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Abstract

Melanoma is one of ten most common cancers in the US.

Early detection is crucial for survival, but often the cancer

is diagnosed in the fatal stage. Deep learning has the poten-

tial to improve cancer detection rates, but its applicability

to melanoma detection is compromised by the limitations of

the available skin lesion data bases, which are small, heav-

ily imbalanced, and contain images with occlusions. We

build deep-learning-based tools for data purification and

augmentation to counter-act these limitations. The devel-

oped tools can be utilized in a deep learning system for le-

sion classification and we show how to build such system.

The system heavily relies on the processing unit for remov-

ing image occlusions and the data generation unit, based

on generative adversarial networks, for populating scarce

lesion classes, or equivalently creating virtual patients with

pre-defined types of lesions. We empirically verify our ap-

proach and show that incorporating these two units into

melanoma detection system results in the superior perfor-

mance over common baselines.

1. Introduction

According to the American Cancer Society, melanoma

takes one life in every 54 minutes [1] in US. In Aus-

tralia, where the incidence of melanoma are the highest in

the world along with New Zealand, one person dies every

five hours from melanoma [3]. There were approximately

87, 110 cases of melanoma in the US and 13, 941 in Aus-

tralia [2] alone in the year 2017. Even though it accounts

for less than 1% of the total skin diseases, it is the ma-

jor cause of deaths related to these diseases. The 5-year

survival rate in the US is 98% and reduces down to 18%
once it spreads to distant organs. Therefore, early detection

of melanoma is of fundamental importance to increase the

survival rates. The techniques and technologies that aim at

automating the visual examination of skin lesions, tradition-

ally done by dermatologists, are targeted to i) assist clin-

icians with navigating patients lesions and detecting early

signs of cancer, ii) enable every patient to assess their le-

sions, iii) promote melanoma prevention and increase the

awareness of this disease, and iv) provide the platform for

massive data collection stimulating further research on skin

cancer. The fundamental obstacle in advancing automated

methods is the lack of large and balanced data sets that can

be used to train computational models, i.e. many publicly

available skin lesion data sets are small, imbalanced (con-

tain significant disproportions in the number of data points

between different classes of lesions and are heavily dom-

inated by the images of benign lesions), and furthermore

contain occlusions such as hairs. Publicly available data-

sets are obtained from multiple different imaging centers,

hospitals, and research institutes, each with different data

collection and management standards. Furthermore, some

imaging centers mark lesions for example by placing the

ruler next to the lesion to measure the diameter of the lesion.

Such practices skew the data to comply with the require-

ments of a particular organization but also introduce bias to

the data. We contribute to the computer-aided dermatologi-

cal techniques with a new set of tools for careful preparation
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of the training data that mitigate the above mentioned nega-

tive data aspects compromising deep network performance

in practice. The data preparation consists of the purification

and augmentation stages. The process of data purification,

e.g. removal of occlusions such as hairs and rulers from the

images, relies on the efficient lesion segmentation method

combined with traditional data processing techniques. The

process of data augmentation is two-folded and comprises

of balancing the data through the generation of artificial

dermoscopic images and performing additional data aug-

mentation. Our tools for data purification and augmentation

eventually enhance the performance of deep-learning-based

systems for lesion classification. The block diagram of the

complete system is captured in Figure 1.

Figure 1. The block diagram of the complete system for lesion

classification. Lesion segmentation, data purification, and data

generation models are utilized to purify and augment the training

data set.

We tested our approach1 on popular ISIC-2017 data

set [11] containing lesion images from three classes:

melanoma, nevus, and seborrheic keratosis. Additional re-

sults on the ISIC 2018 [34] data set containing lesion im-

ages from seven classes: acitinic keratosis, basal cell carci-

noma, benign keratosis, dermatofibroma, melanoma, nevus,

and vascular lesion are provided in the Supplementary sec-

tion. The paper is organized as follows: Section 2 describes

related work, Section 3.1 discusses the data, Section 3.2

explains our approach for data purification that relies on

the segmentation step, Section 3.3 addresses the problem

of data imbalancedness with a tool based on generative ad-

versarial network for synthetic data generation, and finally

Section 4 incorporates the proposed solutions into a clas-

sification network and reports experimental results. Sec-

tion 5 concludes the paper. Supplement contains additional

results.

2. Related Work

There is a substantial body of work on developing al-

gorithms for computer-assisted dermatology. A number

of approaches rely on hand-crafted features [6, 37, 8, 33]

and are not scalable to massive data sets. Recent devel-

opment of the field of deep learning has triggered a sud-

den shift from vision algorithms largely relying on expen-

1Open-sourced under the link https://github.com/

devansh20la/Beating-Melanoma

sive manual feature extraction. The development of con-

volutional neural networks (CNNs) [20], and in particular

AlexNet [19], is widely regarded as the turning point in

deep learning research. CNN-based approaches later out-

smarted humans in several tasks ranging from image classi-

fication to playing GO [32]. Consequently, the techniques

for automatic analysis of skin lesions recently became dom-

inated with deep learning algorithms. A striking majority

of these approaches are ensemble techniques. They include

i) ensembles of different architectures used for extracting

data features, which are further inputted to the SVM classi-

fier [12, 27, 26] (deep learning combined with SVM is also

used in other approaches [10]), ii) segmentation networks

followed by bagging-type ensemble strategies [39], iii) seg-

mentation networks that use smooth F1-score loss func-

tion to factor-in data imbalancedness [17], iv) methods that

interpolate between the outputs obtained from two fully-

convolutional residual networks and refine the results with

lesion index calculation unit [21], v) highly-complicated en-

sembles with multi-view image generator [24], vi) systems

based on multiple segmentation networks that provide seg-

mentations conditioned on the pre-defined sets of local pat-

terns that are of interest to clinicians in their diagnosis [14],

and finally vii) ensemble techniques in which multiple fully

convolutional networks learn complementary visual charac-

teristics of different skin lesions as well as lesion boundaries

and an integration method forms a final segmentation from

individual segmentations [7]. Non-ensemble strategies pro-

pose using i) U-Net model that relies on CNN with skipped

connections [40] for lesion segmentation and also classi-

fication and ii) residual network ResNet-50 pre-trained on

ImageNet [13] for lesion classification, or iii) GoogleNet

Inception v3 CNN architecture pre-trained on ImageNet for

lesion classification [15], where in the latter paper the exper-

iments are done on a data base that is not publicly available.

Only a subset of these deep learning methods perform data

augmentation to increase the training data size [35] or bal-

ance the data, but they use fairly standard tools, i.e. image

cropping, scaling, and flipping, and none of them addresses

the problem of the removal of image occlusions (note that

throughout the paper we refer to cropping, scaling and flip-

ping as the standard/traditional augmentation techniques).

3. Proposed Methods

3.1. Data sets

We focus on dermoscopic images which allow higher di-

agnostic accuracy than traditional eye examination [36] as

they show the micro-structures in the lesion and provide a

view unobstructed from skin reflections. We took 803 cases

of melanoma, 2107 cases of nevus, and 288 cases of seb-

orrheic keratosis from the ISIC 2017 challenge dataset, 40
cases of melanoma and 80 cases of nevus from the PH2 data



Figure 2. Visualization results for the conventionally-trained

model on the ISIC 2017 data set. (Top): Original image. (Bot-

tom): Visualization mask overlaid on the original image. The

model overfits to image occlusions such as hairs and rulers.

set[25], and 76 cases of melanoma, 331 cases of nevus and

257 cases of seborrheic keratosis from the Edinburgh data

set [5] (see Figure 7). Diagnoses of these lesions were es-

tablished clinically (ISIC, Dermofit) and/or via histopathol-

ogy (ISIC, PH2) , which will be discussed more in details

later in the paper, regarding the training data size). Addi-

tionally, each data set contains lesion segmentation masks.

We tested our models on ISIC 2017 and ISIC 2018 (Sup-

plementary section) test data sets obtained from the ISIC

Archives.

3.2. Data Purification

3.2.1 Data Purification Problem

Dermoscopic images often contain occlusions such as hairs

and/or rulers. Deep learning approaches in general can han-

dle such image occlusions and learn to avoid these objects

while making predictions, though their learning ability is

conditioned upon the availability of large training data. In

case of dermoscopic data bases, which typically have small

or medium size, the deep learning models are easily prone to

overfitting, i.e. they use visual cues such as hairs and rulers

as indicators of the lesion category. To demonstrate this

problem we employ the visualization technique, called Vi-

sualBackProp [9], that highlights the part of the image that

the network focuses on when forming its prediction. Fig-

ure 2 shows the results obtained for the traditionally-trained

deep model (without performing data purification or aug-

mentation) on the raw data.

3.2.2 Data Purification Method

We utilize traditional data processing approaches to find

and remove hairs and rulers on the images. We extended

the hair-removal algorithm [31]. One of its steps involves

thresholding the luminance channel of the image in the

LUV color space, which may also remove dark regions be-

longing to the lesion itself. To correct that, we overlay the

processed image with the segmented lesion obtained from

our segmentation network that will be described later. The

holes in the background were eliminated by performing the

(a) (b) (c) (d) (e)
Figure 3. Top: Original images. Bottom: Images obtained after

a,b) scales, c) hairs and scales, and d,e) hairs removal.

closing operation. We compare two different input images

before and after pre-processing to judge the quality of the

purification algorithm. This is captured in Figure 3. We

preprocessed 470 cases of nevus, 147 cases of melanoma,

and 182 cases of seborrheic keratosis, which contained hairs

and rulers and removed those from the images. The pre-

processed images were added to the training data set of the

lesion classification model to make it more robust to the

presence of occlusions and prevent over-fitting.

3.2.3 Segmentation Network

(A)

(B)

Figure 4. (A) Architecture of the Segmentation Network. Black

lines represent skipped connections. Each convolution operation

is followed by ReLU activation; 2 dil and 4 dil refers to resp. 2 and

4 dilated convolution operations. (B) Top: Original images from

the test data. Middle: Segmentation masks overlaid on the origi-

nal images. Bottom: Corresponding segmentation masks obtained

from Segmentation Network overlaid on the original images.

For the lesion segmentation, we utilized a U-Net archi-

tecture [29], which was previously successfully applied to

the problem of medical image segmentation and won the

ISBI Cell Tracking Challenge [4] in 2015. We modified



Layer Output size Kernel Stride Padding Dilation

Downsampling

Conv 64×378×378 3×3 1 0 1

Conv 64×376×376 3×3 1 0 1

Maxpool 64×188×188 2×2 2 0 1

Conv 128×186×186 3×3 1 0 1

Conv 128×184×184 3×3 1 0 1

Maxpool 128×92×92 2×2 2 0 1

Conv 256×90×90 3×3 1 0 1

Conv 256×88×88 3×3 1 0 1

Maxpool 256×44×44 2×2 2 0 1

Conv 512×40×40 3×3 1 0 2

Conv 512×36×36 3×3 1 0 2

Conv 1024×28×28 3×3 1 0 4

Conv 1024×20×20 3×3 1 0 4

Up-sampling

Trans-Conv 1024×28×28 3×3 1 0 4

Trans-Conv 512×36×36 3×3 1 0 4

Trans-Conv 512×40×40 3×3 1 0 2

Trans-Conv 512×44×44 3×3 1 0 2

Up-Conv 256×88×88 3×3 1 1 1

Trans-Conv 256×90×90 3×3 1 0 1

Trans-Conv 256×92×92 3×3 1 0 1

Up-Conv 128×184×184 3×3 1 1 1

Trans-Conv 128×186×186 3×3 1 0 1

Trans-Conv 128×188×188 3×3 1 0 1

Up-Conv 64×376×376 3×3 1 1 1

Trans-Conv 64×378×378 3×3 1 0 1

Trans-Conv 64×380×380 3×3 1 0 1

Conv 1×380×380 1×1 1 0 1
Table 1. Details of the architecture of the proposed segmentation network. Let n be the number of features maps, h be the height and w
be the width. Size of the output feature maps is represented as n× h× w. Each convolution layer, except for the last one, is followed by

a ReLU nonlinearity. Up-Conv performs upsampling by a factor of 2 followed by a convolution operation. The last convolution layer is

followed by a sigmoid.

the U-Net architecture, since it contains max pooling lay-

ers, which cause the increase of the field of view of con-

volutional filters as the input propagates through the model

but at the same time also reduces the resolution of the input

images. We however require output and input of the seg-

mentation network to have the same dimension. To over-

come this problem, we added dilated [38] convolutions in

the final layers of the down-sampling block of our architec-

ture. We furthermore removed the up-sampling blocks in

the traditional U-Net architecture and instead added trans-

posed convolutional layers. The architecture of the model

is presented in Figure 4 and Table 1. The input to the seg-

mentation architecture consists of seven channels (RGB and

HSV channels and luminance). Thus the network input im-

age size is 7 × 380 × 380. We normalized each channel of

the input to mean value 0.5 and standard deviation 0.5. We

used a binary cross-entropy loss to train the network and an

Adam [18] optimizer with a global learning rate of 1e−4 and

beta values of (0.9, 0.999). These settings of optimization

hyper-parameters led to the best performance. Furthermore,

the output of the segmentation model was passed through

a binary hole filling procedure to fill empty holes in the

segmentation mask. The segmentation masks obtained for

test lesions are demonstrated in Figure 4. To evaluate the

performance of the segmentation model the ISIC challenge

proposes to use the Jaccard index. The Jaccard index, also

known as the intersection over union is used to measure the

similarity between two sample sets and is defined as the size

of the intersection over the size of the union of the two sets.

To calculate the index for segmentation masks we evaluate

the area of the overlap between the true label and model out-

put and divide it by the area of the union between them. We

obtained an average index of 0.77 while the best performer

of the ISIC 2017 challenge obtained 0.765.

3.3. Data Augmentation

3.3.1 Data Imbalancedness Problem

The data imbalancedness, illustrated in Figure 7, is yet an-

other significant factor that deteriorates the performance of

deep learning systems analyzing dermoscopic images. The

classifiers tend to be biased towards majority classes that



correspond to benign lesions. This problem can be partially

mitigated by introducing higher penalty for misclassifying

rare classes, though data augmentation techniques replace

this approach nowadays as they have the advantage of in-

creasing data variability while balancing the data. We pro-

pose to use data augmentation technique that relies on gen-

erating the images from scarce classes that obey the data

distribution of these classes. This is equivalent to creating

virtual patients with lesions from scarce classes in order to

even their size with the large-size classes.

3.3.2 Data Generation Network with de-coupled DC-

GANs

(A)

(B)
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Figure 5. (A) Architecture of the DCGAN model. (B) Histograms

of the MSE values for (left) melanoma (the mean and std of the

MSE are 0.088 ± 0.052) (right) seborrheic keratosis (the mean

and std of the MSE are 0.030± 0.015).

We propose the data generation method utilizing de-

coupled DCGANs. We use two separate Deep Convolu-

tional Generative Adversarial Networks (DCGANs) [28] to

generate 350 images of melanoma and 750 images of seb-

orrheic keratosis, which were the two classes heavily under-

represented in the ISIC 2017 data set compared to a much

larger nevus class. Since we use separate networks for each

class, we refer to this approach as “de-coupled DCGANs”.

ISIC-2018 dataset contains large number of classes thus, we

couple the DCGANs [23] making the initial layers share pa-

rameters. This technique is highlighted in the supplemen-

tary section of the paper. We extended the architecture of

DCGAN to produce images of resolution 256 × 256. The

model architecture is highlighted in the Figure 5 and Table

2. GAN techniques rely on training a generator network

to generate images which have similar distribution to the

one followed by the training data. The discriminator pro-

vides a feedback how close the two distributions are. In

our experiments, the latent vector of length 10 that inputs

the generator is obtained from standard Gaussian distribu-

tion with mean 0 and standard deviation 1. We modify DC-

GAN to enable the generation of images with the desired

(A)

0.02 0.09 0.18 0.25 0.31

(B)

0.02 0.04 0.059 0.07 0.11

(C)

(D)

Figure 6. (A) Generated melanoma images (top) and the orig-

inal images from the training set (bottom) for different values

of MSE. (B) generated seborrheic keratosis images (top) and the

original images from the training set (bottom) for different values

of MSE. (C) generated melanoma images (top) and the original

images from the training data set (bottom) for the smallest ob-

tained values of MSE. (D) generated seborrheic keratosis images

(top) and the original images from the training data set (bottom)

for the smallest obtained values of MSE.

resolution by adding layers to both generator and discrimi-

nator. Binary cross entropy loss and Adam optimizer with

learning rate of 2e−4 and beta values of 0.5 and 0.999 were

used to train both discriminator and generator. To prevent

generator from collapsing and perform stable discriminator-

generator optimization we utilize stabilization techniques

[30] and perform early stopping while training the network.

Furthermore, we perform two rounds of additional genera-



Layer Output Size Kernel Stride Padding

Generator

TransConv 256×4×4 4×4 1 0

TransConv 128×8×8 4×4 2 1

TransConv 64×16×16 4×4 2 1

TransConv 32×32×32 4×4 2 1

TransConv 16×64×64 4×4 2 1

TransConv 8×128×128 4×4 2 1

TransConv 3×256×256 4×4 2 1

Discriminator

Conv 16×128×128 4×4 2 1

Conv 32×64×64 4×4 2 1

Conv 64×32×32 4×4 2 1

Conv 128×16×16 4×4 2 1

Conv 256×8×8 4×4 2 1

Conv 512×4×4 4×4 1 1

Conv 1×1×1 4×4 1 0

Table 2. Details of the architecture of the generative model. Let n be the number of features maps, h be the height and w be the width. Size

of the output feature maps is represented as n × h × w. Each convolution layer in the generator, except for the last one, is followed by a

batch normalization and a ReLU nonlinearity. The last convolution layer is followed by a hyperbolic tangent. Similarly, each layer in the

discriminator, except for the last convolution layer, is followed by a batch normalization and a leaky ReLU nonlinearity with the leakage

coefficient of 0.2. The last convolution layer is followed by a sigmoid.

tor training after every 10th round of joint training of both

discriminator and generator. The process of data generation

needs to be done carefully. It is essential to make sure that

the generated images differ from the ones contained in the

training data to maximize data variety. In order to verify

that, we calculate the mean squared error (MSE) between

each generated image to all the images from the training

data set and choose the training image that corresponds to

the minimal value of the MSE. We then compared each gen-

erated image with its closest, i.e. MSE-minimizing, train-

ing image to make sure they are not duplicates. Figure

5 shows the histograms of the mean squared error (MSE)

for seborrheic keratosis and melanoma. The histograms in-

dicate the wide variation in the images generated by the

model. Figure 6 highlights some exemplary images from

both melanoma and seborrheic keratosis classes for differ-

ent values of MSE. It also presents additional images with

smallest obtained MSE i.e images obtained from the ex-

treme left side of both histograms. We finally augment

the data in the two considered classes by performing hor-

izontal flipping of images such that the class sizes increase

to 2685 for melanoma and 2772 for seborrheic keratosis.

The process of augmenting the training data by adding pu-

rified images, GAN-based data generation, and mentioned

traditional augmentation is captured in Figure 7. We finally

augment the entire data set using vertical flipping and ran-

dom cropping to increase the data set further 6 times. The

final training data set was obtained and that will be used

for the classification model is balanced and contains 16110

Figure 7. Illustration of the process of gradually increasing the

size of the training data for the classification model through data

pre-processing (hairs and rulers removal), data generation with

DCGAN, and data augmentation (Data-Aug) using standard tech-

niques.

melanoma cases, 17928 nevus cases, and 16632 seborrheic

keratosis cases, among which a notable fraction, i.e 26%,

constitute the artificially-generated data.

4. Experiments

4.1. Classification Network

For the task of lesion classification, we utilized a ResNet-

50 [16] architecture pre-trained on ImageNet data set with

final fully-connected layer modified to output probabilities

of lesion being in each of the classes. We furthermore pro-

cessed all the images in our training data to remove oc-

clusions as described in the previous section. The pre-

processed images were then added to the training data set

of the lesion classification model to make it more robust
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Figure 8. Top Original image, Bottom Visualization result for nevus, melanoma, and seborrheic keratosis for True Positive (TP), False

Positive (FP), False Negative (FN), and True Negative (TN)
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Figure 9. (Top) ROC curves obtained by traditional baseline

(ResNet-50 pretrained on ImageNet and fine tuned on raw data

without any purification/augmentation) (Left) and proposed clas-

sification model (Right) for ISIC 2017 test data-set. (Bottom)

Confusion matrix obtained by traditional baseline (left) and pro-

posed model (right). M - melanoma, N - nevus, SK - seborrheic

keratosis.

to the presence of occlusions and prevent over-fitting. We

then also augmented the data as described before. See Fig-

ure 7 for the illustration of the process of obtaining training

data for the classification network (this is discussed in de-

tails in previous sections - they also provide the numerical

description of the changes of the data size that are incurred

by purification and augmentation steps).

4.2. Experimental results

For empirical evaluation we used the images from the

ISIC test data set. It contains 600 images (117 melanoma

images, 90 seborrheic keratosis images, and 393 nevus im-

ages), from which we did not remove the hairs and rulers.

We used the main evaluation metrics defined in the ISIC

ROC-AUC

Model Melanoma Avg

Traditional Baseline 0.805 0.873

Proposed Model 0.880 0.915

ISIC Challenge winners [24, 27] 0.874 0.911
Table 3. ROC AUC values for traditional baseline (ResNet-50 pre-

trained on ImageNet and fine-tuned of raw data without any pu-

rification/augmentation) and winners for ISIC challenge.

2017 challenge: area under the receiver operating charac-

teristic curve (ROC AUC) for melanoma classification and

ROC AUC for melanoma and seborrheic keratosis classifi-

cations combined (mean value). We compare our perfor-

mance with the baseline model, i.e. ResNet-50 pretrained

on ImageNet and fine tuned on raw data without perform-

ing any purification/augmentation, and the winning models

of the ISIC 2017 challenge (note that these models were

also using data sets from different digital lesion libraries for

training their models, similarly to our approach).

The ROC-AUC values obtained for different models are

highlighted in Table 3. We obtained ROC AUC of 0.88
for melanoma classification and the mean performance of

0.915 and outperform both the baseline, as shown in Fig-

ure 9, as well as the winners of the challenge that obtained

ROC AUC of 0.874 for melanoma and average ROC AUC

of 0.911. Thus, leading to performance improvement of

order ≈ 4% We also report there the resulting specificity

values for different values of sensitivity for melanoma clas-

sification. Note that in a separate study by Esteva et al. [15],

dermatologists were asked to classify dermoscopic images

into three categories: benign, malignant (melanoma) and

non-neoplastic. Two dermatologists attained 65.56% and

66.0% accuracy on a small subset of the data corpus owned

and maintained by the research group and not open-sourced

to public. We obtain 81.6% accuracy on the task of classify-

ing images into three categories (this number was computed

based on the confusion matrix in Figure 9): benign (nevus),

malignant (melanoma), and seborrheic keratosis which, in

the prism of this study, is much higher than the average ac-

curacy achieved by dermatologists.

In Figure 9 we report the confusion matrix for predict-



Method 82% 89% 95%
Top AVG [24] 0.729 0.588 0.366

Top SK [14] 0.727 0.555 0.404

Top M [27] 0.747 0.590 0.395

Our Classification Model 0.697 0.648 0.492

Table 4. Specificity values at sensitivity levels of 82%/89%/95%
for melanoma classification. Top AVG, Top SK, and Top M denote

the winning approaches of the ISIC 2017 challenge.

ing melanoma, seborrheic keratosis, and nevus. In Table

4 we also report the resulting specificity values for differ-

ent values of sensitivity for melanoma classification. It is

clearly observed that we show superior performance over

other methods for different levels of sensitivity.

The confusion matrix in Figure 9 shows that the classifi-

cation model occasionally confuses nevus and melanoma

images. We employ visualization technique called Visu-

alBackProp to discover the reasons that led to these false

positives and false negatives. The false positive case in

(Figure 8, Nevus) indicates that the lesion area is not well-

identified by the deep learning model (most likely because

it is blended with the skin surface). The false negative cases

show that the occlusions still sometimes affect the predic-

tion, though the pre-processing step has eliminated many

such similar mis-classification cases, e.g.: see true positive

cases for nevus (the model handles well hair occlusions)

and seborrheic keratosis (the model leaves out the ink and

focuses on the lesion).

5. Conclusion

The techniques that aim at automating the visual exami-

nation of skin lesions, traditionally done by dermatologists,

are nowadays dominated by the deep-learning-based meth-

ods. These methods are the most accurate and scalable,

but they require large training data sets and thus their ap-

plicability in dermatology is compromised by the size of

the publicly available dermatological data sets, which are

often small and contain occlusions. We present a solu-

tion for this problem that relies on careful data purification

that removes common occlusions from dermoscopic images

and augmentation that uses the modern technique of deep-

learning-based data generation to improve data balanced-

ness. We demonstrate the effectiveness of our system on

the lesion classification task.
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