
Received January 6, 2020, accepted January 17, 2020, date of publication January 27, 2020, date of current version January 31, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2969429

Towards Automated Reentrancy Detection for
Smart Contracts Based on Sequential Models

PENG QIAN 1, ZHENGUANG LIU1, QINMING HE2,
ROGER ZIMMERMANN 3, (Senior Member, IEEE),
AND XUN WANG1, (Member, IEEE)
1School of Computer and Information Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
2Department of Computer Science, Zhejiang University, Hangzhou 310027, China
3School of Computing, National University of Singapore, Singapore 117417

Corresponding author: Zhenguang Liu (lzg@zjgsu.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2017YFB1401300 and

Grant 2017YFB1401304, in part by the National Natural Science Foundation of China Grant 61902348, in part by the Natural Science

Foundation of Zhejiang Province, China, Grant LQ19F020001, in part by the Science and Technology Innovation Program of Zhejiang

Province, China, under Grant 2019R408070, and in part by the General Scientific Research Projects of Zhejiang Provincial Department of

Education, China, under Grant Y201942758.

ABSTRACT In the last decade, smart contract security issues lead to tremendous losses, which has attracted

increasing public attention both in industry and in academia. Researchers have embarked on efforts with logic

rules, symbolic analysis, and formal analysis to achieve encouraging results in smart contract vulnerability

detection tasks. However, the existing detection tools are far from satisfactory. In this paper, we attempt

to utilize the deep learning-based approach, namely bidirectional long-short term memory with attention

mechanism (BLSTM-ATT), aiming to precisely detect reentrancy bugs. Furthermore, we propose contract

snippet representations for smart contracts, which contributes to capturing essential semantic information

and control flow dependencies. Our extensive experimental studies on over 42,000 real-world smart contracts

show that our proposed model and contract snippet representations significantly outperform state-of-the-art

methods. In addition, this work proves that it is practical to apply deep learning-based technology on smart

contract vulnerability detection, which is able to promote future research towards this area.

INDEX TERMS Blockchain, smart contract, deep learning, sequential models, vulnerability detection.

I. INTRODUCTION

Software or program carrying security flaws can potentially

allow attackers to compromise systems and applications.

The same holds for smart contracts on the blockchain net-

works. Smart contracts de facto are programs that control

automatic execution for multiple transactions in the peer-

to-peer network [1]. However, smart contracts hold cryp-

tocurrency worth billions of dollars, making them attractive

enough to attackers. With the increasing number of smart

contracts, more and more security issues are exposing corre-

spondingly. Attackers make maliciously use of smart contract

vulnerabilities to invade blockchain networks, which causes

huge losses to both blockchain systems and smart contract

holders. According to the statistics of SlowMist Hacked

[2], up to now, blockchain platforms containing ETH [3],

The associate editor coordinating the review of this manuscript and

approving it for publication was Vincenzo Piuri .

EOS [5], and TRON [6] have suffered losses valuedmore than

1.2 billion USD due to the security attack to smart contracts.

Ethereum [3], one of the most popular blockchain plat-

forms, has deployed tens of thousands of smart contracts,

controlling billions of dollars worth of Ether (Cryptocurrency

of Ethereum). Because of that, many Ethereum smart contract

security events caused by attackers are also emerging, while

losses are especially damaging due to the irreversibility and

immutability of smart contracts. We can only watch Ether

flow into the attacker’s pocket but fail to stop it. In June 2016,

over 3.6 million Ether was stolen by hackers exploiting the

reentrancy vulnerability of The DAO Attack [7], incurring

losses of over 60 million USD. Additionally, in Novem-

ber 2017, 300 million USD worth of Ether was frozen due

to Parity’s MultiSig wallet [8]. It can be considered that

more and more vulnerabilities are discovered and exploited,

highlighting an imperative requirement for the security of

smart contracts. Therefore, effective vulnerability detection

tools for smart contracts are essential and urgently required,

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 19685

https://orcid.org/0000-0003-4934-5811
https://orcid.org/0000-0002-7410-2590
https://orcid.org/0000-0003-3178-8198


P. Qian et al.: Towards Automated Reentrancy Detection for Smart Contracts Based on Sequential Models

especially with the expansion transactions reliance on smart

contracts in almost blockchain platforms.

On one side, there has been an increasing interest in

the security of smart contracts, attempting to discover and

identify diverse vulnerabilities of smart contracts. Previous

efforts focused on smart contract analysis are mainly based

on formal analysis methods and expert-defined hard logic

rules. Existing methods for automatically vulnerability detec-

tion have applied symbolic execution [9], [10] and dynamic

analysis [11], [12]. However, due to the easy-prone and easy-

bypass of hard logic rules, these approaches cannot adapt to

more general scenarios, leading to low detection accuracy and

precision. On the other side, with the advancement of deep

learning technology, recurrent neural networks (RNNs) have

achieved great success and widespread application in natural

language processing (NLP). RNNs are powerful deep learn-

ing networks adapted to sequential data. Generally, RNNs are

able to learn short-term dependencies rather than long-term

ones. To this end, the long short-termmemory (LSTM)model

[17] has been correspondingly introduced and used to solve

difficult sequential problems such as speech recognition [16],

sentiment analysis [13], and text prediction [18]. Although

more and more practices are based on deep learning, there is

still a lack of effort exploring to use a deep learning-based

method for smart contract vulnerability detection due to the

novelty and complexity of smart contracts.

Towards this target, we introduce sequential models for

reentrancy detection at a contract source code level. Inspired

by [20], we apply the bidirectional long short-term mem-

ory with the attention mechanism in our sequential mod-

els, namely BLSTM-ATT. Since the BLSTM-ATT model

has been applied in other areas of smart contracts, such as

smart contract automatic classification [19], we deem that the

BLSTM-ATT applied to smart contract vulnerability detec-

tion and achieving encouraging results is reasonable and

operable. Further, considering many program statements in

a smart contract is irrelevant information to reentrancy detec-

tion, we propose using a contract snippet to represent a smart

contract for capturing key semantic sentences. A contract

snippet is a number of lines of a smart contact that are not

only semantically related to each other but also critically to

capture essential information such as control flow or data

dependencies. After obtaining the contract snippets, they can

be vectorized as input to our sequential models.

To the best of our knowledge, this is the first deep learning-

based approach to smart contract reentrancy detection with

regard to a smart contract source code level. Our key contri-

butions are as follows:

• We show that our deep learning-based approach

(i.e., sequential models) outperforms state-of-the-art

smart contract vulnerability detection tools.

• We present a method of transforming smart contract

source code and assembling contract snippets for the

reentrancy detection task. Extensive experiments are

conducted on the contract snippets dataset that we plan

to open-source, achieving high performance with an

FIGURE 1. An real-world instance of smart contract reentrancy attack.

88.47% accuracy and 88.26% F1-Score via our sequen-

tial model BLSTM-ATT.

• By proving that our proposed deep learning approach is

a competitive alternative to current formal analysis tools,

we initiate the study for future work using deep learning

methods to ensure smart contracts away from intrusion.

The remainder of the paper is as follows. We first discuss

the motivations of our work in Section II. Next, we present

some related works in Section III. After that, we elaborate on

our proposed methodology in Section IV. We then conduct

experimental evaluations in Section V. Finally, we conclude

the whole paper and future work in Section VI.

II. MOTIVATION

Since smart contract security issues have led to a loss of over

1.2 billion USD, it gives rise to great doubts about the security

status of blockchain, which further affects the expansion and

popularization of blockchain technology at its initial stage.

In particular, the impact of The Dao Attack [7] once made

the development of the blockchain industry at low tide for

a long time. The main reason for this notorious event is

the reentrancy vulnerability of a smart contract. Generally,

when an attacker initiates an Ether transfer operation to a

certain contract address, it will force the execution of the

fallback function that lies in the attack contract itself. At this

point, malicious behaviors hidden in the fallback function can

probably activate a re-enter behavior, which leads to duplicate

transfer operations.

In a smart contract, there is a fallback function with no

name, which neither takes no arguments nor any return

values. This fallback function, in such two cases, will be

triggered automatically: (1) when a contract called but no

function matched, the fallback function then will be called

by default; (2) when a contract receives Ether transfer, the

fallback function can also be executed.

FIGURE 1 shows a real-world instance of a smart contract

reentrancy attack. This attack exploits the second trigger

condition by the smart contract fallback function described in

the previous paragraph. The function money, in the contract

Attacker, attempts to execute a withdraw operation by calling

the function withdraw of contract Victim, which involves the

Ether transfer method. Consequently, this will irreversibly

make the fallback function in the contract Attacker to be

activated, and the fallback function performs the function

withdraw again, which incurs the withdraw operation to be

executed until Ether in the contract Victim is exhausted. This

process indicates the constant loss of Ether with the most

19686 VOLUME 8, 2020



P. Qian et al.: Towards Automated Reentrancy Detection for Smart Contracts Based on Sequential Models

typical case is The DAO Attack. People can only watch Ether

flow into the intruder’s pocket without any rescue measure.

All in all, our main motivations can be summarized as the

following three parts: (1) The damage of smart contract reen-

trancy vulnerability is tremendous and irreversible. (2) The

analysis and detection of reentrancy vulnerability are difficult

and challenging. (3) Existing work that relies on formal anal-

ysis would fail to achieve precise judgment whilst catching

high false positive and false negative. Therefore, solutions to

smart contract security issues are urgently required.

III. RELATED WORK

On one hand, smart contract security issues promote the birth

of several smart contract detection tools, such as Securify [9],

Mythril [21], Oyente [10], and Smartcheck [22]. On the other

hand, the adaptability of maturity deep learning model to

sequential data, especially recurrent neural networks (RNNs),

has also fostered the development of deep learning-based

program vulnerability detection. Here we first introduce the

related content containing smart contracts and reentrancy.

We then review existing works on vulnerability detection and

deep learning-based methods on security analysis, which are

the most relevant to our work.

A. SMART CONTRACTS AND REENTRANCY

With the rapid development in recent times, blockchain

technologies have been applied to many other areas, such

as the Internet of Things [38], [39] and copyright pro-

tection [40]. Smart contracts are programs running on the

blockchain network, which can execute transactions auto-

matically and irreversibly. The principle of smart contracts

was created in 1996 by Nick Szabo, who is an important

historical figure of blockchains as the inventor of Bit Gold

[23]. As mentioned in many corners of the world, smart

contracts are lines of code that deployed on a blockchain net-

work and automatically execute transactions in a transparent

and decentralized way [24]. Once deployed, a smart contract

is immutable and almost no remedy can be used to handle

bugs during the contract execution process. Ethereum smart

contracts are the most universal and frequent-used under the

emergence of various blockchain platforms. Nevertheless,

because of that, the types of smart contract vulnerabilities are

correspondingly more diversified.

In our work, we focus on the most common and critical

vulnerability that has been reported for EVM-based smart

contracts, i.e., reentrancy vulnerability. This bug is exploited

when a contract attempts to send Ether before having updated

its internal state. A reentrancy attack can occur when you cre-

ate a function that makes an external call to another untrusted

contract before it resolves any effects. If the attacker can

control the untrusted contract, they can make a recursive

call back to the original function, repeating interactions that

would have otherwise not run after the effects were resolved.

B. EXISTING EFFORTS FOR SMART CONTRACT

VULNERABILITY DETECTION

There have been increasing efforts in order to prevent such

attacks and make smart contracts more secure in general.

There are some works that rely on formal analysis and sym-

bolic executionmethods, such asOyente and Securify.Oyente

[10] is one of the early works to uses symbolic execution to

automatically check for smart contract vulnerabilities, while

Securify [9] is a static analysis tool that checks security

properties of the EVM bytecode of smart contracts. Mythril

[21] uses taint analysis and control flow checking to detect

vulnerabilities, whileSmartcheck [22] runs bug analysis in

solidity source code and automatically checking. Another

static analysis tool is ZEUS [34], which can check for a

vast range of vulnerabilities such as reentrancy, unhandled

exceptions, transaction order dependency, and others. Maian

[35] is also a tool to analyze contracts but instead of using

static analysis to find bugs in the contract, it tries to cap-

ture vulnerabilities across long sequences of invocations

of a contract. Recent researches on vulnerability detection

exploit dynamic contract execution. ContractFuzzer [12] is

introduced to identify vulnerabilities by fuzzing and runtime

behavior monitoring during execution. Similarly, Liu et al.

[11] present a fuzzing-based analyzer named Reguard to

automatically detect reentrancy bugs. In our experiments,

wemainly focused on the above four tools including Securify,

Mythril, Oyente, and Smartcheck, while the reasons of other

tools (e.g. Reguard and ContractFuzzer) have no comparison

are that: (1) no open-sourced; (2) required to manually write

attack contracts to trigger reentrancy bugs when detecting

reentrancy vulnerability, which is impractical in our settings.

C. SECURITY ANALYSIS WITH DEEP LEARNING

With deep learning technology widely used in the field of

program security, a variety of security detection tasks emerge

one after another. Li et al. [25] initiate the study of using

a deep learning-based method to detect vulnerability in the

C/C++, which uses the long short-term memory (LSTM).

Gupta et al. [26] use RNNEncoder-Decoder to fix commonC

language errors. The work in the [27] also shows that LSTM

is even more effective in code modeling, which inspires

later works to use it for learning vulnerability features.

Huo et al. [28] use convolutional neural networks (CNNs)

for bug localization in the source code. Mou et al. [36]

explore the potential of deep learning for program analysis

by embedding the nodes of the abstract syntax tree represen-

tations of source code and training a tree-based convolutional

neural network (TBCNN) for simple supervised classification

problems. Harer et al. [37] propose an adversarial learn-

ing approach and trained an RNN to detect vulnerabilities

motivated by the problem of automated repair of software

vulnerabilities. These methods based on deep learning have

achieved good results in their respective tasks.

However, to our knowledge, although more and more pro-

gram vulnerability detection practices explore deep learning,

there is still a lack of deep learning-based approaches for

smart contract vulnerability detection. The reasons can be

concluded as: (1) The explosive growth of deep learning

began in recent years. Even for general program languages,

such as C/C++, Java, deep learning has not been applied

VOLUME 8, 2020 19687



P. Qian et al.: Towards Automated Reentrancy Detection for Smart Contracts Based on Sequential Models

FIGURE 2. The overall process of automated reentrancy detection that contains multiple steps.

to the security vulnerability detection of these programming

languages until recent times. (2) In the past, there are no

enough smart contracts that can support the training of a

neural network. Now as the total number of smart contracts in

various blockchain platforms becomes large enough, time is

ripe for adopting neural networks for vulnerability detection.

In fact, this is also the original intention of our work, aiming

to explore the possibility of detecting vulnerabilities of smart

contracts via deep learning methods.

IV. METHODOLOGY

A. OVERVIEW

Our target is to design a vulnerability detection approach that

can automatically tell whether a given smart contract is reen-

trancy or not. Here our process to automatically reentrancy

detection goes throughmultiple steps as shown in FIGURE 2.

First, given an original smart contract, data cleaning is neces-

sary such as removing blank lines, non-ASCII characters, and

irrelevant comments. We then consider transforming original

smart contracts into contract snippets, which composes of key

program statements. Next, we label the ground truth for each

contract snippet. Afterward, we parse each contract snippet

into a sequence of code tokens, which are embedded into

feature vector representations. Finally, in the experimental

stage, we attempt to feed the feature vectors into our sequen-

tial models to train the detector, achieving the reentrancy bug

detection. For evaluation, we give the details in section V.

Next, we explore three parts of the aforementioned steps

in detail. We first elaborate on the contract snippet repre-

sentations for smart contracts in subsection IV-B. We then

introduce the vector representation for contract snippets in

subsection IV-C, while the sequential model BLSTM-ATT

built in subsection IV-D.

B. CONTRACT SNIPPET REPRESENTATION

FOR SMART CONTRACT

A smart contract (in Ethereum) is a program written by the

high-level language Solidity, which is actually composed of

multiple lines of codes. However, some lines of codes in a

contract might be unrelated to the reentrancy vulnerability

analysis. For example, there may be code explanatory com-

ments and irrelevant functions in a smart contract, which is

unhelpful to our goal (i.e., reentrancy vulnerability detection).

Hence, we try to condense a smart contract into a highly-

expressive contract snippet, facilitating more precise feature

extraction.

A contract snippet not only incurs semantically related

to each other in terms of control flow dependency but

also highlights the key point to reentrancy detection

(i.e., call.value). Given a smart contract, call.value is an

essential factor to reentrancy due to its no gas limitation.

Secondly, the control flow dependency between program

statements is also the key point. As shown in FIGURE 1,

assuming the statement (line 6) is moved before the trans-

fer statement ‘‘msg.sender.call.value(amount)();’’ (line 5),

the occurrence of the next transfer will be avoided in that its

balance has been set to zero, which means that this smart con-

tract is safe. On the contrary, if the vulnerable contract trans-

fers funds before it sets the balance to zero, the attacker can

recursively call the withdraw function repeatedly and drain

the Ether of the whole contract as illustrated in FIGURE 1.

As such, corresponding to the key points of smart contracts,

contract snippets can be generated by the means of control

flow analysis. It is worth mentioning that the contract snippet

we end up with is uncommented and no blank lines, which

have no effect to do with our detection target.

C. VECTOR REPRESENTATION FOR CONTRACT SNIPPET

Since deep neural networks generally take vectors as input,

we need to represent the contract snippets of smart con-

tracts as vectors that are semantically meaningful for the

reentrancy detection. First of all, before each contract snip-

pet is generated as a vector, we try to obtain its symbolic

representation with operations as: (1) mapping user-defined

variables to symbolic names (e.g., ‘‘VAR1’’, ‘‘VAR2’’);

(2) mapping user-defined functions to symbolic names

19688 VOLUME 8, 2020



P. Qian et al.: Towards Automated Reentrancy Detection for Smart Contracts Based on Sequential Models

FIGURE 3. A specific representation process from contract source code to vector representation, including (1) contract snippet representation; (2)
symbolic representation; (3) vector representation.

(e.g., ‘‘FUN1’’, ‘‘FUN2’’). After that, we divide a contract

snippet in the symbolic representation into a sequence of

tokens via lexical analysis. For example, a specific conversion

process has been depicted in step 3 of FIGURE 3, in which

the original line is represented by a sequence of several

tokens, including keywords, operations, built-in normalized

variables, and symbols. Actually, a code token state also

contains information from other code tokens that come before

it, which captures the information of semantics and control

flow dependency.

Then, with a large corpus of tokens of contract snippets

obtained, we convert these tokens into vectors via the

word2vec [29]. This tool is one of themost popular techniques

to learn word embeddings using a shallow neural network,

which maps a token to an integer that is then converted to a

fixed-dimension vector. Owing to contract snippets that may

have different numbers of tokens, the corresponding vectors

converted may have different lengths. Therefore, in order to

take the equal-length vectors as input, we make such adjust-

ments: (1) pad zeros to the end of the vector when the length

is less than the fixed-dimension; (2) truncate the ending part

of the vector when the length exceeds the fixed-dimension.

To sum up, the contract snippet and vector representation

are the key steps of smart contract source code processing,

which is conducive to improving the performance of reen-

trancy detection. We have shown a vivid example from smart

contracts source code to contract snippets to vectors represen-

tation in FIGURE 3. Next, we describe our sequence model

(i.e., BLSTM-ATT) in detail in the upcoming subsection.

D. SEQUENTIAL MODELS FOR VULNERABILITY

DETECTION

1) SEQUENTIAL MODELS CONSTRUCTION

Recurrent neural networks (RNNs) are popular and powerful

models that have shown great promise in many areas such

as audio analysis [14], and other NLP tasks [13], [15], [30],

which the idea behind RNNs is to make use of sequen-

tial information. Mathematically the simple RNN can be

formulated as follows:

h (t) = fH (WIHx (t) +WHHh (t − 1)) (1)

y (t) = fO (WHOh (t)) (2)

where x (t) and y (t) are regarded as the input and output

vectors.WIH ,WHH , andWHO are treated as the weight matri-

ces, while fH and fO are the hidden and output unit activation

functions, respectively. However, vanilla RNNs are able to

easily learn short-term dependency but not the long-term

ones.

In order to address the long-term dependency of vanilla

RNNs, the long short-term memory (LSTM) network was

proposed, which is capable of learning long-term depen-

dency. A single LSTM unit is composed of an input gate

it , an output gate ot , a forget gate ft and a cell state Ct as

depicted in FIGURE 5, which facilitates the cell to remember

values for an arbitrary amount of time and controls the flow

of information. The hidden state ht for an LSTM cell can be

calculated as follows:

ft = σ
(

Wf · [ht−1, xt ] + bf
)

(3)

it = σ (Wi · [ht−1, xt ] + bi) (4)

ot = σ (Wo · [ht−1, xt ] + bo) (5)

C̃t = tanh (WC · [ht−1, xt ] + bC ) (6)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t (7)

ht = ot ⊙ tanh (Ct) (8)

where C̃t is a vector of new candidate values, σ is the sig-

moid function, tanh is the hyperbolic tangent function, and

⊙ denotes matrix multiplication and element-wise product.

Note that they have the exact same equations, just with dif-

ferent parameter matrices W . Since the standard LSTM yet

cannot capture the future information in its sequence, we add

a layer of reverse LSTM, namely Bidirectional-LSTM [30].

Furthermore, in order to highlight the importance of some

output results for vulnerability detection, we introduce the

attention mechanism [33] making the final sequential model

VOLUME 8, 2020 19689



P. Qian et al.: Towards Automated Reentrancy Detection for Smart Contracts Based on Sequential Models

FIGURE 4. The architecture of our Bidirectional-LSTM with an attention mechanism. First, the vectorized smart contract snippet input to the BLSTM layer.
Then, an attention layer is added to highlight important weight. Last, through the FC layer and Softmax, the detection result is produced.

obtained (i.e., BLSTM-ATT), which authentically improves

the effect of experiments. For example, as to important words

in the code lines (e.g., call.value), we use the attention mech-

anism to give weight that can be formalized as:

ut = tanh (Wht + b) (9)

αt =
exp(uT u)

∑

t (exp(u
T
t u))

(10)

where αt is a normalized weight by attention mechanism. The

specific model architecture is shown in FIGURE 4.

2) REENTRANCY DETECTION

In the previous subsection, we described our proposed

BLSTM-ATT model which can be employed to perform

reentrancy detection. We feed the feature vectors generated

by word2vec into this sequential model to learn the model

parameters. Learning involves computing the gradient during

the back propagation phase and updating the model parame-

ters. Once the training phase completed, we utilize the trained

model to perform reentrancy detection.

Given one or multiple contract snippets of smart contracts

from the testing set, we transform them into vector repre-

sentations and feed vectors into the sequential model. The

model outputs the results of each target smart contract to tell

whether it is reentrancy (‘‘1’’) or not (‘‘0’’). Formally, we use

a softmax classifier to predict label y∗ for a contract snippet

S. The detector takes the hidden state h∗ as input:

p̂ (y|S) = softmax
(

Wh∗ + b
)

(11)

y∗ = argmax
y

p̂ (y|S) (12)

In summary, we can obtain the final results of the reen-

trancy identification by this detector.

V. EMPIRICAL EVALUATIONS

In this section, we conduct extensive experiments on real-

world Ethereum smart contracts to evaluate our proposed

contract snippets and sequential models. We start by intro-

ducing the evaluation metrics adopted in our experiments.

Next, we present our datasets and processing. We then give

details of how we trained the sequential models. Last, we

FIGURE 5. The structure of an LSTM unit.

analyze the experimental results and performance compared

with state-of-the-art approaches.

A. EVALUATION METRICS

To evaluate the performance of our deep learning-based reen-

trancy detection models, we adopt the widely used metrics

include accuracy (ACC), true positive rate or recall (TPR),

false positive rate (FPR), precision (PRE), and F1-Score

(F1). All these metrics are supported by true positive (TP):

the number of samples with true reentrancy detected; false

positive (FP): the number of samples with false reentrancy

detected; false negative (FN): the number of samples with

true reentrancy undetected; true negative (TN): the number

of samples with false reentrancy undetected. Then, we can

compute metrics as ACC = TP+TN
TP+TN+FP+FN

, TPR = TP
TP+FN

,

FPR = FP
FP+TN

, PRE = TP
TP+FP

, and F1 = 2∗PRE∗TPR
PRE+TPR

. We pre-

fer to achieving high TPR and low FPR. In addition, the main

visualization technique that we study the performance of our

reentrancy detection using the ROC curves, which a large

area under the curve (i.e., AUC area) reveals a good detection

performance.

B. DATASET AND PROCESSING

We conduct experiments on two datasets, RSC1 and RCS.

Specifically, we named the original smart contract dataset

1RSC is only used to verify the effectiveness of our proposed contract
snippets, while basically experiments are conducted on the RCS.

19690 VOLUME 8, 2020



P. Qian et al.: Towards Automated Reentrancy Detection for Smart Contracts Based on Sequential Models

as RSC and the normalized contract snippet dataset as RCS.

RSC contains the original and unprocessed smart contracts,

while RCS consists of normalized contract snippets, which

will be further described in the upcoming paragraph.

RSC Focused on the Ethereum smart contracts,

we crawled a total of over 42,000 contracts source code from

the Etherscan [4] (Official platform of Ethereum) according

to the addresses of smart contracts. As required by our

detection task (i.e. reentrancy detection), we review all con-

tract source code and differentiate over 2,000 contracts with

call.value, which is the key point and potential causing reen-

trancy. We construct a dataset of reentrancy smart contracts

based on original and unprocessed contracts (RSC) and give

the ground truth for each contract as ‘‘1’’ (i.e., reentrancy)

or ‘‘0’’ (i.e., non-reentrancy), which covers almost all the

potential reentrancy contracts.

RCS To carry out a better empirical evaluation,

we exploit our proposed approach assembling contract state-

ments into contract snippets. A contract snippet consists

of multiple lines of code that are semantically related to

each other, especially those logical semantics closely related

to reentrancy. Then, we scrutinize each contract snippet

and label the ground truth as ‘‘1’’ (i.e., reentrancy) or ‘‘0’’

(i.e., non-reentrancy). Furthermore, in order to highlight the

key features of a contract snippet, we transform contract

snippets into their symbolic representations, mainly includes

three steps as: (1) remove the blank lines, non-ASCII charac-

ters, and comments; (2) map user-defined variables to sym-

bolic names (e.g., ‘‘VAR1’’, ‘‘VAR2’’); (3) map user-defined

functions to symbolic names (e.g., ‘‘FUN1’’, ‘‘FUN2’’).

As such, we can obtain a dataset of reentrancy contract

snippets (RCS).

To transform contract snippets into the regular input-form

of our sequential models, we vectorize them by the word2vec

tool, which is widely used in word vector representation.

Finally, we employ word2vec to embed the contract snippets

into vectors of different dimensions for training so that can

find the vector dimensions in the best performance situation.

C. TRAINING DETAILS FOR SEQUENTIAL MODELS

We implemented our proposed sequential model in Keras

[31] with TensorFlow backend2 running in Python. All the

experiments are conducted on a computer equipped with an

Intel Core i7 CPU at 3.7GHz, GPU at 1080Ti, and 32GB of

Memory.

As to parameter settings, for each sequential model,

we adopt 10-fold cross-validation to select and train the

best parameter values corresponding to the effectiveness of

reentrancy detection.We learned all themodels by optimizing

the binary cross-entropy loss. The optimal Algorithm Adam

for gradient descent is employed for all experiments. The

learning rate lr is searched in [0.0001, 0.0005, 0.001, 0.002,

0.005] for our models. To prevent overfitting, we tune the

dropout rate dr as searched in [0.2, 0.4, 0.6, 0.8]. The batch

2Our implementation is available: https://github.com/Messi-Q/
VulDeeSmartContract

TABLE 1. The details of datasets RSC and RCS.

size β of all methods is set to 64. Moreover, the number of

tokens in the vector representation of contract snippets is

set to 100, while the dimension of vectors vm is searched

in [200, 300, 400, 500]. Without special mention in texts,

we report the performance of all the models with following

default setting: 1) lr = 0.002, 2) dr = 0.2, 3) β = 64, and

4) vm = 300.

The general training details are concluded as follows:

(1) we collect and use a total number of over 42,000 smart

contracts; (2) we have differentiated 2,000 smart contracts

with the keyword call.value, of which 400 are unique;

(3) we then review 2,000 smart contracts and label the ground

truth, including 666 with reentrancy vulnerability. (4) we

construct two datasets (i.e., RSC and RCS) and divide them

into an 8:2 training set and test set. Among them, the original

contracts in the training set have 1,600 (306,985 lines) and

in the testing set have 400 (76,747 lines), while the con-

tract snippets are 18,996 lines and 5,675 lines, respectively.

TABLE 1 reveals the specific details of the two datasets.

D. RESULTS AND PERFORMANCE COMPARISON

In this section, we illustrate the experimental results and

performance comparison of our sequential models on smart

contract reentrancy detection task. Our experiments are cen-

tered on the following three research questions.

RQ1: How effective are our sequential models, especially

BLSTM-ATT, on reentrancy detection task? For answering

this question, we conducted experiments on a variety of

sequential models.

RQ2: How effective are our deep learning approaches

when compared with state-of-the-art smart contract

vulnerability detection tools? For answering this question,

we compare our deep learning approaches with other existing

detection methods, mainly including the formal analysis

tools.

RQ3: How effective is our proposed representationmethod

of contract snippets in our experiments? For answering this

question, we conducted experiments on original and unpro-

cessed smart contract source code (i.e., RSC dataset) com-

pared with our smart contract snippets (i.e., RCS dataset).

In what follows, we answer the above research questions

one by one.

1) EMPIRICAL EVALUATION OF SEQUENTIAL MODELS (RQ1)

In section IV, we proposed using sequential models to

detect smart contract reentrancy bugs, which is empirically

evaluated in this section. The dataset contains over 2,000

contract snippets collected and normalized. We employ con-

vincing metrics to explore the effect of deep learning-based

VOLUME 8, 2020 19691



P. Qian et al.: Towards Automated Reentrancy Detection for Smart Contracts Based on Sequential Models

FIGURE 6. Performance visualization results of sequential models.

TABLE 2. Performance evaluation for Vanilla-RNN, LSTM, BLSTM, and
BLSTM-ATT.

methods on the reentrancy detection task, in which the sta-

tistical results are shown in TABLE 2. As to each neural

network model, we repeat experiments 10 times to calculate

the average. It can be noted that almost sequential models

achieve good performance and surpass the vanilla RNN,

which can be attributed to its limitation at dealing with

long sequences. In particular, BLSTM-ATT achieves a high

F1-Score of 88.26% and a low false positive rate (FPR)

of 8.57%, which means accurately identify the reentrancy

bugs. The performance boosts are presumably from the

effectiveness of the BLSTM architecture and the attention

mechanism. The BLSTM-ATT model can not only capture

the long-term dependencies in the past or future but also

highlight the key point with the attention mechanism.

We further analyze the performance of our sequential

models by ROC curve visualization as depicted in

FIGURE 6(a) ROC curves plot the true positive rate (TPR)

on the y-axis while the false positive rate (FPR) is shown

on the x-axis, which usually used to study the performance

of binary classifiers. The Area Under Curve (AUC) value of

BLSTM-ATT reaches nearly 90%, which means a wonderful

detection result. Additionally, as the training and validation

process plotted in FIGURE 6(b), we report detection accuracy

and loss of the sequential models on both the training and

testing datasets. With the increase in the number of epochs,

accuracy and loss corresponding increase or decrease.

From the results, we can conclude that the deep

learning-based detection methods (i.e., sequential models)

obviously achieve an impressive detection performance in

TABLE 3. Performance comparison with existing tools.

terms of reentrancy bug. This implies that deep learning

can be applied to vulnerability detection in smart contracts.

In addition, due to the capture of the semantic information of

sequential models and the highlight of the attention mecha-

nism, smart contract vulnerability detection can achieve high

accuracy and a low false positive rate.

2) COMPARISON WITH EXISTING METHODS (RQ2)

After empirically analyzing the effectiveness of sequential

models, we now focus on the performance comparison of our

detector w.r.t. existing state-of-the-art methods. Among the

possible comparison methods, we consider one of the first

tools for analyzing smart contracts (Oyente), a static analysis

tool based on the bytecode level (Securify), a static analyzer

based on source code (Smartcheck), and an automated anal-

ysis tool (Mythril). These methods are selected because they

are automatic smart contract vulnerability detection tools that

are closely related to our work.

To report the performance comparison results, we scan

200 subject smart contract instances (including 58 vulnerable

reentrancy contracts) by these contract analyzers. Note that

we have already classified all reentrancy warnings as true

positive (TP) since Securify gives the report on vulnerabil-

ity detection containing warnings. Additionally, we consider

the situation that cannot be detected by current analyzers

as false positive (FP). TABLE 3 has summarized the com-

parison results, in which we make the following observa-

tions. First, BLSTM-ATT substantially outperforms the other

state-of-the-art smart contract vulnerability detection tools,

19692 VOLUME 8, 2020



P. Qian et al.: Towards Automated Reentrancy Detection for Smart Contracts Based on Sequential Models

TABLE 4. Performance comparison for the experiment on datasets RSC
and RCS.

because BLSTM-ATT incurs an FPR of 8.57% and an F1 of

88.26%. Second, we know that Smartcheck fails to detect cer-

tain vulnerabilities as it only depends on logic rules defined

by human-experts, which lead to very low TPR and PRE

(24.32% and 31.03%, respectively). As to Mythril, it reports

slightly better than Smartcheck, but only 39.21% TPR and

68.96% PRE. Although Oyente also requires rules defined

by human experts for recognizing reentrancy and is far from

perfect, it utilizes data flow analysis so that it shows a TPR

of 50.84% and a PRE of 51.72% in our experiments.

Unlike the other three tools, the results reported by Securify

contain three parts, violations (i.e., ‘‘1’’), compliances

(i.e., ‘‘0’’), and warnings. As such, after warnings treated

as ‘‘0’’, this naturally leads to the improvement of its PRE.

In spite of this, it still catches a low TPR of 37.41%, which

leads to a low F1 of 52.39%.

Therefore, it is fair to say that our proposed BLSTM-ATT

obviously outperforms four state-of-the-art formal analysis-

based vulnerability detection tools. This leads that our

sequential models achieve a more effective detection effect,

which indicates deep learning-based methods not only is able

to apply to smart contract vulnerability detection but also

achieves good performance. Overall, in terms of experimental

results, we use the sequential model far better than the state-

of-the-art smart contract detection tools.

3) STUDY IN CONTRACT SNIPPETS (RQ3)

In this section, we mainly to verify that our proposed

representation method of contract snippets plays a significant

and valuable role. For this purpose, we make a comparison

with the RSC dataset, which consists of the original and

unprocessed smart contracts. Under the same background of

model parameter settings, we conduct comparative experi-

ments with different neural networks on the two datasets (i.e.,

RSC and RCS). TABLE 4 shows the specific experimental

results of all sequential models.

Obviously, the results on RCS are far better than on RSC as

shown in TABLE 4. Taking the results of BLSTM-ATT as an

example, all evaluation metrics on RCS present much better

results than those on RSC. Turn to the results on the RSC

dataset, it only achieves the accuracy of 73.83% and the F1 of

67.89%. In particular, the results indicate a 14.64% higher

ACC and 20.37% higher F1, respectively.

Conceptually, RSC dataset contains the original smart

contracts, containing much irrelevant information, which

prevents the sequential models adapting to the seman-

tic information of smart contracts. Therefore, according

to the experimental results on datasets RSC and RCS,

we can attribute the good performance to the contract

snippets, which actually abandon the useless information

(e.g., code explanatory comments and blank lines) and cap-

ture key points (e.g., control flow dependency, keywords,

and semantic inheritance information). With the highly-

expressive contract snippets, our proposed sequential models

tend to be well-adapted and well-trained to achieve precisely

vulnerability identification.

VI. CONCLUSION AND FUTURE WORK

In this work, we put forward using sequential models for the

reentrancy detection task, which applies the effectiveness of

deep neural networks to smart contract vulnerability detec-

tion. The key contract snippet representations and sequential

model (i.e., BLSTM-ATT) are proposed to learning more

informative features at the source code level, even a contract

snippet level. Extensive experiments on a real-world smart

contract dataset have shown good results for the reentrancy

vulnerability task. Furthermore, this is a successful practice

of applying deep learning technology to smart contract vul-

nerability detection, which is able to promote future research

interests in this area.

Besides, it needs to point out that our current work is

limited to the detection task of reentrancy vulnerability.

We tend to apply sequential models to more detection tasks of

smart contract vulnerabilities in the follow-up work, such as

integer overflow, unhandled exceptions, and so on. Further-

more, towards the dynamic detection of smart contract vul-

nerability related to the runtime state, we consider designing

a general attack scenario to interact with each smart contract

on runtime state, aiming to analyze the dynamic execution.

We also hope that there will be more breakthroughs in this

field in the future.

REFERENCES

[1] R. Schollmeier, ‘‘A definition of peer-to-peer networking for the classifica-

tion of peer-to-peer architectures and applications,’’ in Proc. 1st Int. Conf.

Peer–Peer Comput., Aug. 2001, pp. 101–102.

[2] (2018). Slowmist Hacked. [Online]. Available: https://hacked.slowmist.

io/en/

[3] (2015). Ethereum. [Online]. Available: https://github.com/ethereum/go-

ethereum

[4] (2015). Etherscan. [Online]. Available: https://etherscan.io/

[5] (2018). EOS. [Online]. Available: https://eos.io/

[6] (2017). TRON. [Online]. Available: https://tron.network/

[7] (2016). TheDao Attack. [Online]. Available: https://en.wikipedia.org/wiki/

TheDAO(organization).

[8] (2017). Parity Multisig Bug. [Online]. Available: http://hackingdistributed.

com/2017/07/22/deep-dive-parity-bug/

[9] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Büenzli, and

M. Vechev, ‘‘Securify: Practical security analysis of smart contracts,’’ in

Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2018, pp. 67–82.

VOLUME 8, 2020 19693



P. Qian et al.: Towards Automated Reentrancy Detection for Smart Contracts Based on Sequential Models

[10] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, ‘‘Making smart

contracts smarter,’’ in Proc. ACM SIGSACConf. Comput. Commun. Secur.,

2016, pp. 254–269.

[11] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe, ‘‘Reguard:

Finding reentrancy bugs in smart contracts,’’ in Proc. IEEE/ACM 40th Int.

Conf. Softw. Eng., Companion, May 2018, pp. 65–68.

[12] B. Jiang, Y. Liu, and W. Chan, ‘‘Contractfuzzer: Fuzzing smart contracts

for vulnerability detection,’’ inProc. 33rd ACM/IEEE Int. Conf. Automated

Softw. Eng., Sep. 2018, pp. 259–269.

[13] J. Wang, L.-C. Yu, K. R. Lai, and X. Zhang, ‘‘Dimensional sentiment

analysis using a regional CNN-LSTMmodel,’’ inProc. 54th Annu.Meeting

Assoc. Comput. Linguistics, vol. 2, 2016, pp. 225–230.

[14] Y. Fan, X. Lu, D. Li, and Y. Liu, ‘‘Video-based emotion recognition using

CNN-RNN and C3D hybrid networks,’’ in Proc. 18th ACM Int. Conf.

Multimodal Interact., 2016, pp. 445–450.

[15] R. Messina and J. Louradour, ‘‘Segmentation-free handwritten Chinese

text recognition with LSTM-RNN,’’ in Proc. 13th Int. Conf. Document

Anal. Recognit. (ICDAR), Aug. 2015, pp. 171–175.

[16] A. Graves, A.-R.Mohamed, andG. Hinton, ‘‘Speech recognition with deep

recurrent neural networks,’’ inProc. IEEE Int. Conf. Acoust., Speech Signal

Process., May 2013, pp. 6645–6649.

[17] J. Schmidhuber and S. Hochreiter, ‘‘Long short-term memory,’’ Neural

Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[18] K. Choi, G. Fazekas, and M. Sandler, ‘‘Text-based LSTM networks for

automatic music composition,’’ 2018, arXiv:1604.05358. [Online]. Avail-

able: https://arxiv.org/abs/1604.05358

[19] Y. Wu, C. Ting, and Z. Dabin, ‘‘Hierarchical attention mechanism and

bidirectional long short-term memory based neural network model for

smart contract automatic classification,’’ J. Comput. Appl., vol. 1, no. 1,

pp. 1–9, 2019.

[20] P. Zhou, W. Shi, J. Tian, Z. Qi, B. Li, H. Hao, and B. Xu, ‘‘Attention-based

bidirectional long short-termmemory networks for relation classification,’’

in Proc. 54th Annu. Meeting Assoc. Comput. Linguistics, vol. 2, 2016,

pp. 207–212.

[21] B. Mueller. (2017). A Framework for Bug Hunting on the Ethereum

Blockchain. [Online]. Available: https://github.com/ConsenSys/mythril

[22] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,

E. Marchenko, and Y. Alexandrov, ‘‘Smartcheck: Static analysis of

Ethereum smart contracts,’’ in Proc. IEEE/ACM 1st Int. Workshop

Emerg. Trends Softw. Eng. Blockchain (WETSEB), May/Jun. 2018,

pp. 9–16.

[23] T. H. Kim, ‘‘A study of digital currency cryptography for business market-

ing and finance security,’’ Asia-Pacific J. Multimedia Services Convergent

Art, Hum., Sociol., vol. 6, no. 1, pp. 365–376, 2016.

[24] Z. Huang, X. Su, Y. Zhang, C. Shi, H. Zhang, and L. Xie, ‘‘A decen-

tralized solution for IoT data trusted exchange based-on blockchain,’’

in Proc. 3rd IEEE Int. Conf. Comput. Commun. (ICCC), Dec. 2017,

pp. 1180–1184.

[25] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,

‘‘Vuldeepecker: A deep learning-based system for vulnerability detec-

tion,’’ in 25th Annu. Netw. Distrib. System Security Symp., San Diego, CA,

USA, Feb. 2018, pp. 1–15.

[26] R. Gupta, S. Pal, A. Kanade, and S. Shevade, ‘‘Deepfix: Fixing common c

language errors by deep learning,’’ in Proc. 31st AAAI Conf. Artif. Intell.,

2017, pp. 1345–1351.

[27] H. K. Dam, T. Tran, and T. M. Pham, ‘‘A deep language model for software

code,’’ in Proc. Found. Softw. Eng. Int. Symp., 2016, pp. 1–4.

[28] X. Huo, M. Li, and Z.-H. Zhou, ‘‘Learning unified features from natural

and programming languages for locating buggy source code,’’ inProc. 25th

Int. Joint Conf. Artif. Intell., 2016, pp. 1606–1612.

[29] T.Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, ‘‘Distributed

representations of words and phrases and their compositionality,’’ in Proc.

Adv. Neural Inf. Process. Syst., 2013, pp. 3111–3119.

[30] A. Søgaard and Y. Goldberg, ‘‘Deep multi-task learning with low level

tasks supervised at lower layers,’’ in Proc. 54th Annu. Meeting Assoc.

Comput. Linguistics, 2016, pp. 231–235.

[31] (2015). Keras. [Online]. Available: https://keras.io/

[32] A. Graves, S. Fernández, and J. Schmidhuber, ‘‘Bidirectional LSTM net-

works for improved phoneme classification and recognition,’’ in Proc. Int.

Conf. Artif. Neural Netw., 2005, pp. 799–804.

[33] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

Ł. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Adv.

Neural Inf. Process. Syst., 2017, pp. 5998–6008.

[34] M. Dhawan, ‘‘Analyzing Safety of Smart Contracts,’’ in Proc. Conf.,

Netw. Distrib. Syst. Secur. Symp., San Diego, CA, USA, 2017,

pp. 16–17.

[35] I. Nikolić, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, ‘‘Finding the

greedy, prodigal, and suicidal contracts at scale,’’ in Proc. 34th Annu.

Comput. Secur. Appl. Conf., 2018, pp. 653–663.

[36] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, ‘‘TBCNN: Tree-based con-

volutional neural network for programming language processing,’’ 2014,

arXiv:1409.5718. [Online]. Available: https://arxiv.org/abs/1409.5718

[37] J. Harer, O. Ozdemir, T. Lazovich, C. Reale, R. Russell, and L.

Kim, ‘‘Learning to repair software vulnerabilities with generative adver-

sarial networks,’’ in Proc. Adv. Neural Inf. Process. Syst., 2018,

pp. 7933–7943.

[38] W. Yuxin, C. Ting, ‘‘Application of blockchain technology in the Internet

of Things,’’ Mod. Comput., pp. 16–21, 2019.

[39] K. Christidis and M. Devetsikiotis, ‘‘Blockchains and smart contracts

for the Internet of Things,’’ IEEE Access, vol. 4, pp. 2292–2303,

2016.

[40] Z. Meng, T. Morizumi, S. Miyata, and H. Kinoshita, ‘‘Design scheme

of copyright management system based on digital watermarking and

blockchain,’’ in Proc. IEEE 42nd Annu. Comput. Softw. Appl. Conf.,

Jul. 2018, pp. 359–364.

PENG QIAN received the B.S. degree in software

engineering from Yangtze University, in 2018.

He is currently pursuing the master’s degree

with the School of Computer and Information

Engineering, Zhejiang Gongshang University. His

research interests include blockchain security and

multimedia data analysis.

ZHENGUANG LIU received the B.E. degree

from Shandong University and the Ph.D. degree

from Zhejiang University, China, in 2010 and

2015, respectively. He was a Research Fellow

with the National University of Singapore and

the Singapore Agency for Science, Technology,

and Research (A* STAR). He is currently a Pro-

fessor of computer science with the School of

Computer and Information Engineering, Zhejiang

Gongshang University. His research interests

include multimedia data analysis, data mining, and blockchain security.

QINMING HE received the B.S., M.S., and Ph.D.

degrees in computer science from Zhejiang Uni-

versity, in 1985, 1988, and 2000, respectively.

He is currently a Professor with the College of

Computer Science, Zhejiang University, China.

His research interests include data mining, com-

puting system virtualization, and blockchain tech-

nology. His research has been supported by the

National Natural Science Foundation of China

(NSFC), the National Key Technology Research

and Development Program, and so on.

19694 VOLUME 8, 2020



P. Qian et al.: Towards Automated Reentrancy Detection for Smart Contracts Based on Sequential Models

ROGER ZIMMERMANN (Senior Member,

IEEE) received the M.S. and Ph.D. degrees from

the University of Southern California, in 1994 and

1998, respectively. He is currently an Associate

Professor of computer science with the School

of Computing, National University of Singapore

(NUS), where he is also the Deputy Director

with the Smart Systems Institute (SSI). He was

Co-Director of the Centre of Social Media Inno-

vations for Communities (COSMIC) and the

Research Institute Funded by the National Research Foundation (NRF)

of Singapore. Among his research interests are mobile video manage-

ment, streaming media architectures, distributed and peer-to-peer systems,

spatio-temporal data management, and location-based services.

XUN WANG (Member, IEEE) received the

B.Sc. degree in mechanics and the Ph.D. degree

in computer science from Zhejiang University,

Hangzhou, China, in 1990 and 2006, respec-

tively. He is currently a Professor with the School

of Computer Science and Information Engineer-

ing, Zhejiang Gongshang University, China. His

current research interests include mobile graph-

ics computing, image/video processing, pattern

recognition, intelligent information processing,

and visualization. He is also a member of ACM and a Senior Member of

CCF.

VOLUME 8, 2020 19695


	INTRODUCTION
	MOTIVATION
	RELATED WORK
	SMART CONTRACTS AND REENTRANCY
	EXISTING EFFORTS FOR SMART CONTRACT VULNERABILITY DETECTION
	SECURITY ANALYSIS WITH DEEP LEARNING

	METHODOLOGY
	OVERVIEW
	CONTRACT SNIPPET REPRESENTATION FOR SMART CONTRACT
	VECTOR REPRESENTATION FOR CONTRACT SNIPPET
	SEQUENTIAL MODELS FOR VULNERABILITY DETECTION
	SEQUENTIAL MODELS CONSTRUCTION
	REENTRANCY DETECTION


	EMPIRICAL EVALUATIONS
	EVALUATION METRICS
	DATASET AND PROCESSING
	TRAINING DETAILS FOR SEQUENTIAL MODELS
	RESULTS AND PERFORMANCE COMPARISON
	EMPIRICAL EVALUATION OF SEQUENTIAL MODELS (RQ1)
	COMPARISON WITH EXISTING METHODS (RQ2)
	STUDY IN CONTRACT SNIPPETS (RQ3)


	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	PENG QIAN
	ZHENGUANG LIU
	QINMING HE
	ROGER ZIMMERMANN
	XUN WANG


