesoscale model (Ancell

et al., 2015).

These few results show a potential impact of wind pro-

file observations in the ABL. Some further progress in

renewable energies leads to an emerging potential for

data assimilation. One of the main contributors towards

this potential is the additional use of observations from

existing wind turbines, often built in regions where only

sparse conventional observations are available.

Additional wind information in hub height based on

measured wind power generation of a turbine can be

extracted and assimilated. This information can reduce

the wind speed forecast error up to 0:6 m s�1 (Ancell

et al., 2015). The same potential of these observations

was demonstrated with the recently finished EWeLiNE

project for a local area model in Germany (Declair et al.,

2015). We thus expect that wind observations extracted in

hub height can have a large impact on the forecast of the

ABL, especially during night time and with regard to the

low-level jet.

More and more ground-based boundary layer wind

light detection and ranging (LiDAR) devices are used to

observe the wind speed in hub height (Hasager et al.,

2013), as they have a decreased observation uncertainty

compared to traditional wind towers (Wagner et al.,

2008). Given this increased observability of wind profiles

near wind farms, there is an additional emerging potential

for data assimilation. Because of the limited number of

studies, an observation impact of these observations is

unknown. Here, we will show how we can close this gap.

Wind is connected to temperature stratification via tur-

bulence, which is the driving factor in the stably stratified

nocturnal boundary layer (NBL). We expect that these

connections allow us to propagate an observation impact

from wind profile observations to temperature and other

unobserved variables. We prove this observation impact

in three different test cases with a stably stratified NBL.

Small-scale disturbances influence the NBL, and we

need to resolve these disturbances. We use COSMO with

a horizontal resolution of 450 meters, allowing a three-

dimensional turbulence scheme. Additionally, we use tall

tower data from the Wettermast Hamburg (Br€ummer

et al., 2012) to get LiDAR-like wind profile observations.

These observations are assimilated with a localized

ensemble transform Kalman filter (LETKF) (Hunt et al.,

2007; Schraff et al., 2016). The model combined with the

LETKF is a full four-dimensional non-hydrostatic NWP

model system. This system has an increased complexity

compared to single-column models, which are usually

used for studies about assimilation of tall tower observa-

tions (Baas and Bosveld, 2010; Rostkier-Edelstein and

Hacker, 2013). We are also among the first (Boutle et al.,

2016) setting up a specific high-resolution model and data

assimilation system to forecast the NBL.

Given this model configuration, we can formulate three

different scientific questions, which are answered in this

study:

1. What is the observation impact of wind profile

observations on forecasts of the atmospheric

boundary layer?

2. Can an ensemble Kalman filter represent the

connection between wind speed and temperature in

the nocturnal boundary layer?

3. Can we estimate the state of the nocturnal boundary

layer with a mesoscale numerical weather prediction

model and tall tower profile observations?

We address the ensemble Kalman filter, our model

configuration and observations in the second part. In the

third part, we explain our experimental set-up and

our test case selection, while we present and discuss our

results in the fourth part. Further, we conclude our

results in the fifth section, where we also answer our sci-

entific questions.

2. Sub-kilometre-scale data assimilation system

Our sub-kilometre-scale data assimilation system is based

on the Kilometre-scale Ensemble Data Assimilation

(KENDA) system. KENDA is coupled with a

Consortium for Small-scale MOdelling (COSMO) model

set-up for the metropolitan area of Hamburg. As obser-

vations, we use east- and northwards wind speed compo-

nents (in the following U- and V-wind), temperature and

relative humidity from single tall tower measurements in

northern Germany.

2.1. Kilometre-scale Ensemble Data

Assimilation system

KENDA was developed by the Deutscher Wetterdienst

(DWD, German meteorological service) (Schraff et al.,

2016). It is operationally used as data assimilation

method to initialize deterministic COSMO-D2 forecasts

and their ensemble counterpart COSMO-D2 EPS. It is

based on LETKF (Hunt et al., 2007). In the LETKF, the

analysed ensemble mean �xa represents the most probable

state after applying data assimilation. The increment d�xa

between the background ensemble mean �xb and the ana-

lysed ensemble mean is estimated by weighting the
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background ensemble perturbations X0b with the mean

ensemble weights �wa,

�xa
¼ �xb

þ d�xa
¼ X0b �wa

: (1)

The ensemble mean weights are calculated by applying

the Kalman filter equation in weight space. Based on the

mean ensemble weights and a deterministic square-root

scheme, we can then estimate the analysed ensemble

members. For the equations and implementation, we refer

to Schraff et al. (2016), which follows closely Hunt

et al. (2007).

The weights are estimated on a coarser grid and then

interpolated to the original model grid (Yang et al.,

2009). We can further apply and estimate the weights in a

given assimilation window (Harlim and Hunt 2007; Hunt

et al. 2004) assuming linear evolution. This allows us to

use a fully four-dimensional data assimilation scheme.

Our only type of inflation here is multiplicative covari-

ance inflation (Anderson and Anderson, 1999), applied to

the prior covariance. Covariance inflation is needed

because of model and data assimilation errors, which

cause filter divergence and a degenerated ensemble

(Houtekamer and Zhang, 2016). There, model errors can

evolve in directions which cannot be accounted for by the

ensemble, because the number of ensemble members is

smaller than the model state dimensions. Spurious corre-

lations due to sampling errors in ensemble Kalman filters

are reduced by localization. In the LETKF, observational

localization is used as regularization method to constrain

the influence of observations beyond a given radius. The

distance from the measurement position to the boundary

of our model area is at most 140 km, which is only

around two times larger than the operationally used

localization radius (between 50 and 100 km) (Schraff

et al., 2016). We therefore expect that horizontal spurious

correlations are not a problem, and we use no horizontal

localization. To localize vertically, we use a Gaspari-

Cohn weighting function (Gaspari and Cohn, 1999) as it

is operationally used in KENDA (Schraff et al., 2016).

The multiplicative inflation factor, estimated based on

Houtekamer et al. (2005) and Miyoshi (2005), the used

vertical localization and the coarsened grid are denoted in

the lower part of Table 1.

The observations errors are assumed to be uncorrelated

in space and time. Their standard deviations are thus

independently estimated for every variable and height

based on an iterative scheme and Desroziers et al. (2005).

We further assume that the standard deviations of the

observation errors are constant with height, and we aver-

aged the observation standard deviations over all heights.

These averaged observation standard deviations are

shown in Table 2.

2.2. COnsortium for Small-scale MOdelling model

COSMO is a limited-area, non-hydrostatic numerical

weather prediction model, developed and maintained by

the COnsortium for Small-scale MOdelling. It is a con-

vection-permitting model and is operationally used for

weather prediction in mesoscale (Baldauf et al., 2011)

with resolutions up to 1 km. We use COSMO here with a

higher horizontal resolution of 450m, in a set-up called

COSMO-HH. The model area spans a region around

Hamburg with 500� 300 grid points, which equals

roughly 220� 130 km (Fig. 1). This high horizontal reso-

lution allows us to resolve large eddies (Heinze et al.,

2017). We use a 3D-turbulence scheme with prognostic

equations for the advection of turbulent kinetic energy,

which was developed for the LITFASS project (Herzog

et al., 2002), and only subgrid scale eddies are

parametrized.

Terrain-following vertical coordinates are used in

COSMO. We use a well-tested vertical level set-up with

50 full vertical levels (see also Fig. 2 for levels in the low-

est 600m). Too high vertical resolutions for an untuned

set-up can lead to unphysical oscillations (Buzzi, 2008).

This configuration of COSMO is tuned towards this

Table 1. Important parameters for KENDA COSMO-HH.

Parameter Value

Projection Rotated pole

North pole Lat: 36.063� N, Lon: 170.415� W

Grid points Lat: 300, Lon: 500

Bottom left corner Lat: 0.96� S, Lon: 0.743� W

Horiz. resolution 0.004� (�450 m)

Vertical levels 50

Time step 2 s

Relaxation layer width 10 km

Turbulence scheme 3D-turbulence with TKE advection

Soil model TERRA-ML (7 layers)

Horizontal localization None

Vertical localization Gaspari-Cohn (0.3 ln hPa)

Inflation Multiplicative prior inflation (q¼ 1.5)

Coarsened grid Horizontal: 3 � coarsening

Vertical: 30 levels

Table 2. Estimated standard deviations of observation errors for

assimilated variables.

Variable Observation error

U-wind 0.40 m s�1

V-wind 0.40 m s�1

Temperature 0.36 K

Relative humidity 3.19 %

Wind speed 0.50 m s�1

Stratification 0.90 K (100 m)–1
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vertical level set-up, as it was previously used as oper-

ational model at the DWD. Furthermore, comparable

studies indicate that the vertical resolution is not as

important as the horizontal resolution for the nocturnal

boundary layer (Boutle et al., 2016; Kleczek et al., 2014;

Steiner et al., 2014). TERRA-ML (Schrodin and Heise,

2001) with seven soil layers is utilized as soil model and

provides lower boundary conditions for COSMO-HH.

Our surface heights (shown in Fig. 1) are derived from

a digital elevation model, which is calculated on basis of

the Shuttle Radar Topography Mission (Farr et al., 2007;

NASA JPL, 2013). To estimate soil types, we further use

the soil map of Germany (‘Boden€ubersichtskarte’)

(Bundesanstalt fuer Geowissenschaften und Rohstoffe,

2016), while the land use classification is based on the

CORINE Land Cover inventory (Keil et al., 2011)

2.3. Wettermast Hamburg

The Wettermast Hamburg is a 300-m-tall broadcasting

tower located in northern Germany, south-east of

Hamburg (53:5192
�

N and 10:1029
�

E, denoted as red

cross in Fig. 1). The surrounding area around the

Wettermast Hamburg can be characterized by shallow

industrial buildings in westerly and northerly direction

and rural areas in southerly and easterly direction. The

main city area of Hamburg is about 7 km away from this

tower. We refer to Br€ummer et al. (2012) for more infor-

mation about the tower and the measurements on

this site.

We use U-wind, V-wind, temperature and relative

humidity measurements from seven different heights (2,

10, 50, 110, 175, 250 and 280 meters, see also Fig. 2 for a

schematic overview in comparison with the main model

levels). The measurements in 2m and 10m are observed

at a smaller tower in about 200-m distance to the main

tower. This distance is smaller than our grid spacing, and

we assume that all measurements are at the same hori-

zontal position. To obtain more stable estimates, we aver-

aged all measurements on a 10minutes’ basis. The

Fig. 1. Surface height in meters for the metropolitan area of Hamburg. The black rectangle is showing used model area, and the red

cross is marking the position of the Wettermast Hamburg. Data are based on NASA JPL (2013).

Fig. 2. Wettermast levels (except 2-m height) and main model

levels for COSMO-HH in the lowest 600m.
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measurement instruments, measurement heights and

instrumental accuracy can be seen in Table 3.

We interpolate model output by nearest neighbour to

the horizontal position and linearly to heights of the

Wettermast Hamburg. The derived wind speed is the

square root of the sum of squares of U-wind and V-wind

component. We further define the temperature stratifica-

tion (hereafter stratification) of the i-th height as normal-

ized and discretized vertical potential temperature

gradient @h
@z

between the iþ 1-th and i – 1-th height as

@h

@z

� �

i

¼
hiþ1�hi�1

ziþ1 � zi�1

� 100:

3. Experiments

In this section, we describe shortly our experimental set-

up and the synoptic conditions of our three test cases.

3.1. Experimental set-up

We use an ensemble data assimilation system with 40

ensemble members. The lateral boundary conditions are

given by operationally used ICON-EPS runs with the

same number of ensemble members (Winkler et al.,

2018). These runs have over Europe a horizontal reso-

lution of 20 km. The lateral boundary conditions have

thus a horizontal resolution refinement factor of �44

times the horizontal resolution of COSMO-HH. A similar

refinement factor was used in previous studies (Schraff

et al., 2016). We use only test cases with low wind speed.

We thus expect that small-scale processes are more

important than large-scale processes, and the impact of

the lateral boundary conditions can be neglected. The

ICON-EPS runs are initialized at 1200 UTC and 0000

UTC based on analyses made by an ensemble data

assimilation system. Hourly ICON-EPS forecasts are used

in between these analyses.

We perform three different experiments for every test

case, where we assimilate different variables from the

Wettermast Hamburg (see also Table 4 for assimilated

variables). A control run (hereafter CONTROL) without

any data assimilation is our baseline experiment. We only

assimilate U- and V-wind in the WIND experiment,

which is used to see an observation impact from wind

components only. In the ALL experiment, we addition-

ally assimilate temperature and relative humidity. This

last experiment is used as comparison to estimate an

observation impact of wind components relative to

assimilation of the full tower data. In all assimilation

experiments, we use an hourly assimilation window,

where we assimilate available 10-minute averages in all

available heights.

We initialize every experiment at 1200 UTC based on

interpolated ICON-EPS analyses. All experiments are run

up to 0600 UTC the following day. While we generate an

18-hour control forecast, without data assimilation, in the

CONTROL experiment, we use an hourly analysis cycle

for the WIND and ALL experiment. This analysis cycle

is used to generate an analysis and also an hourly first

guess forecast (in the following called background fore-

cast). For the experiments with assimilation, we run add-

itional 6-hour control forecast initialized from

corresponding analyses at 0000 UTC. We can compare

analysis cycle and control forecasts with these 6-hour

control forecasts. We can further use them to estimate an

accumulated observation impact of the previous 18-hour

cycling on longer lead times in the nocturnal bound-

ary layer.

3.2. Test cases

The wind profile is connected to stratification via turbu-

lence in the boundary layer. These two quantities are

especially related in the stably stratified nocturnal bound-

ary layer. All three test cases have synoptic conditions

where a stably stratified boundary layer developed or pre-

vailed at night time. All test cases further have a strong

wind speed decrease in 50-meter height compared to

Table 3. The used measurements at the Wettermast Hamburg with measurement instrument, heights and

instrumental accuracy.

Parameter Instrument Height in m Accuracy

Temperature PT-100 2, 10, 50, 110, 175, 250, 280 0.1 K

Relative humiditya HMP 45 2, 10, 50, 110, 175, 250, 280 2%–3%

U- and V-wind Sonic USA-1 10, 50, 110, 175, 250, 280 0.1 m s�1

aThe used instrumental accuracy of HMP 45 for relative humidity is humidity dependent, and we only can

specify a range of possible accuracies.

Table 4. Experiment names and assimilated variables.

Experiment Assimilated variables

CONTROL –

WIND U- and V-wind

ALL T, RH, U- and V-wind

TOWARDS ASSIMILATION OF WIND PROFILE OBSERVATIONS 5



previous day time, indicating that turbulence was

decreased at night time.

The first test case (07 June 2016) is representative of a

typical stably stratified nocturnal boundary layer in sum-

mer. Because of high pressure influence, almost no cloud

was formed around the Wettermast Hamburg, while low

clouds were advected into the western part of the domain.

At the Wettermast Hamburg, there was a weakly strati-

fied nocturnal boundary layer with potential temperature

differences of 4K (284.8K in 2-metre height and 288.6K

in 280-metre height) at 0300 UTC, and the boundary

layer height was in 300m.

The second test case (26 October 2016) has a strongly

stratified nocturnal boundary layer with one fog layer at

the ground and a low cloud layer in 175m. As a result of

high pressure and advection of cold air, the 2-metre tem-

perature decreased rapidly in the evening, starting from

around 282K (at 1700 UTC) down to 274.7K (at 0100

UTC). This led to potential temperature differences up to

7K (273K in 2-metre height and 279.8K in 280-metre

height at 0300 UTC) at night time. The nocturnal bound-

ary layer height was relatively low with heights between

50 and 110m.

The third test case (12 November 2016) is character-

ized by a strong inversion in lower heights. This inversion

was induced by radiative cooling and by cold and dry air

advection due to withdrawing of a low pressure system

during day time. At night time, the wind direction veered

from south-westerly winds to south-easterly winds in 10-

m and 50-m height, leading to a temperature decrease in

lower heights. As a consequence, the stratification was

amplified with differences in the potential temperature of

around 6K (267.8K in 2-metre height and 274.1K in

280-metre height at 0300 UTC).

4. Results and discussion

In the following, we will present and discuss our results

with regard to the observation impact of wind profile

observations in the nocturnal boundary layer. We will

firstly concentrate on quantitative observation impact

measures, while we will show qualitatively differences

between our test cases in the second part.

We want to estimate the observation impact of wind

profile observations in the atmospheric boundary layer.

To assess an overall observation impact on the ensemble,

we can use the analysed increment of the ensemble mean

d�xa in (1). The expected value of this increment is zero, if

model and observations are unbiased. We can analyse the

increments of the ensemble mean averaged over all test

cases to discover similarities between different variables

and experiments. If a variable is influenced by data

assimilation, its mean absolute increment (MAI) is always

larger than zero, showing an observation impact on the

ensemble mean of this variable.

To see the overall observation impact of the wind vari-

ables in absolute and relative terms, we will analyse

the mean increments and MAIs in observation space at

the Wettermast Hamburg (Fig. 3a–d). To compare the

impact on different variables, we normalized the incre-

ments by their observational error standard deviations

(Table 2).

The normalized MAIs for wind components and wind

speed are larger than for temperature, relative humidity

Fig. 3. Normalized increment for different variables in (a) &

(b) the WIND experiment and (c) & (d) the ALL experiment. (a)

& (c) represent the mean absolute increment, while (b) & (d) are

the mean increment. Different coloured bars show an observation

impact on different variables. Shown increments are normalized

by their observation errors. Values are calculated based on

ensemble mean of analysis and background for all analysis times

and all heights starting in 10 meters at the Wettermast Hamburg.

The black lines represent the bootstrapped 5% and 95% percentile

based on 1000 samples.

Table 5. Mean error between ensemble mean in CONTROL

experiment and Wettermast Hamburg for U- and V-wind

component, temperature, relative humidity, wind speed and

stratification. The mean error is estimated over all three test

cases and all heights, starting in 10 meters at the

Wettermast Hamburg.

Variable Mean error

U-wind –0.05 m s�1

V-wind 0.56 m s�1

Temperature –0.09 K

Relative humidity 0.93 %

Wind speed 0.48 m s�1

Stratification 0.11 K (100 m)–1
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and stratification in the WIND experiment (Fig. 3a). We

assimilate wind components, instead of wind speed and

direction; thus, the observation impact on the wind com-

ponents is up to 1.3 times larger than on the wind speed.

There is further some impact on temperature and relative

humidity (up to MAI � 0.9), while the impact on stratifi-

cation (MAI � 0.3) is negligible.

Assimilation of wind components decreases wind speed

and the V-wind component in mean, while the U-wind

component is increased (Fig. 3b). The changes of wind

components are smaller than for wind speed, because of

fluctuating increments in time, indicated by wider error

bars compared to the MAI. These normalized mean

increments for wind variables have the same direction

and order of magnitude as the mean errors of the

CONTROL experiment compared to observations (Table

5) and are induced by biases in the model or lateral

boundary conditions. Because of model biases, it is

known that COSMO tends to overestimate the wind

speed in stably stratified boundary layers (Cerenzia,

2017). This overestimation explains the distinct direction

of correction for the V-wind component and the wind

speed in the WIND experiment. The normalized mean

increments for temperature, relative humidity, and strati-

fication are much smaller than for wind variables. The

normalized mean increments for temperature and relative

humidity have also an altering direction as one would

expect by the mean errors of the CONTROL experiment.

This shows that existing model biases for temperature,

stratification and relative humidity are not corrected by

assimilation of the wind components.

The comparison between MAI and mean increments

for the WIND experiment reveals that there is an essen-

tial observation impact on almost all variables, which

cannot be attributed to bias correction. This observation

impact is also evident in non-assimilated variables, such

as temperature and relative humidity.

The number of assimilated observations is more than

doubled in the ALL experiment (156 observations per

hour) compared to the WIND experiment (72 observa-

tions), and we would expect that the observation impact

scales with the number of observations. Nevertheless,

additional assimilation of temperature and relative

humidity observations increases the impact on tempera-

ture by only up to 40% compared to the WIND experi-

ment (Fig. 3c). This discrepancy shows that there is a

redundancy in observation impact between the two

experiments. The wind variables have further a similar

impact on temperature and relative humidity as add-

itional observations of the latter one, suggesting the

importance of wind observations for data assimilation.

By assimilating additional temperature and relative

humidity, we also nudge the model towards these obser-

vations. Model biases of temperature and relative humid-

ity in the background have thus an impact on the

normalized mean increments in the ALL experiment (Fig.

3d). This leads to an increase of the mean increment in

temperature compared to the WIND experiment, while

the mean increment in relative humidity is decreased.

This fact indicates that the covariance-driven relationship

between temperature and wind in the ensemble has an

alternating direction compared to the relationship in

errors. As a consequence, the magnitude of the normal-

ized mean increments in the wind components is also

decreased in the ALL experiment compared to the

WIND experiment.

Assimilation of wind profile observations has a larger

observation impact on increments of wind variables than

temperature and relative humidity. The changes due to

assimilating additional temperature and relative humidity

Fig. 4. Mean absolute increment of wind speed (top) and temperature (bottom) for WIND (left) and ALL experiment (right) at the

second lowest model level (�35m above ground). The spatial average is shown as additional information, while position of the

Wettermast Hamburg is marked by a black cross. Land-sea and German state borders are displayed as dark grey contour lines (based

on GeoBasis – DE/BKG 2018). (a) Mean ¼ 0.59 m/s, (b) mean ¼ 0.72 m/s, (c) mean ¼ 0.40 K and (d) mean ¼ 0.45 K.
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observations are small beside bias correction as shown in

the MAI.

While we have shown the overall observation impact

at the Wettermast Hamburg, we will now investigate the

observation impact in spatial terms (Fig. 4).

The unnormalized MAI has a similar spatial distribu-

tion for wind speed (Fig. 4a,b) and temperature (Fig.

4c,d) for the second lowest model height (� 35m above

ground). The impact of the WIND experiment (Fig. 4a,c)

is comparable in its spatial distribution to the ALL

experiment (Fig. 4b,d). Spatial mean MAIs of the WIND

experiment have further a similar order of magnitude

(more than 80%) to the means of the ALL experiment.

This reveals a similar spatial observation impact of wind

components compared to additional assimilation of tem-

perature and relative humidity. We can state that the

observation impact of wind profile observations on the

increments is large compared to the added value of add-

itional temperature and relative humidity assimilation.

In the western part of the domain, the observation

impact is increased compared to other grid points. This

represents some synoptical features, induced by low

clouds on 07 June 2016, showing that this feature is simu-

lated within our experiments. The observation impact is

decreased for the main city of Hamburg compared to

rural areas outside the city, despite its closeness to the

Wettermast Hamburg. We therefore conclude that obser-

vations at the Wettermast Hamburg are more representa-

tive for the rural area around Hamburg than for the

main city in our model configuration.

In the following, we will analyse an observation impact

of wind profile observation on the analysis and forecast

error in the WIND experiment. We use here ratios of

root-mean-squared errors (RMSE) between analyses and

background forecasts, and background forecasts and the

CONTROL experiment for different variables (Fig. 5) at

the Wettermast Hamburg.

Assimilation of wind components decreases the RMSE

of wind, temperature, relative humidity and stratification

in the analyses compared to hourly background forecasts

(Fig. 5a). In particular, the error in wind components

and wind speed is decreased, while the error decrease in

temperature, relative humidity and stratification is negli-

gible compared to bootstrapped uncertainties.

We can estimate an indirect observation impact due to

propagation by comparison between background fore-

casts and the CONTROL experiment without data

assimilation (Fig. 5b). For the background forecasts,

assimilation of wind components has a neutral impact on

wind variables, while the error for temperature, relative

Fig. 5. Quotient of RMSE between ensemble mean in analysis

and in background forecast (a) and quotient of RMSE between

ensemble mean in background forecast and for CONTROL

experiment (b). Ratios are valid for WIND experiment and are

averaged over all analysis times and all heights, expect 2-meter

height. Coloured bars have the same meaning as in Figure 3. The

black lines represent the bootstrapped 5% and 95% percentile

based on 1000 samples.

Fig. 6. The assimilation impact (a), defined as RMSE

difference between WIND and CONTROL, for wind speed in 50-

m height. Root-mean-squared error of wind speed for (b) analysis

(solid lines, left) and for (c) forecasts with one-hour lead time

(dashed line, right) against observations as function of height and

based on all run times. Three experiments are shown as different

colours (Orange: WIND experiment; Grey: ALL experiment).

The values for the blue CONTROL experiment are almost the

same in (b) and (c), the differences are caused by the time shift of

one hour. Displayed error bars and the tube are calculated based

on bootstrapping with 1000 samples and represent the 5% and

95% percentile of the RMSE. The error bars for the ALL

experiment in (b) and (c) are not shown, because they are almost

the same as for the WIND experiment.
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humidity and stratification is insignificantly increased.

The positive impact of assimilating wind components dis-

sipates in time such that almost no impact remains after

an hour lead time as indicated by the uncertainties.

In our test cases, the low-level jet above the nocturnal

boundary layer is mostly within heights of the

Wettermast Hamburg, and small model deviations in

boundary layer height can lead to large errors in wind

speed. The RMSE of wind speed within the CONTROL

experiment increases with height (Fig. 6), which can be

explained by systematic underestimation of the low-level

jet by COSMO (Buzzi et al., 2011; Steiner et al., 2014).

At analysis, the model error is significantly decreased

by assimilation of wind components, especially in heights

of the low-level jet. The positive observation impact

diminishes with lead time (Fig. 6a). After 20minutes,

almost no observation impact is left, while afterwards we

have a negative assimilation impact. This is caused by

model errors and miss-represented processes as we will

show later. Additional assimilation of temperature and

relative humidity increases the error compared to the

WIND experiment, especially in upper heights (Fig. 6b).

This indicates a negative impact of temperature and rela-

tive humidity on the analysis of wind speed in heights of

the low-level jet.

Forward propagation in time increases the RMSE

compared to analysis in the WIND and ALL experiment

(Fig. 6c). For assimilation of wind components, some

small positive observation impact remains compared to

the CONTROL experiment in heights above 50m.

Nevertheless, these RMSE differences between different

experiments are insignificant, and we cannot say if they

are by chance. This also shows that additional assimila-

tion of temperature and relative humidity profile has only

a small impact on the forecast.

To analyse an observation impact on longer lead times

across the three test cases, we will assess the forecast

impact qualitatively with six-hour control forecasts

started at 0000 UTC for wind speed (Fig. 7) and tem-

perature (Fig. 8).

The wind speed is overestimated across all three test

cases and in all experiments in 50-m height (Fig. 7),

yet all forecasts have a high similarity in their temporal

Fig. 7. Time series of wind speed difference between

interpolated model output and observations in 50-meter height

for all three test cases (a for 07 June 2016, b for 25 October 2016

and c for 12 November 2016). Four different colours show four

different types of forecast (Blue: CONTROL experiment without

assimilation; Orange: six-hour forecast started with analysis of

WIND experiment at 0000 UTC; Red: analysis cycle of WIND

experiment; Grey: six-hour forecast started with analysis of ALL

experiment at 0000 UTC). Solid lines display the ensemble mean,

while orange tubes are estimated ensemble spread based on 5%

and 95% percentile of WIND experiment’s control forecast.

Fig. 8. Time series of temperature differences between

interpolated model output and observations in 50 meter height

for all three test cases (a for 07 June 2016, b for 25 October 2016

and c for 12 November 2016). Four different colours show four

different types of forecast (Blue: CONTROL experiment without

assimilation; Orange: six-hour forecast started with analysis of

WIND experiment at 0000 UTC; Red: analysis cycle of WIND

experiment; Grey: six-hour forecast started with analysis of ALL

experiment at 00 UTC). Solid lines display the ensemble mean,

while orange tubes are the ensemble spread based on 5% and

95% percentile of WIND experiment’s control forecast.
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development. The cumulative effect of wind components

assimilation up to 0000 UTC generally decreases the fore-

cast error in two of three test cases (Fig. 7a,b), showing a

positive observation impact on forecasts. The ensemble

spread of the WIND experiment is also large enough to

cover almost all different experiment trajectories.

Nevertheless, the spread is sometimes too small to explain

differences between forecasts and observations. This indi-

cates that we have a reasonable ensemble spread, while

also uncovered biases remain in the forecasts. These

biases cannot be reduced by additional assimilation of

temperature and relative humidity on 07 June 2016 and

25 October 2016, because the potential to correct possible

wind speed deviations is already covered by the wind

components. In the first two test cases, the assimilation

impact diminishes after 4-hour lead time, which is longer

than the previously shown 40minutes (Fig. 6a).

On 12 November 2016 (Fig. 7c), the errors in wind

speed have the highest magnitudes across all test cases.

Here, the forecast error of the WIND experiment is

increased compared to the CONTROL experiment. This

deviation can be partially corrected by additional assimi-

lation of temperature and relative humidity. The forecast

error of the ALL experiment is nevertheless increased

compared to the CONTROL experiment before 0400

UTC. There have to be some important processes, which

cannot be reproduced by our forecasting system.

Additional assimilation of wind components within the

shown time windows has a negligible impact on forecast

of the wind speed. While overestimation is decreased at

analysis, the trajectories backdrop to previous biases with

increasing lead time. This backdropping explains the 40-

minute memory time in Fig. 6. The overestimation of

wind speed within the nocturnal boundary layer cannot

be corrected by wind observations. This indicates intrinsic

problems of COSMO or a too strong forcing by the lat-

eral boundary conditions in this test case.

The forecast error decrease after 0400 UTC is only

identifiable in the ALL experiment. This suggests that

problems in this test case might be related to temperature

and relative humidity. Despite these problems, we can say

that assimilation of wind components has a positive

observation impact on the forecast of wind speed, while

improvements due to additional assimilation of tempera-

ture and relative humidity are only discernible in the last

test case.

Fig. 9. Modelled and observed wind speed (FF, a, b & c) and potential temperature (TP, d, e and f) at 0300 UTC for 07 June 2016 (a

& d), for 25 October 2016 (b & e), and for 12 November 2016 (c & f). Transparent orange lines are 40 ensemble members from forecast

of WIND experiment based on analysis at 0000 UTC, while the ensemble mean from this forecast is shown as bold orange lines with

crosses as marker. The blue line is the ensemble mean CONTROL experiment, while the forecast of the ALL experiment is displayed in

grey. The red line is the analysis of the WIND experiment at 0300 UTC, nudged towards the black observations.
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At the beginning of the shown six hours, the forecast

error of the WIND experiment equals almost the forecast

error of the CONTROL experiments in two cases (Fig.

8a,b). With lead time, the forecast error is improved in

the WIND experiment compared to the CONTROL

experiment in these two cases. This shows that the impact

of the wind profile assimilation is propagated to the tem-

perature in time via an improved estimate of the turbu-

lence. The memory time of the assimilation impact is

four hours for the first test case (Fig. 8a), which is similar

to the memory time within the wind speed (Fig. 7). The

negative assimilation impact for the ALL experiment in

the second test case (Fig. 8b) is induced by fog. Whereas

COSMO represents the fog feature, the additional assimi-

lation of temperature and relative humidity leads to a too

thick continuous layer of fog. This reduces the effect of

radiative cooling on the temperature and induces a posi-

tive bias in the temperature for the ALL experiment.

On 12 November 2016 (Fig. 8c), the temperature is

overestimated by all models, which cannot be compen-

sated by the ensemble. In this case, assimilation of wind

components increases the error compared to the

CONTROL experiment for forecast and analysis. The

forecast error of the ALL experiment is further increased

in the first forecast hours. After 0230 UTC, the tempera-

ture forecast of the ALL experiment improves, leading to

a decreased error compared to the CONTROL experi-

ment, which is not apparent in the WIND experiment.

This improvement in temperature is advanced compared

to the results for wind speed. These problems in this test

case are thus induced by processes with a direct impact

on the temperature forecast.

In Figs. 7 and 8, we compared different experiment for

a single height. To further understand what processes are

leading to given overestimation of wind speed and tem-

perature, we analyse the vertical profile of wind speed

and potential temperature at 0300 UTC for all three test

cases (Fig. 9).

The wind speed is overestimated compared to observa-

tions in all heights (Fig. 9a–c). Despite this bias, the

observations are covered by at least some ensemble mem-

bers. We can state that the ensemble spread in the WIND

experiment is large enough to cover these differences.

Similar to previous results, the differences between

observed and forecasted wind profile are decreased for

the WIND experiment compared to the CONTROL

experiment in two of three test cases (Fig. 9a,b).

Additional assimilation of temperature and relative

humidity decreases the forecast error compared to the

WIND experiment in cases where latter one has a nega-

tive impact (Fig. 9c). The negative impact seems to be

connected to biases in temperature and/or rela-

tive humidity.

On 12 November 2016 (Fig. 9c), most forecast ensem-

ble members have problems to represent the observed

low-level jet, and they have their highest wind speeds

above 175m. Furthermore, the observed low-level jet in

175m is only partially modelled by some ensemble mem-

bers, whereas the low-level jet is missed for all ensemble

means. The wind speed in 50-meter height is also overes-

timated by almost all ensemble members compared to

observations. Here, the assimilation experiments have a

negative impact on the forecast of the wind speed in the

boundary layer, which can be also seen in Figs. 7 and 8.

This can be explained by assimilation of the wind compo-

nents, which nudges the wind speed to observations. This

nudging seems to disturb the model in its equilibrium on

this test case, leading to an assimilation shock.

The model bias compared to observations is caused by

missing cold air advection in 50 and 110 meters (Fig. 9f).

This missing cold air advection also explains the difficul-

ties to represent this test case with COSMO. In reality,

this cold air advection was caused by a wind shift to east-

erly directions. This phenomenon often occurs at the

Wettermast Hamburg in stably stratified nocturnal

boundary layers and can be partially explained by local

circumstances and the urban heat island of Hamburg.

Nevertheless, COSMO cannot simulate these local proc-

esses, because its resolution seems to be too coarse and

the city effects are also only roughly parameterized by

TERRA-ML. We can thus expect that we can improve

the representation of these local circumstances by prop-

erly modelling the city effects. Large-eddy simulations

with few meters horizontal resolution might be necessary

to fully resolve the dominating processes in this test case

(van Stratum and Stevens, 2015).

We can observe the same data assimilation effects on

potential temperature as for the wind speed (Fig. 9d–f).

Assimilation of wind profile data has a positive impact

on the forecast of the temperature in cases, where the

model can represent the underlying processes. If errors

due to missing processes are not represented by the

ensemble, the corresponding state estimates cannot be

improved by an EnKF. This leads to forecast degradation

in all variables in cases with large model errors. This is

especially the case if no ensemble member can correctly

represent the boundary layer height (Fig. 9e,f). Then, the

boundary layer height cannot be corrected. Not only the

boundary layer height is systematically overestimated, but

also the temperature gradients are smoothed out. This

tendency can be explained by the overestimation of the

wind speed in COSMO, leading to an overestimation of

the turbulence. As a consequence, we can say that we

need to reduce the overestimation of the wind speed to

improve the forecast of nocturnal boundary layer.
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As seen in two of three test cases, the nocturnal

boundary layer is difficult to model with its temporal and

spatial small-scale phenomenon. Despite this, we can con-

clude that assimilation of wind components improves the

forecast of wind speed in the nocturnal boundary layer.

Additional assimilation of temperature and relative

humidity has here only a limited added value. Further,

we can improve the forecast of temperature by assimila-

tion of wind profile observations, especially in weakly

stratified nocturnal boundary layers.

5. Summary and conclusion

There is an increasing potential of wind profile observa-

tions for data assimilation in the boundary layer, but the

observation impact is unknown. In this study, we ana-

lysed this assimilation impact of wind profile observations

on the forecast of a high-resolution COSMO set-up

around the metropolitan area of Hamburg. A LETKF

implemented in KENDA-COSMO was used as data

assimilation framework to assimilate observations hourly

for three different test cases with stably stratified noctur-

nal boundary layers. Two of these three test cases have a

strongly stratified nocturnal boundary layer, which is dif-

ficult to represent with COSMO.

We show that wind profile observations have an obser-

vation impact in terms of MAIs in spatial and temporal

dimensions. We further find a positive or neutral observa-

tion impact of wind profile observations on all variables

at analysis. Further, we improve the wind speed forecast

in two of three cases, while additional assimilation of

temperature and relative humidity had almost no impact.

The positive observation impact of wind profile observa-

tions on the wind is propagated over time to the tempera-

ture, while the impact on the analysis of the temperature

is negligible. These results correspond to the expectation

that turbulence is the driving factor of the nocturnal

boundary layer. We can use wind observations to correct

errors in the turbulence, and hence, in the nocturnal

boundary layer. The connection between wind and noc-

turnal boundary layer is thus revealed by the propagation

step of the ensemble Kalman filter. We further show that

the memory time for the wind speed and our single tower

observations is 4 hours, if the dominating processes are

represented within COSMO.

The third test case is the most difficult test case,

because advection of cold air is missed by almost all fore-

cast ensemble members. This missed advection causes a

bias in the wind forecast. The assimilation of wind com-

ponents does not improve the forecast in this test case.

Here, assimilation nudges the forecast to the observations

and disturbs the model in its equilibrium. Additional

assimilation of temperature and relative humidity

improves the forecast later in the night. Thus, we can

probably avoid the negative impact by additional assimi-

lation of other observations at other locations, which can

also increase the memory time of the assimilation. We do

not prove this point in this study, because there is only

one single tall tower equipped with measurement devices

in our studied region. To combine wind observations

from different sources, geo-statistical methods might be

needed. These additional geo-statistical methods can help

to decrease the discrepancy in representing the wind

between model forecast and observations (B�edard

et al., 2015).

COSMO has problems to correctly represent strongly

stratified nocturnal boundary layers. These problems are

especially evident with the low-level jet in the third test

case, while there are also some problems related to fog

and radiative cooling, leading to biases within the tem-

perature. Nevertheless, we prove that we can create an

analysis of the nocturnal boundary layer with tall tower

profile observations and a sub-kilometre-scale data

assimilation framework, if the forecast model can repre-

sent governing influences on the nocturnal boundary

layer. All in all, the limiting factor for the improvement

by assimilation is the ensemble spread and the used fore-

cast model. We therefore expect that we can further

improve the results with an improved forecast model.

Higher horizontal resolutions together with large-eddy

simulations might be needed to fully represent the domi-

nating processes in the nocturnal boundary layer (van

Stratum and Stevens, 2015). Based on our results, we

conclude that horizontal resolution, the land model and

properly representation of turbulent processes in the noc-

turnal boundary layer are more important for modelling

the nocturnal boundary layer than the size of the domain

or vertical resolution.

Consequently, we infer from our results a high poten-

tial of ground-based wind profile observations, like

LiDARs, in the atmospheric boundary layer for data

assimilation. We expect that this high potential is even

more evident, when wind profile observations at diverse

positions are assimilated into high-resolution NWP mod-

els. Data assimilation of surface-near wind profile obser-

vations has therefore the potential to be a missing key for

forecast improvements of wind and stratification in the

atmospheric boundary layer.
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