
Towards Automated Imbalanced Learning with Deep
Hierarchical Reinforcement Learning

Daochen Zha
Kwei-Herng Lai

daochen.zha@rice.edu
Rice University

Houston, TX, USA

Qiaoyu Tan
Sirui Ding
Na Zou

Texas A&M University
College Station, TX, USA

Xia Hu
xia.hu@rice.edu
Rice University

Houston, TX, USA

ABSTRACT
Imbalanced learning is a fundamental challenge in data mining,
where there is a disproportionate ratio of training samples in each
class. Over-sampling is an effective technique to tackle imbalanced
learning through generating synthetic samples for the minority
class. While numerous over-sampling algorithms have been pro-
posed, they heavily rely on heuristics, which could be sub-optimal
sincewemay need different sampling strategies for different datasets
and base classifiers, and they cannot directly optimize the per-
formance metric. Motivated by this, we investigate developing a
learning-based over-sampling algorithm to optimize the classifica-
tion performance, which is a challenging task because of the huge
and hierarchical decision space. At the high level, we need to de-
cide how many synthetic samples to generate. At the low level, we
need to determine where the synthetic samples should be located,
which depends on the high-level decision since the optimal loca-
tions of the samples may differ for different numbers of samples.
To address the challenges, we propose AutoSMOTE, an automated
over-sampling algorithm that can jointly optimize different levels
of decisions. Motivated by the success of SMOTE [4] and its exten-
sions, we formulate the generation process as a Markov decision
process (MDP) consisting of three levels of policies to generate syn-
thetic samples within the SMOTE search space. Then we leverage
deep hierarchical reinforcement learning to optimize the perfor-
mance metric on the validation data. Extensive experiments on
six real-world datasets demonstrate that AutoSMOTE significantly
outperforms the state-of-the-art resampling algorithms. The code
is at https://github.com/daochenzha/autosmote

CCS CONCEPTS
•Computingmethodologies→Reinforcement learning;Ma-
chine learning approaches.

KEYWORDS
Imbalanced Learning; Reinforcement Learning; Automated Ma-
chine Learning; Classification

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’22, October 17–21, 2022, Atlanta, GA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9236-5/22/10. . . $15.00
https://doi.org/10.1145/3511808.3557474

ACM Reference Format:
Daochen Zha, Kwei-Herng Lai, Qiaoyu Tan, Sirui Ding, Na Zou, and Xia
Hu. 2022. Towards Automated Imbalanced Learning with Deep Hierarchi-
cal Reinforcement Learning. In Proceedings of the 31st ACM International
Conference on Information and Knowledge Management (CIKM ’22), Octo-
ber 17–21, 2022, Atlanta, GA, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3511808.3557474

1 INTRODUCTION
Imbalanced learning is a fundamental challenge in many real-world
applications, such as fraud detection, fake news detection, and med-
ical diagnosis [12, 31, 33], where there is a disproportionate ratio
of training samples in each class. This phenomenon will negatively
affect the classification performance since the standard classifiers
will tend to be dominated by the majority class and perform poorly
on the minority class [5]. A common strategy to tackle imbalanced
learning is resampling, which focuses on modifying the training
data to balance the data distribution. In contrast to the algorithm-
level solutions that modify the classifier [16], resampling is argued
to be more flexible as it does not make any assumption on the
classifier so that it is generally applicable to various classifiers [32].

Over-sampling is an effective resampling technique through gen-
erating new synthetic samples for theminority class [16]. One of the
most popular over-sampling methods in the literature is SMOTE [4],
which generates synthetic samples by performing linear interpo-
lation between minority instances and their neighbors, illustrated
at the top of Figure 1. In contrast to the random over-sampling
approach that randomly duplicates the minority instances [12],
SMOTE can make the decision regions larger and less specific,
which could help alleviate the over-fitting issue [8]. Despite its
success, SMOTE can easily generate noisy samples since all the
decisions are randomly made. For example, in Figure 1, one of
the synthetic samples generated by SMOTE interleaves with the
majorities, which could degrade the performance.

Numerous extensions have been proposed to improve SMOTE
with better sampling strategies (there are at least 85 SMOTE variants
as of the year of 2019 [15]). To name a few, ADASYN [10] generates
more synthetic samples for the instances that are harder to learn,
which is quantified by the ratio of the majority instances in the
nearest neighbors. BorderlineSMOTE [8] and SVMSMOTE [29] only
over-sample the minority instances in the borderline, where the
former identifies the borderline based on the nearest neighbors
and the latter trains an SVM to achieve this. To avoid generating
noisy samples, ANS [34] proposes to adapt the number of neighbors
needed for each instance based on a 1-nearest neighbor model.

ar
X

iv
:2

20
8.

12
43

3v
1

 [
cs

.L
G

]
 2

6
A

ug
 2

02
2

https://github.com/daochenzha/autosmote
https://doi.org/10.1145/3511808.3557474
https://doi.org/10.1145/3511808.3557474

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Daochen Zha et al.

Random ly select two
neighbor ing m inor i t i es

Random l i near
inter polat i on

Repeat

RL Agent Met r i c

Update

Minor i t yMajor i t y Synthet i c

Figure 1: The decisions are randomly made in SMOTE (top)
while the decisions in AutoSMOTE are made with an RL
agent to optimize the performance on the validation set (bot-
tom).

However, the existing SMOTE variants heavily rely on the heuris-
tics to perform over-sampling, which could be sub-optimal. On the
one hand, the heuristic sampling strategies are often designed based
on some assumptions, such as samples in the borderline are more
important [8, 29]. However, the assumptions may not well hold
for all the datasets and all the base classifiers, since we may need
different sampling strategies in different scenarios. On the other
hand, the heuristic sampling strategies cannot directly optimize the
performance metric and may not deliver a desirable generalization
performance. Motivated by this, we investigate the possibility of
developing a learning-based over-sampling algorithm to directly
optimize the performance metric. Specifically, we aim to study the
following research question: Given a dataset and a base classifier,
how can we optimize the over-sampling strategy such that the trained
classifier can achieve the best generalization performance?

It is non-trivial to achieve the above goal for the following chal-
lenges. First, it is hard to directly optimize the performance metric.
The sampling is independent of the classifier so that it can only
indirectly impact the performance. We need an effective mechanism
to fill this gap so that the sampling strategy can be learned. Second,
the over-sampling problem has a huge decision space since the
number of generated samples can be arbitrarily large, and each
synthetic sample can be anywhere in the feature space. Third,
over-sampling is a very complex decision that requires hierarchical
reasoning. At the high level, we need to decide the over-sampling
ratio, i.e., how many synthetic samples should be generated. At the
low level, we need to decide where the synthetic samples should be
located. The low-level decision depends on the high-level decision
in that the optimal locations of the samples may differ for different
numbers of samples. The existing algorithms designed for similar
problems, such as automated hyperparameter tuning [45] and neu-
ral architecture search [6], often focus on a flat and much simpler
search space so that they cannot be directly applied to model the
potential interaction effect of the different levels of decisions in
the over-sampling problem. We need a tailored algorithm to jointly
optimize the hierarchical decisions to achieve the best performance.

To tackle the above challenges, we propose AutoSMOTE, an
automated over-sampling algorithm that defines the search space
based on SMOTE and leverages deep reinforcement learning (RL) to

Instance-Speci f i c
Sub-Pol i cy

Low-Level Pol i cy

RL Agent

Sam ple act i on

Im balanced
Data

Base Classi f i er

Rewar d

Envi r onm ent

Nex t state
Cr oss-Instance

Sub-Pol i cy

High-Level Pol i cy

Met r i c

Figure 2: An overview of AutoSMOTE. The RL agent gener-
ates synthetic samples (actions) based on the current data
distribution (state) with a high-level policy for deciding sam-
pling ratios, and a low-level policy for performing actual
sampling, where the high-level policy consists of two sub-
policies that collaboratively make decisions. The environ-
ment takes as input the action and transits to the next state.
The performance metric of the base classifier on the valida-
tion data serves as the reward to update the RL agent.

optimize the generalization performance, illustrated at the bottom
of Figure 1. Motivated by the success of SMOTE and its extensions,
we define a hierarchical search space based on the generation pro-
cess of SMOTE to reduce the decision space. At the high level, we
go through the instances one by one and decide how many samples
will be generated around the current instance. At the low level,
we decide which neighbors to perform linear interpolation and
the interpolation weight to generate a new sample. The high-level
policy is further decomposed into a cross-instance sub-policy for
predicting an overall over-sampling ratio for all the instances and
an instance-specific sub-policy for making personalized decisions
for each instance. Then we formulate this hierarchical search space
as a Markov decision process (MDP), where the three levels of the
policies collaboratively make decisions. We leverage deep hierar-
chical RL to solve the MDP and jointly train the three levels of the
policies to optimize the reward, which is obtained by the perfor-
mance metric on the validation data. Extensive experiments on six
real-world datasets demonstrate the superiority of AutoSMOTE. To
summarize, we make the following contributions.

• Formally define the problem of automated over-sampling
for imbalanced classification.
• Define a hierarchical search space for this problem based on
the generation process of SMOTE. The designed search space
can cover all the possible generated samples by SMOTE and
most of the SMOTE extensions.
• Propose AutoSMOTE for automated over-sampling. We for-
mulate the decision process as an MDP and leverage deep
hierarchical RL to directly optimize the generalization per-
formance. We also present an implementation that runs the
sampling and RL training in parallel on CPU and GPU.
• Conduct extensive experiments to evaluate AutoSMOTE.
We show that AutoSMOTE outperforms the state-of-the-art
samplers under different configurations of imbalanced ratios
and base classifiers. In addition, we present comprehensive
hyperparameter and ablation studies.

Towards Automated Imbalanced Learning with Deep Hierarchical Reinforcement Learning CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

2 PROBLEM STATEMENT
We focus on binary imbalanced classification problems. Let X =

{Xmaj,Xmin} be an imbalanced dataset, where Xmaj ∈ R𝑁maj×𝐷 de-
notes the majority instances,Xmin ∈ R𝑁min×𝐷 denotes the minority
instances, 𝑁maj is the number of majority instances, 𝑁min is the
number of minority instances, and 𝐷 is the feature dimension. We
define IR = 𝑁maj

𝑁min as the imbalanced ratio, where IR > 1. In a typical
classification task, we aim to train a classifier on the training set
Xtrain, tune the performance on the validation set Xval, and evalu-
ate the trained classifier on the testing set Xtest. However, when
IR is large, the classifier may have poor performance, particularly
on the minorities. Over-sampling techniques tackle this problem
by augmenting Xmin with some synthetic samples such that the
classifier can perform well on both majority and minority classes.

Based on the above notations and intuitions, we formally define
the problem of automated over-sampling for imbalanced classifica-
tion as follows. GivenXtrain,Xval, and a classifier𝐶 , we aim to gen-
erate some synthetic samples based on Xtrain to improve the gener-
alization performance of𝐶 . Formally, the objective is to identify the
best synthetic samples Xsyn ∈ R𝑁 syn×𝐷 , where 𝑁 syn is the number
of synthetic samples, such that the performance of 𝐶 on Xval can
be maximally improved when training 𝐶 on Xtrain ∪ {Xsyn}.

3 METHODOLOGY
Figure 2 shows an overview of AutoSMOTE. AutoSMOTE on the
highest level includes an environment, which trains the base clas-
sifier on the over-sampled data and evaluates it on the validation
set, and an RL agent, which learns an over-sampling strategy to
optimize the performance on the validation set in a trial-and-error
fashion. The RL agent consists of a high-level policy, which decides
howmany synthetic samples will be generated around each original
training instance, and a low-level policy, which decides how the in-
stances interpolate with the neighboring instances. The high-level
policy is further decomposed into a cross-instance sub-policy for
predicting an overall over-sampling ratio for all the instances and
an instance-specific sub-policy for making personalized decisions
of how many synthetic samples to generate for each instance. The
three (sub-)policies work collaboratively to generate synthetic sam-
ples, interact with the environment, and are updated based on the
reward signal. We first elaborate on the proposed hierarchical syn-
thetic sample generation process in Section 3.1. Then we formulate
this process as a Markov decision process (MDP) with hierarchical
policies in Section 3.2. Finally, in Section 3.3, we introduce how
to optimize the MDP with hierarchical RL and present a practical
implementation accelerated by multi-processing.

3.1 Hierarchical Synthetic Sample Generation
Given the training set Xtrain, the goal is to generate synthetic sam-
ples Xsyn ∈ R𝑁 syn×𝐷 based on Xtrain, which is a complex decision
because 1) we need to determine the number of samples to generate,
i.e., the value of 𝑁 syn, and 2) we need to decide where each sample
is, i.e., the values of each row of Xsyn. This leads to an extremely
large search space in that there can be an arbitrary number of
samples, and each sample can be anywhere in the feature space.
This subsection introduces how we reduce the search space and
formulate it as a hierarchical decision process based on SMOTE [4].

SMOTE is one of the most popular over-sampling techniques
with many extensions built upon it [2, 15]. The key idea is to gen-
erate a new sample by performing linear interpolation between
a minority instance and one of its nearest neighbors. Specifically,
SMOTE augments the minority instances by repeatedly executing
the following steps until the desired number of synthetic samples
is reached: 1) randomly pick a minority instance, 2) find the nearest
minority neighbors of this instance and randomly pick a neighbor,
3) perform linear interpolation between the selected instance and
the neighbor to generate a new sample, where the interpolation
weight is uniformly sampled in the range of [0, 1]; that is, the new
sample is a “mixup” of the two original instances and lies between
them. We note that all the decisions in SMOTE are randomly made.
As such, many heuristics have been proposed to make the sampling
process more effective, such as only over-sampling the borderline
samples [8], and generating more samples for the instances that
are harder to learn [10]. The generated samples of the existing
extensions often still fall within the generation space defined by
SMOTE.

Motivated by the effectiveness of SMOTE and its extensions, we
propose to formulate the search space based on SMOTE with a
hierarchical decision process. Figure 3 provides an illustrative ex-
ample of how we augment four minority instances with a two-level
decision. At the high level, we go through the instances one by one
and decide how many samples will be generated around the current
instance, which leads to a 4-step decision. For each high-level step,
we will make a 𝑔-step low-level decision to perform linear interpo-
lation, where 𝑔 is the output of the high-level step. In each low-level
step, we decide which neighbors to perform linear interpolation
and the interpolation weight to generate a new sample. After going
through all the instances, we generate 8 synthetic samples in total.

The proposed generation process has several desirable proper-
ties. First, it can significantly reduce the search space because we
only need to decide how the current instance interpolates with its
neighbors rather than blindly sampling a point in the feature space.
Second, it can make personalized decisions. For example, we can
generate more samples for some instances and less for the other
instances. Third, it can cover all the possible generated samples
by SMOTE. Moreover, since the existing SMOTE extensions often
follow the generation space of SMOTE, we can essentially cover
the majority of the SMOTE extensions as well.

3.2 Formulating the Generation as MDP
This subsection formulates the above hierarchical decision process
as MDP. A naive way to achieve this is to use a flat policy. Specifi-
cally, in each step, the agent will either make a high-level decision
or a low-level decision. Taking the sampling process in Figure 3 as
an example, a flat policy will make the following decisions sequen-
tially. In step 1, the agent makes a high-level decision and outputs
1. In step 2, the agent switches to low-level decision and outputs
neighbor 2 and 𝜆 = 0.25. In step 3, the agent comes back to the
high-level decision and outputs 4. In steps 4 to 7, the agent again
makes low-level decisions. Eventually, the agent will take 12 steps
in total to complete the generation process.

However, this flat process will make the agent hard to train for
two reasons. First, the number of steps of the MDP can be extremely

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Daochen Zha et al.

2
3

4
1

1 sam ple

2
3

4
1

High-Level
Decision

Low-Level
Decision

4 sam ples 1 sam ple 2 sam ples

2
3

4
1

2
3

4
1

2
3

4
1

2
3

4
1

2
3

4
1

Neighbor 1

? = 0.25

2
3

4
1

2
3

4
1

2
3

4
1

Or ign ial M inor i t i es Over -sam pled Data

Neighbor 3

? = 0.50

Neighbor 3

? = 0.75

Neighbor 4

? = 0.50

Figure 3: An illustration of the hierarchical decision process. We go through the minority instances one by one, where the
darker blue instance is the current instance to be augmented. At the high level, we decide howmany synthetic instances will be
sampled around the current instance. At the low level, we decide which neighboring instances to perform linear interpolation
and the interpolation weights 𝜆. The low-level decision depends on the high-level decision since the length of the low-level
sampling is determined by the decisions made in the high-level.

large for the real-world dataset. Solving a long MDP is notoriously
difficult [35]. Second, the high-level decision and low-level decision
have very different action spaces. Specifically, the high-level actions
are the numbers of samples to generate, while the low-level actions
are neighbors and interpolation weights. It is difficult to model the
two very different action spaces under a unified policy.

To address these issues, we propose to view the MDP from a
hierarchical perspective. We decompose the MDP by corresponding
the high-level decision with a high-level policy 𝜋ℎ and the low-level
decision with a low-level policy 𝜋𝑙 , where 𝜋ℎ and 𝜋𝑙 use the same
state features and rewards with different action spaces. We define
the state, high-level/low-level actions, and reward below.

• State 𝑠: a vector of features describing the data distribu-
tion. We empirically use the following features: the original
features of the current instance, and the data distribution
features of the current instance. We will provide more details
of these features after defining the state and reward.
• High-level action 𝑔: an integer describing the number of
samples to generate for the current instance. This essentially
defines the goal of the low-level policy.
• Low-level action𝑎: an action that describes which neighbor
to perform interpolation and the corresponding interpolation
weight. We reduce the action space by only considering
the top 𝐾 neighbors. We then discretize the interpolation
weight 𝜆 and choose it from the set {0, 0.25, 0.5, 0.75, 1.0},
which leads to 5𝐾 possible actions in each step. It is possible
that formulating it as a continuous action will lead to better
performance, which we will study in our future work.
• Reward 𝑟 : the reward is obtained by the performance metric
on the validation data. Both 𝜋ℎ and 𝜋𝑙 will receive a zero
reward in the intermediate steps and receive a reward indi-
cating the performance metric in the final step.

The state features consist of two parts as follows.

• Original features:We use the original features of the cur-
rent instance as the first part of the state features.
• Data distribution features: These features describe how
many synthetic instances have already been generated around
the current instance so that the policies can make decisions
based on the previously generated synthetic samples in the

MDP. Specifically, we use a 10-dimensional one-hot encod-
ing to achieve this. Whenever an instance is used for linear
interpolation (i.e., the instance is either used as the starting
point or selected as a neighbor), we add one to the count of
this instance. Then we use 10 bins to compress the length of
the feature. For example, if the count is in the range of [0, 9],
the count is put into the first bin such that the first element
of the feature vector is 1 with the others being 0.

The two policies generate samples as follows. Let 𝑁min be the
total number of minority instances. The high-level policy will
generate one episode with 𝑁min steps. In each high-level step
𝑡ℎ ∈ {1, 2, ..., 𝑁min}, 𝜋ℎ takes as input the current state 𝑠𝑡ℎ and
proposes the goal for the low-level policy 𝑔𝑡ℎ , i.e., how many sam-
ples to generate. Then 𝜋𝑙 takes as input 𝑔𝑡ℎ and tries to accom-
plish this goal by taking 𝑔𝑡ℎ steps, where in each low-level step
𝑡𝑙 ∈ {1, 2, ..., 𝑔𝑡ℎ }, 𝜋𝑙 takes as input the current state 𝑠𝑡𝑙 and outputs
the sampling action 𝑎𝑡𝑙 . The overall generation process will result
in one high-level episode with length of 𝑁min and 𝑁min low-level
episodes, whose lengths are determined by the outputs of 𝜋ℎ . Then,
we obtain a reward with generated samples and set the final steps of
all the high-level and low-level episodes to be the obtained reward,
while all the intermediate steps receive zero reward.

In our preliminary experiments, we find that when IR is large,
we often need to generate more samples. This will significantly
enlarge the action space of 𝜋ℎ , which makes the policy harder to
train. To reduce the action space, we further decompose 𝜋ℎ into a
cross-instance sub-policy 𝜋 (1)

ℎ
and an instance-specific sub-policy

𝜋
(2)
ℎ

, where 𝜋 (1)
ℎ

and 𝜋 (2)
ℎ

use the same state features and rewarding

scheme but differs in the action space. Specifically, 𝜋 (1)
ℎ

only takes
one step in the generation process and outputs a cross-instance
scaling factor 𝑔 (1) ∈ {0, 1, ...,𝐺 (1) }, where 𝐺 (1) is a hyperparam-
eter. 𝜋 (2)

ℎ
performs 𝑁min steps and outputs an instance-specific

scaling factor 𝑔 (2) ∈ {0, 1, ...,𝐺 (2) } for each instance, where 𝐺 (2)
is a hyperparameter. Then the high-level action is obtained by
𝑔 = 𝑔 (1) × 𝑔 (2) . Algorithm 1 summarizes how 𝜋

(1)
ℎ

, 𝜋 (2)
ℎ

and 𝜋𝑙
collaboratively interact with the environment to generate samples.

The above design of three-level hierarchical policies enjoys sev-
eral advantages. First, it can significantly reduce the length of the
episodes. Specifically, the episode length of the 𝜋 (1)

ℎ
is only 1, the

Towards Automated Imbalanced Learning with Deep Hierarchical Reinforcement Learning CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Algorithm 1 Generation process of AutoSMOTE

1: Input: cross-instance sub-policy 𝜋 (1)
ℎ

, instance-specific sub-

policy 𝜋 (2)
ℎ

, low-level policy 𝜋𝑙 , minority instances Xmin ∈
R𝑁

min×𝐷 , max cross-instance scaling factor 𝐺1, max instance-
specific scaling factor 𝐺2, max number of neighbors 𝐾

2: Sample 𝑔 (1) in the set of {0, 1, ...,𝐺 (1) } with 𝜋 (1)
ℎ

3: for instance ID = 1, 2, ..., 𝑁min do
4: Sample 𝑔 (2) in the set of {0, 1, ...,𝐺 (2) } with 𝜋 (2)

ℎ

5: 𝑔← 𝑔 (1) × 𝑔 (2)
6: for iteration = 1, 2, ..., 𝑔 do
7: Sample a top-𝐾 neighbor of the current instance and an

interpolation weight with 𝜋𝑙 , and generate a new sample
8: end for
9: end for

episode length of 𝜋 (2)
ℎ

is 𝑁min, and the length of each low-level
episode is determined by 𝑔, all of which are much smaller than
that of the flat counterpart. Second, by further decomposing the
high-level policy, we can significantly reduce the action space from
𝐺 (1) ×𝐺 (2) to 𝐺 (1) and 𝐺 (2) for the two sub-policies. Third, each
level of the hierarchy plays a different role in the decision, where
𝜋
(1)
ℎ

makes the dataset-level decisions of the desired over-sampling

ratio, 𝜋 (2)
ℎ

makes personalized decisions to allow generating more
samples for some instances, and 𝜋𝑙 performs actual sampling based
on the specified goals. As such, we can naturally model them with
three separate policies to learn these three very different skills.

3.3 Optimizing the Generation Process with
Deep Hierarchical RL

This subsection introduces how we optimize the three-level hier-
archical policies with deep hierarchical RL. We first describe the
training objectives for the three policies. Then we present the over-
all training procedure accelerated by multi-processing.

To enable the training of the policies with gradient descent,
we parameterize the three policies. Following the idea of actor-
critic [35], we associate each of the policies with a policy-value
network. For 𝜋 (1)

ℎ
, we first use an MLP to process the state and

produce a state representation. Then the state representation is
processed by a policy head and a value head, where the policy head
is a fully-connected layer followed by a Softmax layer to produce
action probabilities 𝜋 (1)

ℎ
(𝑔 (1) |𝑠), and the value head 𝑉 (1)

ℎ
(𝑠) is a

fully-connected layer with output dimension of 1. We use the same
procedure to process 𝜋 (2)

ℎ
to obtain 𝜋 (2)

ℎ
(𝑔 (2) |𝑠) and 𝑉 (2)

ℎ
(𝑠). For

𝜋𝑙 , the value head 𝑉𝑙 (𝑠) is obtained in the same way as above. For
the policy head of 𝜋𝑙 , we extract action features, which include
data distribution and interpolation weight. The data distribution
features are extracted in the same way as the state features, and the
interpolationweight features are obtained by one-hot encoding. The
action features are then concatenated with the state representation,
followed by an MLP to produce confidence scores for state-action
pairs. Finally, a Softmax layer is applied to all the state-action pairs
to produce action probabilities 𝜋𝑙 (𝑎 |𝑠).

Algorithm 2 Training of AutoSMOTE

1: Input: 𝜋 (1)
ℎ

, 𝜋 (2)
ℎ

, 𝜋𝑙 ,Xmin,𝐺1,𝐺2,𝐾 , total number of iterations

𝐼 , three buffer sizes 𝐵 (1)
ℎ

, 𝐵 (2)
ℎ

, and 𝐵𝑙
2: Initialize three queue buffers B (1)

ℎ
, B (2)

ℎ
, B𝑙

3: for iteration = 1, 2, ..., 𝐼 do
4: Generate samples following Algorithm 1 and store the gen-

erated episodes to B (1)
ℎ

, B (2)
ℎ

and B𝑙
5: Train on the augmented training data, get reward on valida-

tion data, and set the final steps of all the episodes to be the
obtained reward with all the intermediate rewards as 0

6: if size(B (1)
ℎ
) ≥ 𝐵 (1)

ℎ
then

7: Pop out 𝐵 (1)
ℎ

steps of data and update 𝜋 (1)
ℎ

with Eq. 2
8: end if
9: if size(B (2)

ℎ
) ≥ 𝐵 (2)

ℎ
then

10: Pop out 𝐵 (2)
ℎ

steps of data and update 𝜋 (2)
ℎ

with Eq. 2
11: end if
12: if size(B𝑙) ≥ 𝐵𝑙 then
13: Pop out 𝐵𝑙 steps of data and update 𝜋𝑙 with Eq. 2
14: end if
15: end for

We adopt the feudal hierarchy approaches [30] to train the poli-
cies, where each level of the policies observes the environment
in different granularity, and the three policies are updated simul-
taneously. To train the policies, we adopt IMPALA [7], a modern
distributed deep RL algorithm. Here, we mainly introduce the high-
level procedure since RL itself is not our focus; for readers who are
interested in how IMPALA works, please refer to [7]. Let 𝑠𝑡 , 𝑎𝑡 , and
𝑟𝑡 be the state, action, and reward at step 𝑡 , respectively. For brevity,
here we abuse the notation of 𝑎𝑡 , which will actually be 𝑔 (1)𝑡 and
𝑔
(2)
𝑡 in the context of 𝜋 (1)

ℎ
and 𝜋 (2)

ℎ
, respectively. We consider an

n-step trajectory (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡)𝑡=𝑡
′+𝑛

𝑡=𝑡 ′ . IMPALA uses a V-trace target for
𝑠𝑡 ′ for tackling the delayed model update:

𝑣𝑡 ′ = 𝑉 (𝑠𝑡 ′) +
𝑡 ′+𝑛−1∑︁
𝑡=𝑡 ′

𝛾𝑡−𝑡
′
(
𝑡−1∏
𝑖=𝑡 ′

𝑐𝑖)𝛿𝑡𝑉 , (1)

where 𝑉 (𝑠𝑡 ′) is the value head for 𝑠𝑡 ′ , 𝛿𝑡𝑉 = 𝜌𝑡 (𝑟𝑡 + 𝛾𝑉 (𝑠𝑡+1) −
𝑉 (𝑥𝑡)) is the temporal difference, and 𝑐𝑖 and 𝜌𝑡 are truncated im-
portance sampling weights. The loss at step 𝑡 is defined as

𝐿𝑡 = 𝜌𝑡 log𝜋 (𝑎𝑡 |𝑠𝑡) (𝑟𝑡 + 𝛾𝑣𝑡+1 −𝑉 (𝑠𝑡)) +
1
2
(𝑣𝑡 −𝑉 (𝑠𝑡))2, (2)

where 𝜋 (𝑎𝑡 |𝑠𝑡) is the policy head, and𝑉 (𝑠𝑡)is the value head. Batch
training will be further used to update the model for multiple steps
at a time. The V-trace correction is helpful because training and
evaluating a classifier may result in substantial delays. The three
policies are updated simultaneously based on Eq. 2.

Algorithm 2 summarizes the training procedure. We first initial-
ize three buffers to temporally store the generated data from the
environment in line 2, i.e., tuples of ⟨state, action, reward⟩. In each
iteration, we generate new samples (line 4) and obtain rewards on
the validation data (line 5). The three policies are updated periodi-
cally with the RL objectives (lines 6 to 14). The generated samples

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Daochen Zha et al.

Table 1: Dataset statistics with imbalanced ratios of
20/50/100.

Majorities # Minorities # Features Domain

Phoneme 3818 190/76/38 5 Audio
PhishingWebsites 6157 307/123/61 68 Security
EEGEyeState 8257 412/165/82 14 EEG
Mozilla4 10437 521/208/104 5 Product defect
MagicTelescope 12332 616/246/123 10 Telescope
Electricity 26075 1303/521/260 14 Electricity

with the highest validation performance will be used to re-train the
classifier, which will be further evaluated on a hold-out testing set.

Multi-Processing Implementation. To maximally exploit the
computational resources, we run the sampling (lines 4 and 5) with
multiple processes in the CPU and do the learning (lines 6 to 14)
in the main process with GPU. We find that the sampling part
is CPU-intensive because the base classifier is trained with CPU.
In contrast, the learning part can be accelerated with GPU since
updating the model can be accelerated by parallelism. Modern
GPU servers often have multiple CPU cores. This motivates us to
accelerate the training with multi-processing. Specifically, we run
multiple actors, where each actor runs a separate clasffier to sample
data. Then we run a single learner on GPU to update the model
weights with the data collected from the actors. The actors and the
learner communicate with shared memory.

4 EXPERIMENTS
The experiments aim to answer the following research questions.
RQ1: How does AutoSMOTE compare with the state-of-the-art
techniques for imbalanced classification (Sections 4.2)? RQ2: Can
AutoSMOTE outperform the numerous variants of SMOTE (Sec-
tions 4.3)? RQ3: How does each component contribute to the per-
formance of AutoSMOTE and how does AutoSMOTE compare with
simple random search (Sections 4.4)? RQ4: How do the hyperpa-
rameters impact the performance of AutoSMOTE (Sections 4.5)?
RQ5: How does the learned balancing strategy of AutoSMOTE
compare with the existing over-sampling strategies (Sections 4.6)?

4.1 Experimental Settings
Datasets. The experiments are conducted on six binary classi-
fication datasets: Phoneme, PhishingWebsites, EEGEyeState,
Mozilla4,MagicTelescope, and Electricity. All the datasets are
publicly available at OpenML1[36]. We perform the following pre-
processing steps. First, we identify the numerical features and the
categorical features from the datasets. Second, we scale the numeri-
cal features with StardardScaler in sklearn, which subtracts each
value with the mean value and scales the resulting value with the
standard deviation. Third, we impute the missing values with 0 for
all the features. Fourth, for the categorical features, we use a one-
hot encoding. Since these datasets are relatively balanced, following
the previous work [2, 38, 54], we artificially create the imbalanced
datasets by randomly under-sampling the minority class with dif-
ferent imbalanced ratios. Then we randomly split 60%/20%/20% of
the data as the training/validation/testing sets, respectively. Table 1
summarizes the statistics of the imbalanced datasets.

1https://www.openml.org/

Baselines. First, we include all theunder-sampling, over-sampling,
and combined over- and under-sampling methods provided in
Imbalanced-learn2. Second, we consider two state-of-the-art gen-
erative models designed for generating realistic samples based
on variational autoencoder (TVAE) and generative adversarial net-
works (CTGAN) [41]. We leverage TVAE and CTGAN to augment
the minority class. Third, we involve MESA [26], a state-of-the-art
meta-learning algorithm, which similarly maximizes the valida-
tion performance with ensemble learning of under-sampling strate-
gies. Finally, we compare AutoSMOTE with 85 SMOTE variants
provided in Smote-variants package3 [15] in Section 4.3.

EvaluationMetric. Following the previous work of imbalanced
classification [1, 12, 31], we useMacro-F1 andMatthews Correlation
Coefficient (MCC) to evaluate the performance. Macro-F1 calculates
the F-measure separately for each class and averages them. MCC
takes into account true and false positives and negatives. Both of
them can well reflect the performance of the minority class.

Base Classifiers and Imbalanced Ratios. The performance of
a resampling algorithm is highly sensitive to the adopted base clas-
sifier and the imbalanced ratio of the dataset [14, 26]. An algorithm
that performs well under one configuration may not necessarily
perform well under another configuration. For a comprehensive
evaluation, we rank the samplers under 12 configurations with four
representative classifiers, including SVM, KNN, DecisionTree and
AdaBoost, and with three imbalanced ratios of 20, 50, and 100. We
report the average ranks of Macro-F1 or MCC of the samplers across
the 12 configurations for each dataset and the overall ranks across
all the datasets and configurations. In this way, a higher ranked
algorithm tends to perform well under different base classifiers
and imbalanced ratios. We run all the experiments five times and
report the average results. We further employ Wilcoxon signed
rank test [40] to rigorously compare the samplers.

Guidance of Validation Set. For a fair comparison, all the sam-
plers (including all the baselines) leverage the validation set to search
the sampling strategy or tune hyperparameters based on the per-
formance on the validation set: 1) for AutoSMOTE, we store the
over-sampled data with the best validation performance in search.
Then we use the classifier trained on the stored data for evaluation.
2) for MESA, we similarly use the performance on the validation
data to train the ensemble strategy. 3) for the other baselines, we
grid-search the desired ratio of the number of minority samples
over the number of majority samples after resampling (which is
often a dominant hyperparameter and is suggested to be tuned
by [14]) in the set of {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} on the
validation set. For all the samplers, we use the best configuration
discovered on the validation set and report the results on the testing
set, which is unseen in training or tuning the samplers.

Implementation Details. For AutoSMOTE, we set the max
instance-specific scaling factor 𝐺2 = 10, the max instance-specific
scaling factor 𝐺1 = 4 × IR/𝐺1 such that 𝐺1 × 𝐺2 is 4 times of
the imbalanced ratio, the max number of neighbors 𝐾 = 30, the
total number of iterations 𝐼 = 1000, the buffer sizes 𝐵 (1)

ℎ
= 2,

𝐵
(1)
ℎ

= 300, 𝐵𝑙 = 300. We adopt Adam optimizer with a learning
rate of 0.005. All the three policies use 128-128 MLP. We run 40

2https://imbalanced-learn.org/
3https://github.com/analyticalmindsltd/smote_variants

https://www.openml.org/
https://imbalanced-learn.org/
https://github.com/analyticalmindsltd/smote_variants

Towards Automated Imbalanced Learning with Deep Hierarchical Reinforcement Learning CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Table 2: Average ranks (the lower the better) of AutoSMOTE and baselines in terms of Macro-F1/MCC. We use ▲ to denote the
cases where AutoSMOTE is significantly better than baselines w.r.t. the Wilcoxon signed rank test (p < 0.05).

Category Method Dataset OverallPhoneme PhishingWebsites EEGEyeState Mozilla4 MagicTelescope Electricity

No-resampling - 16.50▲/16.75▲ 9.75 /9.42 16.08▲/17.08▲ 12.75▲/12.83▲ 15.92▲/13.00▲ 18.17▲/15.67▲ 14.86▲/14.12▲

Under-sampling

ClusterCentroids 13.25▲/14.58▲ 19.50▲/19.58▲ 13.67▲/14.33▲ 15.67▲/15.42▲ 16.42▲/19.58▲ 15.25▲/18.25▲ 15.62▲/14.58▲
CondensedNearestNeighbour 16.62▲/17.46▲ 16.92▲/16.96▲ 17.75▲/19.17▲ 19.88▲/20.46▲ 14.33▲/14.92▲ 13.58▲/14.58▲ 16.51▲/17.19▲
EditedNearestNeighbours 14.17▲/15.42▲ 11.83 /12.42 15.71▲/16.88▲ 11.96▲/12.46▲ 13.04▲/10.71 15.25▲/15.50▲ 13.66▲/13.90▲
RepeatedEditedNearestNeighbours 14.71▲/17.04▲ 15.29▲/15.96▲ 15.33▲/17.17▲ 13.88▲/14.12▲ 10.38▲/8.88 14.62▲/14.88▲ 14.03▲/14.67▲
AllKNN 14.04▲/15.46▲ 13.46▲/13.46 15.50▲/16.75▲ 13.88▲/14.29▲ 10.71▲/8.38 16.08▲/17.17▲ 13.94▲/14.25▲
InstanceHardnessThreshold 14.21▲/13.38▲ 20.67▲/20.67▲ 14.29▲/14.46▲ 17.79▲/18.04▲ 10.25 /10.25 12.58▲/12.83▲ 14.97▲/14.94▲
NearMiss 24.42▲/24.75▲ 24.17▲/24.42▲ 22.58▲/20.92▲ 23.25▲/23.33▲ 25.00▲/25.00▲ 19.58▲/21.08▲ 23.17▲/23.25▲
NeighbourhoodCleaningRule 16.33▲/17.83▲ 13.08 /13.25▲ 15.12▲/15.88 12.83▲/13.25▲ 10.79 /9.12 ▲ 12.54▲/11.71▲ 13.45▲/13.51▲
OneSidedSelection 17.21▲/18.21▲ 11.08 /10.67▲ 15.92▲/16.17▲ 13.83▲/14.17▲ 15.62▲/13.21▲ 17.12▲/15.71▲ 15.13▲/14.69▲
RandomUnderSampler 12.50▲/10.00▲ 17.42▲/17.58▲ 11.00▲/9.25 ▲ 12.83▲/12.92▲ 10.17 /11.67 10.83▲/12.25▲ 12.46▲/12.28▲
TomekLinks 16.88▲/17.46▲ 10.04 /9.38 14.12▲/14.04▲ 14.12▲/14.29▲ 15.62▲/12.96▲ 17.38▲/16.21▲ 14.69▲/14.06▲

Over-sampling

RandomOverSampler 6.75 /8.17 12.33▲/12.75▲ 5.00 /5.58 8.00 ▲/8.42 ▲ 9.92 ▲/13.33 8.58 ▲/10.83▲ 8.43 ▲/9.85 ▲
SMOTE 7.25 /8.67 ▲ 10.42▲/10.67▲ 7.00 ▲/6.67 12.00▲/12.00▲ 11.42▲/14.17▲ 7.17 ▲/7.42 ▲ 9.21 ▲/9.93 ▲
SMOTEN 16.83▲/18.25▲ 10.71 /10.54 12.42▲/15.58▲ 9.58 ▲/10.08 18.17▲/17.33▲ 17.83▲/18.67▲ 14.26▲/15.08▲
ADASYN 7.33 /8.00 9.75 /9.58 7.50 ▲/8.17 ▲ 12.58▲/12.25▲ 10.17 /12.08▲ 8.00 ▲/8.50 ▲ 9.22 ▲/9.76 ▲
BorderlineSMOTE 6.92 /8.67 9.42 ▲/9.25 9.67 ▲/10.92▲ 9.17 ▲/9.33 ▲ 7.50 /9.75 4.67 /5.08 7.89 ▲/8.83 ▲
KMeansSMOTE 15.92▲/16.67▲ 10.00 /9.83 16.08▲/16.92▲ 12.83▲/12.79▲ 14.92▲/12.17 17.92▲/15.42▲ 14.61▲/13.97▲
SVMSMOTE 6.25 /9.08 ▲ 10.17▲/10.00 7.25 /7.75 8.25 ▲/9.33 ▲ 6.67 /8.58 4.50 /4.83 7.18 ▲/8.26 ▲

Combined over- and SMOTEENN 6.25 /6.50 14.67 /14.50 7.17 /6.92 10.75▲/10.08 8.00 /7.42 9.75 ▲/9.67 ▲ 9.43 ▲/9.18 ▲
under-sampling SMOTETomek 8.67 /9.25 ▲ 9.58 /9.75 6.67 ▲/6.42 11.42▲/11.08▲ 8.58 /10.25 7.75 ▲/7.92 ▲ 8.78 ▲/9.11 ▲

Generative models CTGAN 12.08 /9.33 ▲ 11.75▲/11.42▲ 11.50▲/12.58 10.42▲/9.25 ▲ 15.17 /15.42▲ 12.75 /11.83▲ 12.28▲/11.64▲
TVAE 14.25▲/12.17▲ 9.42 /9.17 23.50▲/18.50▲ 16.17▲/16.58▲ 20.92▲/20.92▲ 19.58▲/17.25▲ 17.31▲/15.76▲

Meta-learning MESA 19.92▲/7.33 17.08▲/16.50▲ 20.17▲/12.17▲ 17.50▲/13.25▲ 19.58▲/18.92▲ 20.83▲/18.50▲ 19.18▲/14.44▲

Auto-sampling AutoSMOTE 5.75 /4.58 6.50 /7.67 4.00 /4.75 3.67 /4.96 5.75 /7.00 2.67 /3.25 4.72 /5.37

AdaBoost DecisionTree KNN SVM
Classifier

3

4

5

6

7

Av
er
ag

e
Ra

nk

Macro-F1
MCC

100 50 20
Imbalanced Ratio

3

4

5

6

Av
er
ag

e
Ra

nk

Figure 4: Performance of AutoSMOTE with different base
classifiers (left) and imbalanced ratios (right).

actors in parallel to train the base classifiers. For the baselines, we
use authors’ implementation4 with the default hyperparameters
except that we change the metric to Macro-F1 and MCC. For TVAE
and CTGAN, we use the authors’ implementation5 with the default
hyperparameters. We use NVIDIA GeForce RTX 2080 Ti GPUs.

4.2 Comparison with the Baselines
To answer RQ1, we compare AutoSMOTE against the state-of-
the-art resampling methods for imbalanced classification. Table 2
reports the overall ranks of Macro-F1 and MCC of the samplers
on each of the datasets across all the configurations of base clas-
sifier and imbalanced ratio. We further report the overall ranks of
AutoSMOTE under different classifiers and imbalanced ratios in
Figure 4 to show insights into how different configurations impact
the performance. We make the following observations.

First, AutoSMOTE significantly and consistently outperforms
all the baselines across all the datasets. Specifically, AutoSMOTE is
ranked the top among the 25 samplers for all the datasets, and the
overall ranks across the datasets are significantly better than all the

4https://github.com/ZhiningLiu1998/mesa
5https://github.com/sdv-dev/CTGAN

Table 3: AutoSMOTE versus 85 SMOTE variants.We only list
the average ranks of the top 5 algorithms due to space limi-
tation. ▲ suggests AutoSMOTE is significantly better.

Sampler Macro-F1 Sampler MCC

AutoSMOTE 8.83 AutoSMOTE 15.08
SupervisedSMOTE 15.22▲ SupervisedSMOTE 16.56
GASMOTE 15.25▲ ClusterSMOTE 27.29▲
ClusterSMOTE 18.58▲ ANDSMOTE 28.39▲
SMOTEPSO 22.11▲ BorderlineSMOTE1 28.94▲

baselines w.r.t. Wilcoxon signed rank test. This demonstrates the
superiority of the RL-based sampling strategy. An interesting obser-
vation is that while MESA also performs searching on the validation
set, it cannot deliver competitive performance as AutoSMOTE. A
possible explanation is that MESA searches the ensemble strategies
of under-sampling, which could lose information. This phenome-
non can also be verified from the observation that the over-sampling
methods outperform the under-sampling methods in general for all
the datasets. AutoSMOTE performs better than the two generative
models, which is because AutoSMOTE can optimize the general-
ization performance with RL while the generative models can only
model the data distribution. This also suggests that the SMOTE
search space is effective since we can identify very strong synthetic
strategies within the search space.

Second, AutoSMOTE delivers consistent performance across
different classifiers and imbalanced ratios. The average rank of
AutoSMOTE is better than 6.3 across all the classifiers and better
than 6 across all the imbalanced ratios. The results suggest that
AutoSMOTE can well accommodate different configurations. A pos-
sible reason is that AutoSMOTE can identify personalized synthetic
strategies for different configurations with RL.

https://github.com/ZhiningLiu1998/mesa
https://github.com/sdv-dev/CTGAN

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Daochen Zha et al.

Table 4: Average ranks of AutoSMOTE and the ablations on
Mozilla4. ▲ suggests full AutoSMOTE is significantly better.

Macro-F1 MCC

w/o cross-instance sub-policy 3.79▲ 4.12▲
w/o instance-specific sub-policy 2.75 3.75▲
w/o low-level policy 4.58▲ 4.21▲
Flat policy 4.67▲ 5.25▲
Random search 6.92▲ 5.75▲
Merging training and validation sets 2.83 2.83

Full AutoSMOTE 2.46 2.08

4.3 Comparison with SMOTE Variants
Since AutoSMOTE builds upon the SMOTE search space, we com-
pare AutoSMOTE with the numerous SMOTE variants to investi-
gate RQ2. We report the overall ranks of AutoSMOTE against 85
SMOTE variants across all the datasets in Table 3. We observe that
AutoSMOTE significantly outperforms the 85 SMOTE variants. It
is ranked 8.85 and 15.08 among all the samplers in terms of Macro-
F1 and MCC, respectively. We note that AutoSMOTE shares the
same search space as the majority of the SMOTE variants. Thus,
the improvement can be mainly attributed to searching with RL.

4.4 Ablation Study
To study RQ3, we compare AutoSMOTE with several ablations.
First, we remove each of the three policies in the hierarchy to
show that each level of the policies contributes to the performance.
Specifically, for removing the cross-instance sub-policy, we make
𝑔1 = 𝐺1/2 (which is the mean value of 𝑔1 when we use cross-
instance sub-policy). For removing the instance-specific sub-policy,
we assume𝑔2 = 𝐺2/2. For removing the low-level policy, we assume
the neighbors and the interpolation weights are randomly selected.
Second, we consider a flat policy baseline, which directly makes the
low-level decisions. Specifically, the flat policy directly predicts the
neighbors, interpolation weights, and a boolean indicating whether
to go to the next instance. The flat policy is also trained with RL.
Third, we consider a random search baseline6, which randomly
makes the high-level and low-level decisions within the same deci-
sion space as AutoSMOTE. The generated synthetic samples that
lead to the best validation performance are used for evaluation.
Fourth, we consider a variant that trains the classifier on both the
training set and validation set. Specifically, we merge the original
training and validation sets to form a new training set. Then the
classifier and AutoSMOTE are both trained on the new training
set. This ablation is designed to study whether it is necessary to
separate a validation set. For a fair comparison, we set 𝐼 = 1000 for
AutoSMOTE and all the ablations.

Table 4 shows the ranks of AutoSMOTE and the ablations on the
Mozilla4 dataset. We observe that AutoSMOTE outperforms all the
ablations. First, removing either of the three policies will degrade
the performance, which demonstrates the necessity of modeling
each level of the decision. Second, the flat policy is worse than
AutoSMOTE, which is expected because the flat policy suffers from
very long MDP, making RL harder to train. Third, random search

6We have tried applying the existing techniques designed for hyperparameter tuning
or neural architecture search to our problem. However, we find they are often not
applicable because they cannot deal with the hierarchical search space, where the
low-level search space has variable sizes since it depends on the high-level decisions.

Ful l AutoSMOTE w/o cr oss-instance sub-pol i cy w /o i nstance-speci f i c sub-pol i cy

w /o l ow-level pol i cyFlat pol i cy Random sear ch

0 200 400 600 800 1000
Iteration

0.45

0.50

0.55

0.60

0.65

0.70

M
ac

ro
-F
1

0 200 400 600 800 1000
Iteration

0.0

0.1

0.2

0.3

0.4

M
CC

Figure 5: Performance ofAutoSMOTE and the ablationsw.r.t.
the number of searching iterations on Mozilla4 with imbal-
anced ratio of 50 and base classifier of SVM.

shows very poor performance. This is because it is hard to iden-
tify a strong synthetic strategy within the massive search space
of SMOTE, which demonstrates the effectiveness of RL. Finally, al-
though merging training and validation sets can provide more data
to the classifier, it may negatively affect the performance, which
could be explained by over-fitting. We observe that it can achieve
near-perfect performance on the training set while the testing per-
formance remains low. Thus, it is necessary to separate a validation
set so that we can optimize the generalization performance.

To better understand the searching efficiency, we visualize in
Figure 5 the best validation performance w.r.t. the number of search
iterations on Mozilla4 with an imbalanced ratio of 50 and SVM as
the base classifier. Note that we have excluded the ablation that
merges the validation set because it tends to over-fit the valida-
tion data so that its validation performance is meaningless. We can
observe that AutoSMOTE achieves better results in terms of both
final performance and sample efficiency, i.e., achieving good per-
formance with less number of iterations. We also observe that the
flat policy and random search get stuck during the search, which
again verifies the superiority of hierarchical RL.

4.5 Analysis of the Hyperparameters
For RQ4, we study the impact of𝐺1,𝐺2, and 𝐾 on Mozilla4 dataset.
First, we fix𝐺2 = 10 and 𝐾 = 30, and vary𝐺1 such that𝐺1 ×𝐺2/IR
ranges from 1 to 8 (left-hand side of Figure 6). The best performance
is achievedwhen𝐺1×𝐺2/IR = 4. A possible explanation is that a too
low ratio will make the search space too restricted to discover good
synthetic strategies, while a too-large ratio will make searching
more difficult. Second, we fix𝐺1 ×𝐺2/IR = 4 and 𝐾 = 30, and vary
𝐺2 (middle of Figure 6). We find a too small 𝐺2 will worsen the
performance. Recall that the instance-specific sub-policy makes
personalized decisions. A small 𝐺2 will restrict the personalization,
which could explain why it causes unsatisfactory performance.
Similarly, we observe a performance drop when 𝐺2 is large, which
could also be explained by the difficulty brought by the larger
search space. Third, we fix 𝐺1 and 𝐺2, and vary 𝐾 . We observe a
significant performance drop when 𝐾 is very small, which verifies
the effectiveness of performing interpolation.

Overall, we observe that 𝐺1, 𝐺2, and 𝐾 will control the trade-off
between performance and searching efficiency in each level of the
decisions. If the value is too small, it may restrict the search space
and lead to worse performance. In contrast, a too-large value tends
to make the searching more difficult and may also negatively affect
the performance given a limited searching budget.

Towards Automated Imbalanced Learning with Deep Hierarchical Reinforcement Learning CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

2 4 6 8
G1 X G2/IR

3.0
3.5
4.0
4.5
5.0
5.5
6.0

M
ac

ro
-F
1
Ra

nk

0 10 20 30
G2

3.0
3.5
4.0
4.5
5.0
5.5
6.0

M
ac

ro
-F
1
Ra

nk

0 20 40 60
K

3.0
3.5
4.0
4.5
5.0
5.5
6.0

M
ac

ro
-F
1
Ra

nk

Figure 6: Hyperparameter study on Mozilla4.
Major i ty Minor i ty Synthetic

−2.5 0.0 2.5 5.0 7.5

−2

0

2

4

6

8

Macro-F1: 1.000

AutoSMOTE
−2.5 0.0 2.5 5.0 7.5

−2

0

2

4

6

8

Macro-F1: 0.825

SMOTE
−2.5 0.0 2.5 5.0 7.5

−2

0

2

4

6

8

Macro-F1: 0.926

ADASYN

−2.5 0.0 2.5 5.0 7.5

−2

0

2

4

6

8

Macro-F1: 0.628

BorderlineSMOTE
−2.5 0.0 2.5 5.0 7.5

−2

0

2

4

6

8

Macro-F1: 0.711

SVMSMOTE
−2.5 0.0 2.5 5.0 7.5

−2

0

2

4

6

8

Macro-F1: 0.828

CTGAN

Figure 7: Visualization of the generated synthetic samples
and the decision boundary of DecisionTree on a toy data us-
ing AutoSMOTE and other over-sampling techniques.

4.6 Case Study
To answer RQ5, we apply AutoSMOTE, several SMOTE variants,
and CTGAN to a 2-dimensional toy dataset. This dataset is publicly
available7 and is originally synthesized for anomaly detection. We
under-sample the minority instances with an imbalanced ratio of 30,
which results in 450 majority instances and 35 minority instances.
Then we split 60% of the data for training, 20% of the data for vali-
dation, and 20% for testing. This toy dataset is challenging because
the minorities form two clusters in the two sides of the majority
instances so that the sampler could easily generate noisy samples.
We use Macro-F1 as the performance metric. Figure 7 illustrates the
generated synthetic samples and the decision boundary obtained
by training a DecisionTree classifier on the over-sampled data. We
observe that all the samplers except AutoSMOTE tend to generate
some noisy samples that interleave with the majorities between
the two clusters, which degrades the performance. In contrast, Au-
toSMOTE can identify a tailored synthetic strategy that achieves
1.0 Macro-F1 through directly optimizing the performance metric,
which demonstrates the effectiveness of the learning-based sampler.

5 RELATEDWORK
Imbalanced Learning. Existing methods can be mainly grouped
into three categories: data-level methods that aim to balance the
data distributions by modifying the training data [3, 12, 31, 37,
38, 54], algorithm-level approaches that try to modify the classi-
fier such as the loss function [19, 25], and hybrid solutions that
7https://github.com/shubhomoydas/ad_examples/tree/master/ad_examples/datasets/
anomaly/toy2/fullsamples

combine the above two [16]. Our work falls into data-level meth-
ods. Data-level methods can be further divided into three sub-
categories, including generating new samples for the minority class
(over-sampling) [4, 10], removing instances from the majority class
(under-sampling) [44], and hybrid methods that combine the above
two [28]. One advantage of over-sampling is that it will not lose
information. However, it may be prone to over-fitting. AutoSMOTE
tackles this problem by optimizing the generalization performance,
thereby alleviating the over-fitting issue. A recent work [26] pro-
poses a meta-learning algorithm, which similarly aims to optimize
the performance metric on the validation data. However, they fo-
cus on learning ensemble strategies for under-sampling, which
may lose information. In contrast, AutoSMOTE is an over-sampling
method so that the resampled data can preserve all the information.
Another line of imbalanced learningwork is outlier detection [9, 18],
which is often an unsupervised task.

AutomatedMachine Learning (AutoML).AutoML techniques
have recently show promise in various datamining tasks [13, 17, 20–
24, 39, 42, 43, 46, 48, 52, 55, 56]. The key idea is to leverage ma-
chine learning to optimize data mining solutions, such as neural
architecture search [6], hyperparameter tuning [45], and pipeline
search [11]. AutoSMOTE also falls into this line of research. In
contrast to the previous work, over-sampling exhibits unique chal-
lenges with a huge and complex decision space that requires hi-
erarchical reasoning. The existing AutoML approaches often can
only deal with simple and flat search spaces. To this end, we de-
velop a tailored search space based on SMOTE and leverage deep
hierarchical RL to jointly optimize different levels of the decisions.

Deep RL. Deep RL has achieved remarkable success in games [7,
27, 47, 49–51, 53]. Deep RL is designed for goal-oriented tasks,
where the agent is trained based on the reward signal. Recently,
deep hierarchical RL has shown promise in tackling tasks with long
horizons [30]. The key idea is decompose the MDP into decisions
in different granularities such that each level of the decisions can
be more effectively leaned. However, the successes of RL are often
only demonstrated in simulated games. Our work suggests that
deep hierarchical RL can help tackle the data imbalance problem,
which is a real-world data mining challenge.

6 CONCLUSIONS AND FUTUREWORK
This work investigates learning-based sampling algorithms for tack-
ling the imbalanced learning problem. To this end, we first formulate
a hierarchical search space based on SMOTE. Then we leverage
deep hierarchical RL to jointly optimize different levels of decisions
to achieve the best generalization performance on the validation
set. The proposed over-sampling algorithm, namely AutoSMOTE, is
evaluated against the state-of-the-art samplers and also numerous
SMOTE variants. Extensive experiments demonstrate the superi-
ority of AutoSMOTE over heuristics. In the future, we will extend
AutoSMOTE to perform combined over- and under-sampling and
deal with other data types such as images, graphs, and time series.

ACKNOWLEDGEMENTS
The work is, in part, supported by NSF (#IIS-1849085, #IIS-1900990,
#IIS-1939716). The views and conclusions in this paper should not
be interpreted as representing any funding agencies.

https://github.com/shubhomoydas/ad_examples/tree/master/ad_examples/datasets/anomaly/toy2/fullsamples
https://github.com/shubhomoydas/ad_examples/tree/master/ad_examples/datasets/anomaly/toy2/fullsamples

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Daochen Zha et al.

REFERENCES
[1] Sabri Boughorbel, Fethi Jarray, andMohammed El-Anbari. 2017. Optimal classifier

for imbalanced data using Matthews Correlation Coefficient metric. PloS one 12,
6 (2017), e0177678.

[2] Mateusz Buda, Atsuto Maki, and Maciej A Mazurowski. 2018. A systematic
study of the class imbalance problem in convolutional neural networks. Neural
Networks 106 (2018), 249–259.

[3] Zixin Cai, XinyueWang, Mingjie Zhou, Jian Xu, and Liping Jing. 2019. Supervised
class distribution learning for GANs-based imbalanced classification. In ICDM.

[4] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
2002. SMOTE: synthetic minority over-sampling technique. Journal of artificial
intelligence research 16 (2002), 321–357.

[5] Nitesh V Chawla, Nathalie Japkowicz, and Aleksander Kotcz. 2004. Special issue
on learning from imbalanced data sets. ACM SIGKDD explorations newsletter 6, 1
(2004), 1–6.

[6] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2019. Neural architecture
search: A survey. The Journal of Machine Learning Research 20, 1 (2019), 1997–
2017.

[7] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom
Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. 2018. Impala:
Scalable distributed deep-rl with importance weighted actor-learner architectures.
In ICML.

[8] Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. 2005. Borderline-SMOTE: a
new over-sampling method in imbalanced data sets learning. In ICIC.

[9] Songqiao Han, Xiyang Hu, Hailiang Huang, Mingqi Jiang, and Yue Zhao. 2022.
ADBench: Anomaly Detection Benchmark. arXiv preprint arXiv:2206.09426
(2022).

[10] Haibo He, Yang Bai, Edwardo A Garcia, and Shutao Li. 2008. ADASYN: Adaptive
synthetic sampling approach for imbalanced learning. In IJCNN.

[11] Yuval Heffetz, Roman Vainshtein, Gilad Katz, and Lior Rokach. 2020. Deepline:
Automl tool for pipelines generation using deep reinforcement learning and
hierarchical actions filtering. In KDD.

[12] Justin M Johnson and Taghi M Khoshgoftaar. 2019. Survey on deep learning with
class imbalance. Journal of Big Data 6, 1 (2019), 1–54.

[13] Patrick Koch, Oleg Golovidov, Steven Gardner, Brett Wujek, Joshua Griffin, and
Yan Xu. 2018. Autotune: A derivative-free optimization framework for hyperpa-
rameter tuning. In KDD.

[14] György Kovács. 2019. An empirical comparison and evaluation of minority
oversampling techniques on a large number of imbalanced datasets. Applied Soft
Computing 83 (2019), 105662.

[15] György Kovács. 2019. Smote-variants: A python implementation of 85 minority
oversampling techniques. Neurocomputing 366 (2019), 352–354.

[16] Bartosz Krawczyk. 2016. Learning from imbalanced data: open challenges and
future directions. Progress in Artificial Intelligence 5, 4 (2016), 221–232.

[17] Kwei-Herng Lai, Daochen Zha, Guanchu Wang, Junjie Xu, Yue Zhao, Devesh
Kumar, Yile Chen, Purav Zumkhawaka, Minyang Wan, Diego Martinez, et al.
2021. TODS: An Automated Time Series Outlier Detection System. In AAAI.

[18] Kwei-Herng Lai, Daochen Zha, Junjie Xu, Yue Zhao, Guanchu Wang, and Xia
Hu. 2021. Revisiting time series outlier detection: Definitions and benchmarks.
In NeurIPS.

[19] Mingchen Li, Xuechen Zhang, Christos Thrampoulidis, Jiasi Chen, and Samet
Oymak. 2021. AutoBalance: Optimized Loss Functions for Imbalanced Data.
NeurIPS (2021).

[20] Ting Li, Junbo Zhang, Kainan Bao, Yuxuan Liang, Yexin Li, and Yu Zheng. 2020.
Autost: Efficient neural architecture search for spatio-temporal prediction. In
KDD.

[21] Yuening Li, Zhengzhang Chen, Daochen Zha, Kaixiong Zhou, Haifeng Jin,
Haifeng Chen, and Xia Hu. 2021. Automated Anomaly Detection via Curiosity-
Guided Search and Self-Imitation Learning. IEEE Transactions on Neural Networks
and Learning Systems (2021).

[22] Yuening Li, Zhengzhang Chen, Daochen Zha, Kaixiong Zhou, Haifeng Jin,
Haifeng Chen, and Xia Hu. 2021. Autood: Neural architecture search for outlier
detection. In ICDE.

[23] Yuening Li, Daochen Zha, Praveen Venugopal, Na Zou, and Xia Hu. 2020. Pyodds:
An end-to-end outlier detection system with automated machine learning. In
WWW.

[24] Kunpeng Liu, Yanjie Fu, Pengfei Wang, Le Wu, Rui Bo, and Xiaolin Li. 2019.
Automating feature subspace exploration via multi-agent reinforcement learning.
In KDD.

[25] Xu-Ying Liu and Zhi-Hua Zhou. 2006. The influence of class imbalance on
cost-sensitive learning: An empirical study. In ICDM.

[26] Zhining Liu, Pengfei Wei, Jing Jiang, Wei Cao, Jiang Bian, and Yi Chang. 2020.
MESA: Boost Ensemble Imbalanced Learning with MEta-SAmpler. In NeurIPS.

[27] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

[28] Ajinkya More. 2016. Survey of resampling techniques for improving classification
performance in unbalanced datasets. arXiv preprint arXiv:1608.06048 (2016).

[29] Hien M Nguyen, Eric W Cooper, and Katsuari Kamei. 2011. Borderline over-
sampling for imbalanced data classification. International Journal of Knowledge
Engineering and Soft Data Paradigms 3, 1 (2011), 4–21.

[30] Shubham Pateria, Budhitama Subagdja, Ah-hwee Tan, and Chai Quek. 2021.
Hierarchical Reinforcement Learning: A Comprehensive Survey. ACMComputing
Surveys (CSUR) 54, 5 (2021), 1–35.

[31] Neelam Rout, Debahuti Mishra, and Manas Kumar Mallick. 2018. Handling
imbalanced data: a survey. In ASISA.

[32] B Santoso, H Wijayanto, KA Notodiputro, and B Sartono. 2017. Synthetic over
sampling methods for handling class imbalanced problems: A review. In IOP
conference series: earth and environmental science, Vol. 58. IOP Publishing, 012031.

[33] Kai Shu, Amy Sliva, Suhang Wang, Jiliang Tang, and Huan Liu. 2017. Fake news
detection on social media: A data mining perspective. ACM SIGKDD explorations
newsletter 19, 1 (2017), 22–36.

[34] Wacharasak Siriseriwan and Krung Sinapiromsaran. 2017. Adaptive neighbor
synthetic minority oversampling technique under 1NN outcast handling. Songk-
lanakarin J. Sci. Technol 39, 5 (2017), 565–576.

[35] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[36] Joaquin Vanschoren, Jan N Van Rijn, Bernd Bischl, and Luis Torgo. 2014. OpenML:
networked science in machine learning. ACM SIGKDD Explorations Newsletter
15, 2 (2014), 49–60.

[37] Jing Wang and Min-Ling Zhang. 2018. Towards mitigating the class-imbalance
problem for partial label learning. In KDD.

[38] Wentao Wang, Suhang Wang, Wenqi Fan, Zitao Liu, and Jiliang Tang. 2020.
Global-and-local aware data generation for the class imbalance problem. In SDM.

[39] Yicheng Wang, Xiaotian Han, Chia-Yuan Chang, Daochen Zha, Ulisses Braga-
Neto, and Xia Hu. 2022. Auto-PINN: Understanding and Optimizing Physics-
Informed Neural Architecture. arXiv preprint arXiv:2205.13748 (2022).

[40] Wikipedia. 2022. Wilcoxon signed-rank test — Wikipedia, The Free Encyclo-
pedia. http://en.wikipedia.org/w/index.php?title=Wilcoxon%20signed-rank%
20test&oldid=1084875027. [Online; accessed 19-May-2022].

[41] Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni.
2019. Modeling Tabular data using Conditional GAN. In NeurIPS.

[42] Chengrun Yang, Yuji Akimoto, Dae Won Kim, and Madeleine Udell. 2019. OBOE:
Collaborative filtering for AutoML model selection. In KDD.

[43] Chengrun Yang, Jicong Fan, Ziyang Wu, and Madeleine Udell. 2020. Automl
pipeline selection: Efficiently navigating the combinatorial space. In KDD.

[44] Show-Jane Yen and Yue-Shi Lee. 2006. Under-sampling approaches for improving
prediction of the minority class in an imbalanced dataset. In Intelligent Control
and Automation. Springer, 731–740.

[45] Tong Yu and Hong Zhu. 2020. Hyper-parameter optimization: A review of
algorithms and applications. arXiv preprint arXiv:2003.05689 (2020).

[46] Daochen Zha, Louis Feng, Bhargav Bhushanam, Dhruv Choudhary, Jade Nie,
Yuandong Tian, Jay Chae, Yinbin Ma, Arun Kejariwal, and Xia Hu. 2022. Au-
toShard: Automated Embedding Table Sharding for Recommender Systems. In
KDD.

[47] Daochen Zha, Kwei-Herng Lai, Songyi Huang, Yuanpu Cao, Keerthana Reddy,
Juan Vargas, Alex Nguyen, Ruzhe Wei, Junyu Guo, and Xia Hu. 2021. RLCard: a
platform for reinforcement learning in card games. In IJCAI.

[48] Daochen Zha, Kwei-Herng Lai, Mingyang Wan, and Xia Hu. 2020. Meta-AAD:
Active anomaly detection with deep reinforcement learning. In ICDM.

[49] Daochen Zha, Kwei-Herng Lai, Kaixiong Zhou, and Xia Hu. 2019. Experience
Replay Optimization. In IJCAI.

[50] Daochen Zha, Kwei-Herng Lai, Kaixiong Zhou, and Xia Hu. 2021. Simplifying
deep reinforcement learning via self-supervision. arXiv preprint arXiv:2106.05526
(2021).

[51] Daochen Zha, Wenye Ma, Lei Yuan, Xia Hu, and Ji Liu. 2021. Rank the Episodes:
A Simple Approach for Exploration in Procedurally-Generated Environments. In
ICLR.

[52] Daochen Zha, Zaid Pervaiz Bhat, Yi-Wei Chen, Yicheng Wang, Sirui Ding, An-
moll Kumar Jain, Mohammad Qazim Bhat, Kwei-Herng Lai, Jiaben Chen, et al.
2022. AutoVideo: An Automated Video Action Recognition System. In IJCAI.

[53] Daochen Zha, Jingru Xie, Wenye Ma, Sheng Zhang, Xiangru Lian, Xia Hu, and Ji
Liu. 2021. DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement
Learning. In ICML.

[54] Tianxiang Zhao, Xiang Zhang, and SuhangWang. 2021. Graphsmote: Imbalanced
node classification on graphs with graph neural networks. In WSDM.

[55] Xiangyu Zhao, Haochen Liu, Wenqi Fan, Hui Liu, Jiliang Tang, Chong Wang,
Ming Chen, Xudong Zheng, Xiaobing Liu, and Xiwang Yang. 2021. Autoemb:
Automated embedding dimensionality search in streaming recommendations. In
ICDM.

[56] Yue Zhao, Ryan Rossi, and Leman Akoglu. 2021. Automatic unsupervised outlier
model selection. NeurIPS (2021).

http://en.wikipedia.org/w/index.php?title=Wilcoxon%20signed-rank%20test&oldid=1084875027
http://en.wikipedia.org/w/index.php?title=Wilcoxon%20signed-rank%20test&oldid=1084875027

	Abstract
	1 Introduction
	2 Problem Statement
	3 Methodology
	3.1 Hierarchical Synthetic Sample Generation
	3.2 Formulating the Generation as MDP
	3.3 Optimizing the Generation Process with Deep Hierarchical RL

	4 Experiments
	4.1 Experimental Settings
	4.2 Comparison with the Baselines
	4.3 Comparison with SMOTE Variants
	4.4 Ablation Study
	4.5 Analysis of the Hyperparameters
	4.6 Case Study

	5 Related Work
	6 Conclusions and Future Work
	References

