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Abstract

Global climate change and other anthropogenic stressors have heightened the need to rap-

idly characterize ecological changes in marine benthic communities across large scales.

Digital photography enables rapid collection of survey images to meet this need, but the

subsequent image annotation is typically a time consuming, manual task. We investigated

the feasibility of using automated point-annotation to expedite cover estimation of the 17

dominant benthic categories from survey-images captured at four Pacific coral reefs. Inter-

and intra- annotator variability among six human experts was quantified and compared to

semi- and fully- automated annotation methods, which are made available at coralnet.ucsd.

edu. Our results indicate high expert agreement for identification of coral genera, but lower

agreement for algal functional groups, in particular between turf algae and crustose coral-

line algae. This indicates the need for unequivocal definitions of algal groups, careful train-

ing of multiple annotators, and enhanced imaging technology. Semi-automated annotation,

where 50% of the annotation decisions were performed automatically, yielded cover esti-

mate errors comparable to those of the human experts. Furthermore, fully-automated anno-

tation yielded rapid, unbiased cover estimates but with increased variance. These results

show that automated annotation can increase spatial coverage and decrease time and

financial outlay for image-based reef surveys.
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Introduction

Coral reefs provide habitat to a wide diversity of organisms, and substantial economic and cul-

tural benefits to coastal communities [1,2]. These functions are threatened by global declines in

coral cover caused by a wide diversity of natural and anthropogenic disturbances including

global climate change and ocean acidification [3]. The decline in coral cover has been dramatic,

with> 80% decrease in the Caribbean over the last four decades [4], and 1–2% loss each year

in the Indo-Pacific between 1997 and 2003 [5]. These rates of decline are forecast to increase

[6], and extensive surveys are urgently needed to better understand the “coral reef crisis” [7]

and contextualize effective ecosystem-based management for this critical ecosystem [8].

Reef surveys have traditionally been performed in situ by scuba divers skilled in marine

ecology and capable of identifying and counting taxa underwater. In situ surveys enable accu-

rate observations, but they are time-consuming and allow only small areas of the reef to be sur-

veyed. Additionally, they are dependent on the skill of the experts conducting the surveys, and

the data are usually not available for re-analysis. In situ surveys were largely replaced by image-

based surveys when high quality underwater cameras became available at an economic price in

the early 1960’s [9], coincident with the proliferation of scuba as a tool for underwater research.

Image-based surveys are advantageous as they allow faster data collection and provide a per-

manent record that can be analyzed for organism abundance [10] and demographic properties

[11]. However, quantifying organisms in benthic photographs is more challenging than in situ

inspection, due to limited image resolution, variable lighting conditions, water turbidity, and

the inability to interact physically with the benthos. Although some efforts have been made to

quantify accuracy and inter annotator variability in surveys conducted using underwater video

transects [12,13], there is little information describing the variability associated with annota-

tions of coral reef survey images.

Since the turn of the new millennium, the application of image-based tools for marine ecol-

ogy has changed dramatically in three domains. First, improvements in digital photography

have allowed large numbers of images to be gathered at increasing resolution. Second, the capa-

bilities of computers and software to manipulate, store, and analyze images have increased by

orders of magnitude. Third, advances in robotics and control theory have enabled the construc-

tion of autonomous underwater vehicles (AUVs), remotely operated vehicles (ROVs), and

imaging sleds that can capture thousands of survey images in a single deployment [14–17].

However, the capacity to analyze images has not advanced at a pace commensurate with the

capacity to collect them. This has created a ‘manual-annotation’ bottleneck between the rapid

image acquisition and the quantitative data needed for ecological analysis.

Generating quantitative ecological information from underwater images typically involves

random point annotation to estimate the percent cover of the substrata of interest. To generate

these data, substratum types are identified, usually manually by an expert in that ecosystem, for

a number of randomly selected locations in each image. Statistically valid sampling of benthic

habitats with image- and point- based tools requires careful attention to the primary purpose

of the study, choice of the experimental and statistical approaches necessary to answer the

questions being addressed, and the statistical power (i.e., a function of sample size, variance,

and desired difference to be detected) required to test the hypotheses of interest. These experi-

mental design components are not the focus of this paper, and interested readers are referred

to the many excellent texts on these subjects [10,18]. Instead, we focus on the means and accu-

racy by which quantitative information can be manually and automatically extracted from

underwater images using random point annotation, specifically for near-shore tropical marine

environments.
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Point annotations are typically preformed using manual annotation software like Coral

Point Count with Excel Extensions (CPCe) [19], photoQuad [20], pointCount99 [21], Biigle

(biigle.de) or Catami (catami.org), which facilitate the annotation process by providing user

interfaces and tools for the export of relevant data. Recently, there have been several efforts to

automate point annotation of benthic survey images [22–26], but the implementation of these

tools has been hindered by two issues. First, while human experts have been annotating benthic

images for decades, the accuracy of this procedure (i.e., intra-annotator error) remains largely

unknown, as does the extent to which results varies between annotators (i.e., inter-annotator

error). This information is critical as it provides a baseline against which the efficacy of current

and future automated annotation methods can be assessed. Second, there is scope to develop

“hybrid” annotation modes, which automatically annotate a significant portion of the data, but

defer the most uncertain identification decisions to human annotators. The value of such

modes will depend on the quantitative means by which “uncertain” is evaluated, and on the

appropriate trade-off between accuracy and efficiency for the question at hand.

In this paper we focus on codifying the criteria for implementing an existing automated

image analysis tool [24] for coral reef survey images. Specifically, we sought to answer two

questions: (1) what is the baseline variation among human experts in the analysis of benthic

communities that we would hope to equal or improve upon through automated methods, and

(2) what is the appropriate framework for optimizing the trade-off between the high accuracy

of a human annotator and the high efficiency of an automated annotator? To answer the first

question, we designed a study in which we quantified the variability among multiple experts in

the analysis of benthic images from coral reefs in Moorea (French Polynesia), Nanwan Bay

(Taiwan), the northern Line Islands, and Heron Reef (Great Barrier Reef), and compared their

results to those obtained through computer-based automated analysis. To address the second

question, we then altered the requirements for more (or less) human supervision in the modes

of annotation in order to quantify the trade-off between accuracy and efficiency. Finally, a key

contribution of this work is that the methods developed for automated annotations are incor-

porated in the random point annotation tool of CoralNet (coralnet.ucsd.edu), which is publi-

cally available.

Materials & Methods

Digital photoquadrats from coral reefs in four locations throughout the Pacific, with 671–3472

images per location, were used to provide a diverse model system for testing our analytical

tools (Table 1). These images were originally annotated by experts using 24–200 random point

locations superimposed on each image. From each image set at each location, 200 images were

randomly selected and designated as the Evaluation set; the remainder were designated the Ref-

erence set. The four Evaluation sets were then re-annotated independently, and without prior

knowledge of the initial annotations, by each of six human experts at 10 point locations in each

image, sub-sampled at random from the original point locations. Following the human annota-

tion, an implementation of a computer vision algorithm [24] was then used to automatically

annotate the same 10 points per image. The four Reference sets were used to train the auto-

mated annotator, and were made available as training material for the human experts. The

multiple sets of annotations were used to evaluate intra- and inter-annotator variability and to

evaluate the proposed operational modes of automated annotation. All images and data used

in this study are made available at (doi:10.5061/dryad.m5pr3).
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Study locations

Digital photoquadrats were obtained from projects monitoring coral reef community structure

in the outer and fringing reefs of Moorea (French Polynesia), Kingman, Palmyra, Tabuaeran

and Kiritimati atolls (northern Line Islands), Nanwan Bay (Taiwan), and the platform reefs at

Heron Reef (Great Barrier Reef, Australia). These study locations were selected because they

offered legacy data involving large numbers of images that had been annotated with equivalent

random point methodologies by experts with extensive experience in identifying benthic

organisms from photographs at their respective locations. In each location, multiple species of

scleractinian corals, macroalgae, crustose coralline algae, and various non-coral invertebrates

densely populate benthic surfaces, and photoquadrats are characterized by complex shapes,

diverse surface textures, and intricate boundaries between dissimilar taxa. Additionally, water

turbidity and light attenuation degrade colors and image clarity to varying degrees for the four

image sets, presenting a challenging task for both manual and automated annotation. It should

be noted however, that these are all typical conditions, and these image sets represent typical

survey images taken for purposes of coral reef ecology.

The four locations also represent the great variation commonly found within and among

photographic surveys of shallow (< 20 m depth), Pacific coral reefs. This variation includes dif-

ferences among locations in species diversity and their colony morphologies, variation in cam-

era equipment (e.g., angle of view, and resolution), distance between camera and benthos (and

whether the distance was constant among photographs), and the mechanism employed to

compensate for the depth-dependent attenuation of sunlight (i.e., through the use of strobes

and/or manual white balance adjustment of camera exposures). The photographs from

Moorea, the Line Islands and Nanwan Bay were recorded using framers to hold the camera

Table 1. Summary of image resources.

Moorea Line Islands Nanwan Bay Heron Reef

Investigator P.J. Edmunds J. Smith T-Y Fan C. Roelfsema

Sampling year 2008 2005 2012 2007

Reef type Fringing reef Fringing reef Fringing reef Platform reef

Geomorphic zone (Photo
depth)

Fringing reef (2–5 m), Fore reef (10 m & 17
m)

Reef flat / lagoon (2–5
m)

Fore reef (2–5
m)

Fore reef (5 m) Reef flat (1
m)

Image cover (cm) 50 × 50 65 × 90 35 × 35 50 x 65

Image size (px.) 6.24 M 7.1 M 9.98 M 6.2 M

Spatial res. px. (mm2) 24.96 12 81.46 19.08

Camera Nikon D70 Olympus 7070 Canon G12 Canon A540

Lighting Dual Nikonos SB 105 strobes No lighting, manual w.b. No lighting No lighting

Evaluation set

# images 200 200 200 200

# anns. image-1 10 10 10 10

# total anns. 2,000 2,000 2,000 2,000

Reference set

# Images 471 532 690 2,597

# anns. image-1 200 100 50* 24

# total anns. 94,200 53,200 34,260 62,328

Tabulated information about the four original reef-surveys used in this study.

# = number of, anns. = annotations, M = million, res. = resolution, px. = pixel, w.b. = white balance,

* Some images are only annotated with 49 points.

doi:10.1371/journal.pone.0130312.t001
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perpendicular to, and at a constant distance from, the sea floor. Underwater strobes were used

in Moorea to restore surface color and remove shadows from images, and in the Line Islands,

image-colors were adjusted through manual adjustment of the white balance for each series of

images. Neither strobes nor color correction were used to record photoquadrats in Nanwan

Bay. Finally, at Heron Island, the reef was recorded using a camera (without strobes or white

balance correction) that was hand-held above the reef using a weighted line suspended below

the camera to maintain an approximately fixed distance to the sea floor [27]. Refer to Fig 1,

and S1 Fig for sample images from the locations, to Table 1 for a data summary, and to S1

Appendix for additional details on the survey locations.

Label-set

When this study began, the photoquadrats from each of the four locations had already been

manually annotated by the local coral reef experts using four different label-sets defined by the

respective experts. To make comparisons of annotator accuracies between locations, a consen-

sus label-set was created to which the four original label-sets were mapped (Table 2). The con-

sensus label-set consisted of 8 scleractinian genera and 1 ‘other scleractinians’ label; 3 algal

functional groups (macroalgae, crustose coralline algae (CCA), and turf algae); and 9 other

labels that included sponges, sand, and the hydrozoanMillepora. In our analysis we also con-

sidered all coral labels together as a coral functional group. The labels of the consensus label-

set were chosen to enable a one-to-one or many-to-one mapping from the original label-sets in

Moorea, Line Islands, and Nanwan Bay. Corals were not resolved to genus level in the original

Heron Reef label-set and all Archived coral annotations were therefore mapped to the generic

‘other scleractinians’ label for this location.

Fig 1. Sample photoquadrats. Sample photoquadrats acquired and annotated as part of long-term
monitoring projects on shallow coral reefs (� 17-m depth). (A) Moorea, French Polynesia, acquired with
strobes and framer (50 x 50 cm); (B) Palmyra, northern Line Islands, acquired using a manual white balance
and framer (65 x 90 cm); (C) Nanwan Bay, Taiwan acquired with framer (35 x 35 cm) but neither strobes nor
white balance; (D) Heron Reef, GBR, acquired without framer, strobes or white balance.

doi:10.1371/journal.pone.0130312.g001
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Manual Annotations

As part of the present analysis, the photoquadrats from each of the four locations were manu-

ally re-annotated by six human experts. The local expert familiar with each location were desig-

nated as the ‘Host’, and the other five experts with less familiarity with the specific locations

were designated ‘Visitors’. All six were experts in identify corals and benthic taxa at coral reefs

in the tropical Pacific Ocean. The annotations completed by the Hosts prior to the present

study as part of the original ecological analyses were denoted ‘Archived’. One to six years had

passed since the original annotations were made, and thus we reasoned that the Hosts would

not be biased by their own original annotations. We emphasize that there are four Hosts in this

study; one for each location, and that the Hosts for each location re-annotated the same points

in the same images that they had annotated previously themselves. Intra-annotator variability

could thus be measured by comparing the Host and Archived annotations. All of the present

annotations were performed using the random point annotation tool of CoralNet (S2 Fig). To

assist the experts in the new annotations, the images and Archived annotations of the Refer-

ence sets from each location were stored in CoralNet and used as a virtual learning tool to

improve identification of the benthic taxa (S2 Fig). All images were scored using 10 points per

image, so with 200 images per location and 4 locations, each annotated by 6 experts, this study

generated 48,000 manual point-annotations. The manual annotation effort required on average

1 minute per image, for a total annotation time of approximately 15 hours per expert. This

Table 2. Consensus label-set.

Label Definition

Acropora Coral genus

Favia Coral genus

Favites Coral genus

Montastraea Coral genus

Pavona Coral genus

Platygyra Coral genus

Pocillopora Coral genus

Porites Coral genus

Other scleractinians Other hard corals

Millepora Genus of hydrozoan coral

Sponges All types of sponges

Soft Coral All soft corals

Crustose coralline
algae

All genera

Turf algae Here defined as multi-specific assemblages: 1 cm or less in height

Macroalgae All genera—defined as larger algae > 1 cm in height

Sand Sand, silt or other fine-grained, soft substratum

Bare space Rock, Basalt, Limestone, Dead coral, Rubble, or other hard substratum. Note, use
this label only if not overgrown by algae

Transect hardware Transect line, wand, and framer. Anything that is part of the sampling methodology

Unclear Dots falling in shadowy, dark or blurry areas, where a class designation is not
possible

All other labels Any substratum not covered by the other labels, e.g., seagrass, other
invertebrates, terrestrial trash

Label-set used in this work, and definition provided to human annotators.

doi:10.1371/journal.pone.0130312.t002
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annotation time was divided into several 1–3 hour sessions over 1–4 weeks depending on the

preference of the annotator.

Automated Annotations

We previously developed an automated annotation system for coral reef survey images [24]. In

this system, the texture and color of a local image patch around a location of interest (i.e., one

of the randomly selected points) is encoded as a count of ‘visual words’, which is a quantization

of the visual appearance space of the image. The encoded visual information is then used,

together with a set of labels, to train the automated annotator, using the Support Vector

Machines (SVM) algorithm [28].

The method of [24] was modified in two ways to increase the accuracy and reduce the run-

time. First, the vector quantization step of [24] was replaced by Fisher Encoding [29] which

was recently shown to improve classification accuracy for various image classification tasks

[30]. Second, the kernel-based SVM of [24] was replaced by a linear SVMs which have signifi-

cantly lower runtime [28–31]. The final method used in this work required 20 seconds to

pre-process each image, the training of the SVM required 5–20 minutes for each location

depending on the size of the Reference set for that location, and automated annotations of an

unknown image from the Evaluation set required< 1 second. The aforementioned times were

measured on a single computational core.

The color and texture information of the images in the Evaluation and Reference sets was

encoded as a 1920 dimensional ‘feature’ vector for the annotated point in each image [29]. The

feature vectors from the Reference set were paired with the Archived annotations to form a

training-set, which was used to train a one-versus-rest linear SVM (S1 Appendix). This train-

ing was performed separately for each location so that the training-set from each location was

used to train a SVM, which was then used to automatically annotate the images in the Evalua-

tion set from the same location.

Since the images in the Evaluation set were selected randomly from the set of available

images, the mean percent cover of each label was similar in the Reference and Evaluation sets.

This means that approximately correct cover estimates of the Evaluation set could be generated

by randomly annotating point locations in the same proportions as is present in the Reference

set. However, in other situations where the automated annotator is trained on data from, for

example, a previous year or another location, the proportions of the different types of annota-

tions (e.g., percent coral) will likely differ between training data (here: Reference set) and test

data (here: Evaluation set). The following pre-processing step was applied to ensure that any

conclusions from this study, with respect to the efficacy of the automated annotator to estimate

percent covers, would be valid in such situations. In this pre-processing step, a randomly

selected subset of the non-coral annotations in the Reference sets was discarded, so that the

proportion of coral annotations increased by 10%. For example, there were 19,566 coral, and

74,634 non-coral annotations in the Moorea Reference set, and therefore, 20.77% was coral. A

random subset of 8,566 non-coral annotations was discarded so that 66,068 non-coral annota-

tions remained. This resulted in a 10% increase in the estimate of coral abundance (22.85%).

Post-processing of annotations

Two inconsistencies in the Hosts’ and Visitors’ annotations were noted and corrected. First,

some expert annotators mapped points on the images that fell on transect hardware to the

‘Transect hardware’ label, while others mapped them to substratum types that were inferred to

occur beneath the hardware based on close proximity adjacent to the hardware. Such discrep-

ancies were due to incomplete instructions to the experts rather than identification difficulties.

Automated Annotation of Benthic Survey Images
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Therefore, any point locations that two or more of the experts mapped to ‘Transect Hardware’

were considered to be transect hardware, and all annotations for that point location were

changed to ‘Transect hardware’ in post-processing.

The second inconsistency arose with the scoring of images fromMoorea because neither the

original label-set in this location, nor the Archived annotations, contained the ‘Bare space’

label of the consensus label-set. Instead, in this location all “bare space” was effectively covered

with CCA and therefore was mapped to a ‘CCA’ label. However, in the annotation of the pres-

ent study, some experts mapped these areas to ‘Bare space’ as the best match to this state in the

consensus label-set. To facilitate a comparison between the multiple sets of annotations, all

‘Bare space’ annotations for the Moorea location were changed to ‘CCA’ in post-processing.

Estimating Annotator Variability

Using the Archived annotations as baseline, the accuracy of annotator a was estimated using

the Cohen’s kappa statistic, and denoted κa [32]. Additionally, ka
C
denoted the Cohen’s

kappa of the binary classification task between a set of labels,C (e.g., corals, macroalgae, or

Acropora), and the labels not inC. For example, kHost
coral denoted the Hosts’ accuracy for the task

of discriminating between coral and non-coral. For notational brevity, the super-script is

henceforth dropped when it is clear from the context which annotator is considered. A one-

sample Kolmogorov-Smirnov test was performed to determine normality of κ. This test yielded

p-values< 0.001 for all labels, annotators and locations, indicating non-normality and the con-

sequent need for non-parametric tests. Differences in κ (using the full label-set) between the

Hosts and Visitors were assessed using non-parametric Mann-Whitney U tests, and difference

between the four functional groups (coral, macroalgae, CCA, and turf algae) was assessed using

a Kruskal-Wallis test, both using the four locations as repeated trials.

Additionally, using again the Archived annotations as baseline, a confusion matrix, Q was

estimated for each location and annotator. Each confusion matrix Q was 20 rows by 20 col-

umns and values at row r, column c in the matrices indicate the ratio of annotations originally

labeled by Archived as label r now classified by the Host, Visitors, and automated annotator,

respectively, as label c.

Modes of Automated Annotation

In this section, the proposed operational modes for semi- and fully- automated annotation are

detailed.

The Alleviate Operational Mode. A one-versus-rest automated classification procedure

generates a vector of classification scores corresponding to each classification decision [33].

The score vector can be used to estimate the certainty of the automated classifier for an unseen

example [34]. For example, if all scores are low and similar to each other, the classifier is more

likely to assign the incorrect label [34]. In such situation, an alternative is to let the classifier

abstain from making an automated annotation decision and instead defer to a human expert.

Such procedure enables a trade-off between the amount of human effort and the accuracy of

the final annotations.

The classification scores were used in an operational mode, which we denote ‘ALLEVIATE’

because it alleviates the workload for the human annotator. The scores were denoted si,k(m)

where subscript i indicate the image, subscript k the point location, andm the class label. For a

given point in an image in the Evaluation set the vector of 20 scores, one for each class, was

denoted [si,k]. Using ALLEVIATE, an automated annotation was only assigned when, for a given

point location, there existed a score si,k(m) such that si,k(m)> �, for some threshold, �. More

Automated Annotation of Benthic Survey Images
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formally, the ALLEVIATE annotations, yAlleviatei;k were defined as:

yAlleviatei;k ¼

(

yAutomated
i;k if max½si;k� > �

yHost
i;k otherwise

where yAutomated
i;k was the automated annotation of point k in image i, and yHost

i;k the corresponding

Host annotation. We denoted by λ(�) the ‘level of alleviation’, the fraction of samples classified

by the automated annotator for a certain threshold, �. A level of alleviation of λ(�) = 50% was

used in the final analysis of ALLEVIATE.

The same alleviation procedure was also used, in one analysis, to combine the Visitors’ and

the automated annotations. However, unless explicitly stated otherwise, ALLEVIATE denoted the

combination of the Hosts’ and the automated annotations throughout this paper.

The Abundance Operational Mode. While the automated annotations are, in general,

less accurate than those provided by human experts [23,24,26], they have the benefit of being,

in contrast to a human expert, deterministic, meaning that the automated annotator will always

make the same classification decision for the same image. If the confusion matrix is known for

the automated annotator, it can be used to generate annotations that are accurate in aggregate

(such as abundance of taxa) even though individual decisions might be erroneous [35,36]. The

corrected abundances will, by design, be unbiased, but with larger variation than those based

on the automated annotations [35].

Using the abundance correction method of [35,36], a fully automated deployment mode,

ABUNDANCE was defined. In this mode, cover estimates for each image i were calculated as:

cAbundancei ðmÞ ¼ ðQ0Þ
�T
cAutomated
i ðmÞ ð1Þ

where cAutomated
i ðmÞ denoted the cover in image i of classm based on the automated annotations,

Q' was a confusion matrix estimated through a 20 fold cross-validation on the Reference set,

and the–T superscript denotes matrix transpose followed by inverse. Note the difference

between Q', which was estimated for the automated annotator from the Reference set and used

in ABUNDANCE, and Q, which was estimated for all annotators from the Evaluations sets and

used to evaluate the final performance.

Performance evaluation based on cover estimates

The estimates of ecological composition based on the operational modes were contrasted with

the estimates based on the Archived, Hosts’, and Visitors’ annotations. The cover of labelm,

for image i, was denoted cai ðmÞ for each annotator (or mode):

a 2 fArchived;Host;Visiting1; . . . ; Visiting5; Alleviateg

In addition, cAbundancei was derived from the automated annotations using Eq 1. The pairwise

differences from the Archived cover estimates for each image were denoted:

da
i ðmÞ ¼ cai ðmÞ � cArchivedi ðmÞ

The average estimation error (bias) for annotator (or mode) a, labelm for the 200 images in

a certain location was denoted:

eaðmÞ ¼
1

200

X

200

i¼1

da
i ðmÞ
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The Mean Absolute Error (MAE) was denoted as the mean absolute value of eo(m) calcu-

lated for a particular substratum and group of annotators across the four locations (e.g., the

macroalgae cover as estimated by the Hosts).

The differences da
i ðmÞ were also used to test the null hypothesis that, for each label, annota-

tor and dataset, the mean of da
i ðmÞ is zero. A one-sample Kolmogorov-Smirnov test was first

performed to determine normality of da
i ðmÞ. This test yielded p-values< 0.001 for all label (or

label groups), annotations, and locations, indicating non-normality and the consequent need

for a non-parametric test. A permutation t-test was therefore performed at the 95% significance

level with a Bonferroni correction for eight comparisons (ALLEVIATE, ABUNDANCE, Host, and 5

Visitors) [37]. The differences da
i ðmÞ were also used to estimate a 95% confidence interval for

all contrasts using the percentile-t bootstrap procedure [37].

CoralNet

As a key contribution of this work, we make implementations of the described modes of opera-

tion (ALLEVIATE, ABUNDANCE, and REFINE (S1 Appendix)) available on CoralNet (coralnet.ucsd.

edu). CoralNet is a software module that has been designed as a repository and online annota-

tion tool for benthic survey images, and it allows users to upload and annotate survey images

with a user-defined label-set. Annotations are performed using a random point annotation

interface similar to that of CPCe [19]. CoralNet also offers tools for browsing images and anno-

tations as well as for viewing and exporting estimated cover statistics. The implementation of

ALLEVIATE allows users to determine the level of alleviation based on the accuracy of the auto-

mated annotator, and REFINE is implemented with 5 suggested labels per point location.

Results

Annotator Accuracy

Substratum identification accuracies. Annotator accuracy was measured as Cohen’s

kappa, κ of the annotators, compared to the Archived annotations. The Hosts’ accuracies dif-

fered among the functional groups (H = 10.08, df = 3, p = 0.018). Specifically, the accuracy for

each functional group was: κcoral = 89.7±1.2%, κmacroalgae = 71.0±4.0%, κCCA = 51.0±9.3%, and

κturf algae = 61.6±6.1% (mean ± SE, n = 4 locations, Fig 2, S1 Table), with the majority of confu-

sion occurring among algal groups (S3 Fig). The Hosts’ accuracy for common coral genera (i.e.,

with> 10 Archived annotations) was κcoral genera = 79.4±4.2% (n = 19, S1 Table). Coral genera

were most commonly confused with other coral genera, in particular with the general label of

‘other scleractinian’. However, there was also notable confusion between the turf algae and

CCA (S3 Fig).

Relationship between abundances and identification accuracies. The Hosts’ accuracies

were not correlated with the benthic covers (r = 0.089, df = 33, p = 0.61), although there were a

few outliers recorded a low (< 5%) cover (Fig 3A). The annotation accuracy of corals (when

considered as a group) was> 80% in all four locations; accuracy of algal groups was> 60%

except for three samples with< 12% cover; and accuracy of coral genera was generally> 80%,

except six samples with< 3% cover.

Inter-annotator variability. The Visitors’ annotation accuracies were lower than

the Hosts’ (U = 26, n = 4, p = 0.029). Specifically, the accuracy for each functional group was:

κcoral = 84.0±1.0%, κmacroalgae = 58.7±2.5%, κCCA = 35.5±3.7%, and κturf algae = 43.3±3.6%

(mean ± SE, n = 20, Fig 2, S1 Table). The Visitors’ accuracy for common coral genera (i.e.,

with> 10 Archived annotations) was κcoral genera = 58.6±2.9% (n = 95, S1 Table). As with the

Hosts, the principal confusion occurred among the algal groups, and the principal confusion
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among coral genera occurred with the ‘other scleractinian’ label (S3 Fig). The lower accuracy of

the Visitors was evident also in the lesser weight across the confusion matrix diagonals com-

pared to the matrix diagonals of the Hosts (S3 Fig).

Modes of Automated Annotation

The accuracy of the automated annotation method was: κcoral = 63.5±4.3%, κmacroalgae =

48.5±11.7%, κCCA = 28.3±16.3%, and κturf algae = 43.8±4.2% (mean ± SE, n = 4, Fig 2, S1 Table).

This drop in accuracy compared to the Hosts (e.g., over 20% for κcoral) suggested that a direct

Fig 2. Annotation accuracy. Accuracy as measured by Cohen’s kappa for the Hosts’ annotations with various level of alleviation, and for the Visitors’
(mean ± SD, n = 5) annotations. The left edge of the alleviation curve corresponds to automated annotations only, and the right edge corresponds to the
Hosts’ annotations only. The first column shows accuracy calculated from the full label-set. Column two to five show accuracy for the task of discriminating
functional groups: coral, macroalgae, crustose coralline algae (CCA), and turf algae, respectively, versus the rest. Columns six, seven and eight show
accuracy for the three dominant coral genera. Genus-level identification for Heron Reef is not provided, as Archived annotations were not available to this
resolution.

doi:10.1371/journal.pone.0130312.g002
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application of the automated annotation method of [24] would not yield reliable cover esti-

mates of benthic substrata. Instead, performance of the automated annotation method was

evaluated within the context of the proposed operational modes.

Semi- automated annotation using Alleviate. ALLEVIATE is a semi-automated annotation

mode, in which the automated annotator has the option of deferring difficult decisions to a

human expert annotator. The ratio of points that are automatically classified was denoted ‘level

of alleviation’, λ. Because the expert annotators were more accurate than the automated anno-

tator, the accuracy of ALLEVIATE increased as λ decreased, and the highest accuracies were

observed when λ = 0%, i.e. when all annotations were done by the Hosts (Fig 2). However, the

trade-off curves between accuracy and automation allow for large alleviation with sustained

high accuracy (Fig 4). Specifically, using the full training-set of available expert-annotated

images in the present study, λ = 38–55% incurred< 5% decrease in κcoral compared to the

Hosts’ annotations (Fig 4A). Similarly, when alleviating the Visitors’ annotations, λ = 38–65%

incurred< 5% decrease in κcoral (Fig 4B). Moreover, a supplementary analysis established that

λ = 32–45% incurred< 5% decrease in accuracy when only 5,000 manual point-annotations

were used for training, which corresponds to ~ 25–200 training images for each of the four

locations (S1 Appendix).

The Mean Average Errors (MAEs) of cover estimates obtained using ALLEVIATE at λ = 50%,

compared to cover estimates from the Archived annotations, were 1.3 ± 0.4% for coral,

2.0 ± 0.8% for macroalgae, 3.6 ± 1.0% for CCA, and 5.6 ± 1.7% for turf algae (mean ± SE, n = 4

locations, Fig 5). The 1.3% coral cover MAE corresponds to a relative error of ~ 4–6% at the

22–31% coral cover recorded across the four locations (Fig 6). These results should be viewed

in the context of the Hosts’MAEs, which were 1.3 ± 0.6% for coral, 1.5 ± 0.4% for macroalgae,

3.4 ± 2.0% for CCA, and 5.0 ± 1.6% for turf algae (mean ± SE, n = 4, Fig 5); and the Visitors’

MAEs, which were 2.2 ± 0.4% for coral, 4.2 ± 1.2% for macroalgae, 7.6 ± 2.1% for CCA, and

Fig 3. Comparison between accuracy and percent cover. Comparison between mean percent cover and annotation accuracies displayed as (A) Cohen’s
kappa for the Hosts, and (B) Difference in Cohen’s kappa between ALLEVIATE and the Hosts, plotted against the percent cover of coral genera and functional
groups. Data is drawn from all four locations except for the coral genera where data was not available for Heron Reef.

doi:10.1371/journal.pone.0130312.g003
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11.9 ± 2.0% for turf algae (mean ± SE, n = 20, Fig 5). The ALLEVIATE MAE for the three domi-

nant coral genera found in Moorea, the Line Islands, and Nanwan Bay was 0.5 ± 0.2% (n = 9,

Fig 5). Again, this was similar to the Hosts’MAE of 0.5 ± 0.2% (n = 9, Fig 5), and lower than

the Visitors’MAE of 1.3 ± 0.3% (n = 45, Fig 5). Notably, the ALLEVIATE cover estimates for the

three dominant coral genera in each location was only different from the Archived cover esti-

mates for one genera: Pocillopora in Nanwan Bay (Fig 6, S2 Table). It was also not different

from the Archived cover estimates with respect to coral cover as a functional group in any of

the locations (Fig 6, S2 Table).

The difference in accuracy κAlleviate – κHost (at λ = 50%) was not correlated with benthic

cover (r = 0.25, df = 33, p = 0.14, Fig 3B). The differences for coral as a group were around -5%

for the four locations, and between -9% and +3% for the coral genera (a positive difference

means that κAlleviate was higher than κ
Host). The only exception was Platygyra, where the differ-

ence was -28.0% at 1.6% cover and -15.3% at 0.5% cover in Nanwan Bay and Line Islands

respectively. The differences for algal functional groups were> -10%, except for macroalgae

and CCA in Nanway Bay where the differences were -19.8% at 6.5% cover, and -15.6% at 3.9%

cover, respectively.

Fully automated annotation using Abundance. Using the abundance correction method

of [35], the ABUNDANCE operational mode can be deployed without any manual annotations.

The MAE of cover estimates obtained in the ABUNDANCE mode was 1.8 ± 1.5% for coral,

3.4 ± 2.3 for macroalgae, 4.1 ± 2.1% for CCA, and 7.2 ± 4.5% for turf algae (mean ± SE, n = 4,

Fig 5). The ABUNDANCE cover MAE of the three dominant coral genera of Moorea, the Line

Islands, and Nanwan Bay was 1.5 ± 0.5 (n = 9, Fig 5). As with ALLEVIATE, these errors should be

viewed in the context of the human errors.

Fig 4. Alleviation levels for Hosts and Visitors. Accuracy as measured by Cohen’s kappa for the task of discriminating corals from other labels, κcoral at
various levels of Alleviation for the four studied locations. The subplots indicate: (A) accuracy of combined Hosts’ and automated annotations, and (B)
accuracy of combined Visitors’ and automated annotations, both compared against the Archived annotations. The surfaces in (B) indicate the maximum and
minimum combined accuracy among the five Visitors, and the solid lines indicate the mean. The black x on each curve indicates the point where κcoral was
5% lower than its maximum value (i.e. a 5% drop compared to the κcoral of the (A) Hosts, and (B) the mean of the Visitors).

doi:10.1371/journal.pone.0130312.g004
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Fig 5. Percent cover estimation differences. Differences in percent cover estimates between the Host and Visiting experts as well as the ABUNDANCE and
ALLEVIATE operational modes and the Archived annotations. Differences are displayed as mean with 95% confidence interval (n = 200 images) for functional
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Discussion

Annotator Accuracy

We have estimated the inter- and intra- annotator variability of human experts for annotating

coral reef survey images. Quantifying this variability is critical to contextualize the performance

of automated annotation methods. For example, if the accuracy of human experts were low for

a certain substratum, the automated annotation accuracy would be expected to be equally low

(since automated annotation methods are commonly trained on archived, manually annotated

data). Conversely, for labels where the human annotator accuracy is high (e.g., for coral gen-

era), our results establish baselines against which newer generations of automated annotation

systems can be compared.

Intra-annotator variability. Annotator accuracy was measured using Cohen’s kappa (κ)

for intra- and inter- annotator agreement. While κ is widely used to assess annotator agree-

ment for categorical data [38–40], there is no absolute scale against which values of κ can be

gauged. For example, [41] characterized κ< 0 as indicating no agreement, 0–20% as slight

agreement, 21–40% as fair agreement, 41–60% as moderate agreement, 61–80% as substantial

agreement, and> 81% as almost perfect agreement. In contrast, [42] characterized κ< 40% as

poor agreement, 40–75% as fair-to-good agreement, and> 75% as excellent agreement. Using

these interpretations, the Host κcoral of 89.7±1.2% should be considered an “excellent” or

“almost perfect” agreement between the Host and Archived annotations. Similar high accura-

cies have previously been noted for self consistency of human annotations of corals versus

other substratum [13,43]. Ninio et al. investigated accuracy (as defined by agreement with

in-situ observations) for video transects from coral reefs, and observed 96% accuracy for identi-

fying hard corals [13].

The intra-annotator accuracy of identifying algal substrata was lower than for corals. In par-

ticular, for CCA and turf algae Cohen’s kappa were 51.0±9.3% and 61.1±6.1%, respectively,

although this agreement can still be considered ‘moderate’ or ‘fair to good’ [41,42]. The lower

accuracy of algal classification may be due to methodological limitations in discriminating

algae in planar RGB photo-quadrats at common resolutions as used in the present study

(Table 1), but also due to the label definitions of the consensus label-set. For example, the con-

sensus label-set defined turf-algae as a “multi-specific assemblage< 1 cm in height”, while

macroalgae were “larger algae> 1 cm in height” (Table 2). Considering the planar nature of

the photo quadrats, such distinctions can be hard to apply consistently across photographs.

Ninio et al. observed 80% annotation accuracy of algae (as a ‘main benthic’ group) [13], which

is higher than our estimates of algal functional groups annotation accuracy. However, compari-

son of accuracy of algae as a ‘main benthic’ group, with algal functional groups (macroalgae,

turf algae, and CCA) is misleading, since the majority of the algal classification errors occurred

among the algal groups (S3 Fig). Merging the algal functional groups used in this study, the

Host accuracy of discriminating algae (macroalgae, turf algae and CCA combined) versus

everything else, was κalgae = 71.1±1.6% (mean ± SE, n = 4), which is similar to the 80% accuracy

recorded in [13].

The Hosts’ accuracies were not correlated with the abundance of the substratum of interest,

and were> 60% except for five rare substrata occupying< 5% of the benthos (Fig 3). The only

groups (coral, macroalgae, CCA, and turf) and the three most abundant coral genera in each location: (A) Moorea, (B) the northern Line Islands, (C) Nanwan
Bay, and (D) Heron Reef. Archived describes reference annotations, performed by a local expert in each location, against which the other results were
evaluated. ABUNDANCE and ALLEVIATE refer to fully and semi-automated annotation modes. Host refers to re-annotation by the same local expert. Visitors refer
to annotations completed by five coral biology experts who do not regularly work in those locations. Genus-level identification for Heron Reef is not provided,
as Archived annotations were not available to this resolution.

doi:10.1371/journal.pone.0130312.g005
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Fig 6. Percent cover estimates. Percentage cover estimates of functional groups (coral, macroalgae, CCA, and turf algae) and the three most abundant
coral genera in each location as determined by different annotation methods. Values displayed as mean ± SE (n = 200 images) for each location: (A) Moorea,
(B) the northern Line Islands, (C) Nanwan Bay, and (D) Heron Reef. Archived describes reference annotation, performed by a local expert in each location,
against which the other results were evaluated. ABUNDANCE and ALLEVIATE refer to fully and semi-automated annotation modes. Host refers to re-annotation by
the same local expert. Visitors refer to annotations completed by five coral ecology experts who do not regularly work in the locations. Yellow dots indicate
significant differences at 95% confidence between cover estimates from Archived versus other annotations for that label and dataset. Genus-level
identification for Heron Reef is not provided, as Archived annotations were not available to this resolution.

doi:10.1371/journal.pone.0130312.g006
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additional exception was turf algae in Moorea, with 43% accuracy at 11.3% cover. These results

agree with the findings of Ninio et al. who noted highly variable precision when mean covers

were< 3%, but “markedly decreased” variability at higher covers (i.e.,> 3%) [13].

Inter-annotator variability. Inter-annotator accuracy was lower than intra-annotator

accuracy. Differences were large in particular for CCA and turf algae, where the accuracies

were 35.5±3.7% and 43.3±3.6% respectively, which can be considered “fair” [41,42]. This lower

accuracy resulted in cover estimation errors by the Visitors that commonly exceeded 10%

(Fig 5). These results are in contrast with the results of Ninio et al., where the intra-annotator

variability only contributed ± 0.5% to the confidence intervals for benthic group ‘Algae’ [13].

We believe this contrast has two principal causes. First, the multiple human annotators of

Ninio et al. were all familiar and trained in the ecology of the study location [13], while the Vis-

itors of the present study were less familiar with the local ecology and had not (with a few

exceptions) been physically present at the respective locations. Second, as noted above, Ninio

et al. do not report cover estimation on algal functional groups but only in aggregate. Still, it is

clear from our results that rigorous training of expert annotators is critical to achieve reliable

manual annotation of turf and CCA algal groups, in particular where there are multiple experts

involved in the annotation process. Another alternative is to use complementary imaging tech-

niques, such as fluorescence photography [44,45], to make the annotation task less ambigious.

Modes of Automated Annotation

Our results indicate that an automated annotator, deployed in our semi-automated annotation

mode, ALLEVIATE, can make 50% of the annotation decisions without affecting the quality of the

percent cover estimates (Figs 5 and 6), even when limited data are available for training the

automated annotator (S1 Appendix). In particular, ALLEVIATE cover estimates for the three

dominant coral genera in each location, and for the coral functional group, were not different

from the Archived cover estimates (Fig 6). The only exception was Pocillopora in Nanway Bay

which may be due to an erroneous Archived cover estimate, since also the Host’s, and three of

the Visitors’, cover estimates differed (Fig 6). Since the investigated locations exhibit a wide

variety of photographic methodology and habitat structures (Table 1), we believe these results

generalize to other coral reef survey locations, suggesting a wide applicability of ALLEVIATE to

reduce manual annotation work. We further believe that the deployment of ALLEVIATE may

increase the accuracy of the human annotators by allowing them to focus their attention on a

subset of the annotation decisions. This effect has been demonstrated for semi-automated

annotation of plankton samples [46], but would need to be verified in a future user-study for

the present application.

Differences in accuracy between ALLEVIATE and the Hosts were generally small (< 10%), and

not correlated with the substratum abundances (Fig 3). Two outliers were noted. First, the

accuracy of ALLEVIATE for Platygyra was 15–29% lower than for the Hosts (recorded at< 2%

cover). This may be due to the limited amount of available training data for Platygyra (due to

the low cover), and the visual similarity to other massive or encrusting corals with meandroid

or submeandroid corallum morphologies. Second, the accuracy of ALLEVIATE was 16% and 20%

lower for macroalgae and CCA in Nanwan Bay respectively (both recorded at< 7% cover).

This may be due to a combination of limited amount of available training data, and limitations

in the photographic methodology indicated by the low accuracy of the Host: 60.4% and 30.3%

respectively for macroalgae and CCA (Fig 2, S1 Table).

ALLEVIATE uses the classification scores to decide when to make an automated annotation

and when to defer to a human expert. To the best of our knowledge, this approach has not ben

utilized for annotation of coral reef survey images. However, a similar approach was used for
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classification of plankton images acquired using imaging in-flow cytometry, where the specific-

ity of the classifier increased for all classes when only considering decisions where the classifier

was> 65% confident [47,48].

We have also evaluated the efficacy of a fully automated annotation mode ABUNDANCE. Our

results indicates that ABUNDANCE generates unbiased cover estimates, but with larger standard

errors (Fig 5), which is to be expected by the design of the abundance correction method [35].

Large standard errors are undesirable, but can be reduced by collecting and automatically ana-

lyzing more images. In fact, the introduction of fully automated annotation can inform the

underlying random sampling survey design, where for example, more images of coral reefs

could be collected in the field (which is often relatively easy and cost effective) in order to com-

pensate for the larger variance of fully automated annotation modes such as ABUNDANCE [49].

As with ALLEVIATE, the underlying principle of ABUNDANCE has been utilized in other applica-

tions. Indeed, it was originally proposed for automated plankton classification [35], and it has

been commonly utilized for that purpose [47]. It has also been utilized for sentiment analysis

from text corpora [36].

In order for ABUNDANCE to generate unbiased cover estimates, the confusion matrix for the

data that is being sampled must be known [35]. In our experiments, the training data (i.e., the

Reference Sets) were drawn from the same underlying probability density as the sampled data

(i.e., the Evaluation Sets), and the confusion matrices could thus be estimated from the training

data. If, however, the training data and the sampled data are drawn from different locations,

sites, or years, the probability densities may be different [50,51]. In such situations a subset of

the sampled data must be annotated in order to estimate the confusion matrix, and ABUNDANCE

can no longer be considered fully automated. However, it may still offer significant savings

compared to ALLEVIATE or fully manual annotation.

Conclusions

We have established baseline accuracies of human expert annotations of coral reef survey

images, and compared them to a recent method for automated annotation. Our results indicate

that the accuracy of human experts varies with the type of benthic substrata. Annotations of

coral genera have low inter- and intra- annotator variability, while annotations of algal groups,

in particular turf and CCA algae, from those same survey images, have much larger intra- and

inter- annotator variability. This suggests the need for development of photographic methodol-

ogy for visualizing turf and CCA algal groups, and for rigorous training of expert annotators.

We have proposed two modes of operations in which methods for automated annotation

can be deployed semi- or fully- automated. Our results indicate that cover estimates from the

semi- automated annotation mode, ALLEVIATE are of similar quality to cover estimates of man-

ual annotations, while the cover estimates of the fully- automated mode, ABUNDANCE, are unbi-

ased but with higher variance. The appropriate deployment mode will depend on the specific

application. A reef manager for example, might utilize ABUNDANCE for rapid assessment of reef

health, while a benthic ecologist might prefer ALLEVIATE, which requires greater manual effort

but is more accurate. We expect the reduction of annotation time to continue as improved

methods for automated annotation become available. Implementations of the proposed modes

of operation (ALLEVIATE, ABUNDANCE, and REFINE (S1 Appendix)) are available to the public on

CoralNet (coralnet.ucsd.edu).

Supporting Information

S1 Appendix. Supplementary analysis and information. Content: (1) Details of Coral Reef

Survey Locations; (2) Classification Using Linear Support Vector machines; (3) Importance of
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Training Size for ALLEVIATE; (4) REFINE: a Supplementary Operational Mode. S1 Appendix also

includes figures related to the appendix.

(PDF)

S1 Fig. Sample photoquadrats. Sample photoquadrats drawn from the long-term coral reef

projects that served as test data for the present analysis. (First row) 4 photoquadrats (50 × 50

cm) from Moorea; (second row) 3 photoquadrats (65 × 90 cm) from the Line Islands; (third

row) 4 photoquadrats (35 × 35 cm) from Nanwan Bay (Taiwan); (bottom row) 3 photoqua-

drats (50 x 65 cm) from Heron Reef (GBR).

(PDF)

S2 Fig. Screenshots from CoralNet. A) Graphical user interface used to create the Hosts’ and

Visitors’ annotations. B) Browse tool used by the Visitors to learn about the images and the

label-set from previous annotations. The screen-shot shows the result of a user searching for all

Pocillopora annotations from the Line Islands dataset.

(PDF)

S3 Fig. Confusion matrices. Confusion matrices for Moorea, Line Islands, Nanwan Bay and

Heron Reef. Values at row r, column c in the matrices indicate the ratio of annotations origi-

nally labeled by Archived as label r now classified by the Host, Visitors, and automated annota-

tor, respectively as label c. The numbers on the right margin indicate the total count of each

row. For brevity, all annotations of the Visitors are merged into a single confusion matrix and

only labels for which more than 10 annotations were assigned by any of the annotators were

included.

(PDF)

S1 Table. Tabulated accuracies. Annotation accuracies as measured by Cohen’s kappa for the

automated annotator (Aut.), ALLEVIATE at λ = 50% (ALL.), Hosts, and Visitors. All accuracies

are measured as compared to the Archived annotations. The first row in each location is the

accuracy of the full confusion matrix, while the other rows indicate the accuracy of binary clas-

sification between the indicated label or label group and the other labels. These labels or label

groups are: functional groups coral, macroalgae, crustose coralline algae (CCA), and turf algae,

followed by the dominant coral genera (i.e. with> 10 Archived annotations), and the hydro-

zoanMillepora if present in that location. The coral genera are ordered by percent cover based

on the Archived annotations. Note that coral genera are not included for Heron Reef because

the annotations were not resolved to genus level in the original study. The rightmost column

shows the percent cover based on the Archived (Arch.) annotations.

(PDF)

S2 Table. Tabulated p-values. Probabilities that the estimated cover from a set of annotations

and for a certain label and location is the same as the cover estimated from the Archived anno-

tations. Probabilities (p-values as estimated from the permutation t-test) in red italics are

below 0.05 / 8 = 0.00625, which means that the null hypothesis can be rejected at a 95% confi-

dence level with a Bonferroni correction for eight repeated measurements. This implies that

the particular set of annotations is unreliable for cover estimation. For each location, the first

four rows are the functional groups: coral, macroalgae, crustose coralline algae (CCA), and turf

algae, followed by the dominant coral genera (i.e. with> 10 Archived annotations), and the

hydrozoanMillepora if present in that location. The coral genera are ordered by percent cover

based on the Archived annotations. Note that coral genera are not included for Heron Reef

because the annotations were not resolved to genus level in the original study. Columns ABU

and ALL are the ABUNDANCE and ALLEVIATE annotation modes respectively, and V1 to V5 are
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