
Towards Automated RESTful Web Service Composition

Haibo Zhao and Prashant Doshi
LSDIS Lab, Dept. of Computer Science

University of Georgia
Athens, GA 30602

{zhao,pdoshi}@cs.uga.edu

Abstract

Emerging as the popular choice for leading Internet
companies to expose internal data and resources, RESTful
Web services are attracting increasing attention in the in-
dustry. While automating WSDL/SOAP based Web service
composition has been extensively studied in the research
community, automated RESTful Web service composition in
the context of service-oriented architecture (SOA), to the
best of our knowledge, is less explored. As an early pa-
per addressing this problem, this paper discusses the chal-
lenges of composing RESTful Web services and proposes
a formal model for describing individual Web services and
automating the composition. It demonstrates our approach
by applying it to a real-world RESTful Web service compo-
sition problem. This paper represents our initial efforts to-
wards the problem of automated RESTful Web service com-
position. We are hoping that it will draw interests from the
research community on Web services, and engage more re-
searchers in this challenge.

1 Introduction

Introduced by Fielding [5, 6], the principles of REpre-
sentational State Transfer (REST) has backed the devel-
opment of the World Wide Web (WWW). The principles
of REST include: (1) Conceptual entities and functional-
ities are modeled as resources identified by universal re-
source identifiers (URIs). (2) Resources accessed and ma-
nipulated via standardized, well-known HTTP operations
(GET, POST, PUT and DELETE). (3) Components of the
system communicate via these standard interface operations
and exchange the representations of these resources (one
resource may have multiple representations). In REST sys-
tem, servers and clients typically travel through different
states of resource representations by following the inter-
links between resources.

By applying the principles of REST Web service (WS)

development, RESTful WSs [13] are emerging as the choice
for many of the leading Internet companies to expose
their internal data and functionalities as URI identified re-
sources. In contrast to the operation-centric perspective of
WSDL/SOAP WSs, RESTful WSs view the applications
from a resource-centric perspective. Some of the advan-
tages of RESTful WSs include:

Light-weight: RESTful WSs directly utilizes HTTP as
the invocation protocol which avoids unnecessary XML
markups or extra encapsulation for APIs and input/output.
The response is the representation of the resource itself, and
does not involve any extra encapsulation or envelopes. As
a result, RESTful WSs are much easier to develop and con-
sume than WSDL/SOAP WSs, especially in the Web 2.0
context. Additionally, they depends less on vendor software
and mechanisms that implements the additional SOAP layer
on top of HTTP. RESTful WSs usually deliver better perfor-
mance due to their The light-weight nature.

Easy-accessibility: URIs used for identifying REST-
ful WSs can be shared and passed around to any dedi-
cated service clients or common purpose applications for
reuse. The URIs and the representation of resources are
self-descriptive and thus makes RESTful WSs easily acces-
sible. RESTful WSs have been widely used to build Web
2.0 applications and mashups.

Scalability: The scalability of RESTful WSs comes
from its ability to naturally support caching and paralliza-
tion/partitioning on URIs. The responses of GET (a side-
effect free operation) can be cached exactly the same as
web pages are currently cached in the proxies, gateways and
content delivery networks (CDNs). Additionally, RESTful
WSs provide a very simple and effective way to support
load balancing based on URI partitioning. Compared to ad-
hoc partitioning of functionalities behind the SOAP inter-
faces, URI-based partitioning is more generic and flexible,
and could be easier to realize.

Declarative: In contrast to imperative services from the
perspective of operations, RESTful WSs take a declara-
tive approach and view the applications from the perspec-

tive of resources. Being declarative means that RESTful
WSs focus on the description of the resources themselves,
rather than describing how the functions are performed.
Declarative style brings the fundamental differences be-
tween RESTful WSs and WSDL/SOAP WSs to the fore-
front. While building services for a particular system, the
declarative approach focuses on what resources needed to
be exposed and how these resources can be represented;
imperative approach focuses on what operations needed to
be provided and what are the input/ouput of these opera-
tions. Declarative approach is considered to be a better
choice [14] to build flexible, scalable and loosely-coupled
SOA systems.

The characteristics of RESTful WSs mentioned above
make automated RESTful Web service composition a fun-
damentally different problem than the composition problem
of WSDL/SOAP WSs. Although the research community
has put significant effort on automating WSDL/SOAP WSs,
automated RESTful Web service composition problem, to
the best of our knowledge, is less explored. In this pa-
per, we outline the challenges of this particular problem and
present our initial effort towards the problem of automating
RESTful Web service composition. Our main contribution
in this paper is the introduction of a formal description of
the RESTful Web service composition problem. While an-
alyzing the differences and challenges involved in this prob-
lem, we propose a formal model for classifying and describ-
ing RESTful WSs, and presents a situation calculus [10, 12]
based state transition system for composing them automati-
cally.

The rest of the paper is organized as follows. We de-
scribe a motivating scenario in Section 2, and this scenario
will be used as a running example to explain our model-
ing method for individual WSs and the proposed compo-
sition approach. In Section 3, we introduce a conceptual
model for classifying and describing individual RESTful
WSs. Section 4 presents in detail the theoretical frame-
work for composing RESTful WSs. We introduce a tai-
lored state transition system and explain the formulation of
this system. We will detail how the proposed framework
approaches the online shopping scenario mentioned in Sec-
tion 2. We also provide a brief comparison between the
composition of WSDL/SOAP WSs and RESTful WSs in
Section 5. Finally, we conclude our work with a discussion
of challenges involved in RESTful Web service composi-
tion and present our future research directions in Section 6.

2 Scenario: B2C online shopping

In this section, we introduce a simplified online shopping
scenario. Registered customers place orders to the system,
and one customer may have multiple orders in the system.
Orders are not handled until the payment is received. Once

the payment is verified, the system processes the order and
ships the order to the customer. This system is intended to
be implemented using WSs so that it can be used by exter-
nal business partners or third party Web 2.0 applications.
We would like to expose each of the functional components
using WSs.

Figure 1. A simplified online shopping sce-
nario

An imperative approach of handling this application
would start with functionality decomposition. One solution
could be to expose Remote Procedure Call (RPC) style WSs
as below:

WSDL/SOAP WSs and Interfaces

getCustomer
Description: get customer informat
Input: customer id
Output: customer information

getOrder
Description: get order information
input: order id
output: order information

placeOrder
Description: place a new order
Input: customer id, order
Output: success or failure

SubmitPayment
Description: submit a payment
Input: order id, payment
Output: success or failure

ShipOrder
Description: ship the order
Input: order id
Output: success or failure

Table 1. The list of RPC style WSs

3 RESTful WSs

In this section, we introduce a classification of RESTful
WSs, and present a conceptual modeling approach to de-
scribe the identified types of WSs. Unlike WSDL/SOAP

based WSs, there is no commonly recognized model or de-
scription language available for RESTful WSs. To facilitate
automated composition, we present an ontology based for-
mal model for RESTful WSs, this model is at the conceptual
level and may be bounded with ontology languages.

3.1 Classification of RESTful WSs

Most resources associated with RESTful services can be
directly mapped to domain resources – either a set of re-
sources or individual resources. Besides these two types, we
identify a third type of RESTful WSs – these services con-
sume some resources or manipulate related resources, they
can not be directly mapped to domain resources or resource
collections. We call them transitional RESTful WSs. This
type of RESTful WSs are less declarative than the other two
types, and we should minimize the use of this type of ser-
vices when we adopt a resource-centric approach to design
WSs. But in some cases, we do need transitional RESTful
WSs as we show using application scenario mentioned in
Section 2.

Type I: Resource Set Service This type of services is
mapped to a set of domain resources. In the online shop-
ping scenario, resource related to a set of customers and
a set of orders can be both considered of this type. We
name them CustomerSet and OrderSet respectively. Type I
RESTful Web service may be utilized to capture the concept
level resources or the set of instance resources. This type
of services support all four HTTP operations(GET, PUT,
DELETE and POST).

Type II: Individual Resource Service Individual do-
main resources can be modeled with this type of services
that represent the individual resources in the resource set.
For example, in the scenario, individual customer and indi-
vidual order are mapped to this type. Individual payment
and shipment are also considered of this type associated
with orders and customers. Type II RESTful Web service
may be utilized to capture instance level resources, and it
supports three HTTP operations(GET, PUT, DELETE). Op-
eration POST is not applicable here since the URI identified
individual resource is already created.

Type III: Transitional Service Although most of REST-
ful WSs are mapped to the domain resources or resource
sets, some of the services are more transition or transforma-
tion oriented. The functionality of this type of services is
loosely defined as services that consume resources, create
resources and update or transform the states of the related
resources. For example, SubmitPayment and ShipOrder in
the scenario are of this type. When we invoke SubmitPay-
ment with the order information, we create a new resource
payment associated with this order, and we update the is-
Paid property, denoting the payment status, of the order re-
source from “false” to “true”. Similar steps need to be done

for the Web service ShipOrder as well. Type III Web ser-
vice may be utilized to capture transition-oriented function-
alities, and it only supports POST operation.

In the next sub-section, we provide a detailed modeling
approach to describe these types of WSs identified above.

3.2 Modeling RESTful WSs

By identifying these types of RESTful WSs, we take a
resource-centric look at the original scenario. A list of the
declarative WSs needed to model the online shopping sce-
nario are presented in Figure 2. In the rest of this section,
we propose an ontology based conceptual model to describe
these identified RESTful WSs. This model will be used to
build our automated composition framework in Section 4.

To expose resources as RESTful WSs for a particular do-
main, it is intuitive to create the association between Web
service resources and domain ontology resources. The idea
is that a declarative RESTful approach models each service
as a resource, so the description of WSs is essentially the de-
scription of the resources and the “state transfer” of these re-
sources. As we classify RESTful WSs into three classes, we
explain the specific modeling for them respectively. Gener-
ally speaking,

(1) Type I RESTful Web service is a set of ontology in-
stances of the same concept, and the “set” itself could be
also considered as a resource as well. While applying GET,
DELETE and PUT operations to Type I RESTful Web ser-
vice, it will fetch, remove and update the representation of
this concept resource respectively; Applying POST opera-
tion will add into the resource set a new instance resource
of this concept.

(2) Type II RESTful Web service is directly mapped to
an ontology instance. Type I and Type II RESTful WSs
are modeled directly using mapped resources in ontology.
Applying GET, DELETE and PUT operations to Type II
RESTful Web service will fetch, remove and update the rep-
resentation of the corresponding instance resource based on
the standard semantics of these HTTP operations. POST
operation is not applicable for Type II service.

(3) Type III RESTful Web service is transition-oriented,
and we describe them as “state transfer” of resources us-
ing transition rules. We adopt Semantic Web Rule Lan-
guage (SWRL) [8] to formally describe these rules. SWRL
is a formal language to describe rules based on OWL and
RuleML. It has been widely used to describe semantic rules
in the ontology context. In our modeling framework, ser-
vices of Type I and II are mapped to ontology resources;
services of Type III are described by the transition rules of
ontology resources. Consequently, SWRL becomes an ap-
propriate choice to describe the rules associated with Type
III RESTful WSs.

To define the formal semantics of these three types

RESTful WSs

CustomerSet
TYPE: Type I
URI: http://some.com/Customers
Supported Operations: GET, PUT, DELETE, POST

OrderSet
TYPE: Type I
URI: http://some.com/Customers/[Customer id]/orders
Supported Operations: GET, PUT, DELETE, POST

Customer
TYPE: Type II
URI: http://some.com/Customers/[Customer id]
Supported Operations: GET, PUT, DELETE

Order
TYPE: Type II
URI: http://some.com/customers/[customer id]/orders/[order id]
Supported Operations: GET, PUT, DELETE

Payment
TYPE: Type II
URI: http://some.com/customers/[customer id]/orders/[order id]/payment
Supported Operations: GET, PUT, DELETE

Shipment
TYPE: Type III
URI: http://some.com/customers/[customer id]/orders/[order id]/shipment
Supported Operations: POST

SubmitPayment
TYPE: Type III
URI: http://some.com/customers/[customer id]/orders/[order id]/submitpayment
Supported Operations: POST

ShipOrder
TYPE: Type III
URI: http://some.com/customers/[customer id]/orders/[order id]/shipOrder
Supported Operations: POST

Figure 2. Identified RESTful WSs

of WSs, we define two new classes: WSRESOURCE,
RESTWS. WSRESOURCE describes the resources REST-
ful WSs represent. WSRESOURCE is either mapped to an
individual ontology instance (Type II) or a set of ontology
instances (Type I). RESTWS is used to describe the REST-
ful WSs, RESTWS contains its associated WSRESOURCE.
Type I & II RESTful WSs has only one associated WSRE-
SOURCE, Type III RESTful Web service may have multi-
ple associated WSRESOURCEs.

We describe the formal semantics of the universal HTTP
operations (GET, POST, PUT and DELETE) on these three
types of RESTful WSs. We use onto as the name space
for the associated domain ontology, and swrl as the name
space for SWRL.

Modeling Type I Web service Type I Web service
is mapped to a set of instances of the same concept in
ontology.

Def WSRESOURCE:
has name: onto:wsresource#name
has description: onto:wsresource#description
map: onto:set(onto:resource)

Def RESTWS I:
has name: onto:restws#ws-name
has description: onto:restws#description
has URI: onto:restws#uri
has type: onto:restws#type
has wsresource: onto:wsresource
onGET: onto:opn:Supported
onPUT: onto:opn:Supported
onDELETE: onto:opn:Supported
onPOST: onto:opn:Supported

Let’s take the service serving the list of ORDERS as
an example. The description of its corresponding WSRE-
SOURCE and RESTWS is as follows:

Example: WSRESOURCE-ORDERSET
has name: order set
has description: the wsresource representing order set
map: {onto:instance | isA(onto:instance, onto:ORDER)}

Example: RESTWS-ORDERSET
has name: orderset-restws
has description: RESTful WS serving the order set
has URI: http://some.com/[customer id]/orderset
has type: type I
has wsresource: onto:#WSRESOURCE-ORDERSET
onGET: onto:opn:Supported
onPUT: onto:opn:Supported
onDELETE: onto:opn:Supported
onPOST: onto:opn:Supported

Modeling Type II Web service Similar to defining
Type I WSs, we define the WSRESOURCE first in the
ontology, then associate the Web service with the defined
WSRESOURCE. WSRESOURCE of type II Web service
is mapped to a particular ontology instance.

Def RESTWS II:
has name: onto:restws#ws-name
has description: onto:restws#description
has URI: onto:restws#uri
has type: onto:restws#type
has wsresource: onto:wsresource
onGET: onto:opn:Supported
onPUT: onto:opn:Supported
onDELETE: onto:opn:Supported
onPOST: onto:opn:NotSupported

Let’s take the service providing ORDER information
as an example. The description of its corresponding
WSRESOURCE and RESTWS are as follows:

Example: WSRESOURCE-ORDER
has name: order-wsresource
has description: the wsresource representing [order id]
map: onto:#[order id]

Example: RESTWS-ORDER
has name: order-restws
has description: Web service serving order infor
has URI: http://some.com/[customer id]/[order id]
has type: type II
has wsresource: onto:WSRESOURCE-ORDER
onGET: onto:opn:Supported
onPUT: onto:opn:Supported
onDELETE: onto:opn:Supported
onPOST: onto:opn:NotSupported

Modeling Type III Web service transitional RESTful
WSs support only POST operation which causes “state
transfer” between resources. In other words, the state of
the resources will change themselves based on the request

and state of other related resources, guided by certain rules.
We use SWRL [8] rules to describe the functionality of
this type of RESTful Web service. SubmitPayment and
ShipOrder in the scenario(Figure 2) are of this type.

Def RESTWS III:
has name: onto:restws#ws-name
has description: onto:restws#description
has URI: onto:restws#uri
has type: onto:restws#type
has wsresource: onto:set(onto:wsresource)
onGET: onto:opn:NotSupported
onPUT: onto:opn:NotSupported
onDELETE: onto:opn:NotSupported
onPOST: swrl:rule

For the instance of the service ShipOrder,

Example: WSRESOURCE-SHIPMENT
has name: shipment-wsresource
has description: wsresource [shippment id]
map: onto:#[shippment id]

Example: RESTWS-SHIPORDER
has name: ShipOrder-restws
has description: shipment service
has URI: http://.../[shippment id]/shiporder
has type: type III
has wsresource: {onto:WSRESOURCE-ORDER,
onto:WSRESOURCE-SHIPMENT}
onGET: onto:opn:NotSupported
onPUT: onto:opn:NotSupported
onDELETE: onto:opn:NotSupported
onPOST:

<ruleml:Imp>
<ruleml:body rdf:parseType="Collection">
<swrl:ClassAtom>
<swrl:classPredicate

rdf:resource="#onto:Order"/>
<swrl:argument1 rdf:resource="#o" />

</swrl:ClassAtom>
<swrl:IndividualPropertyAtom>
<swrl:propertyPredicate

rdf:resource="#onto:isPaid"/>
<swrl:argument1 rdf:resource="#o" />

</swrl:IndividualPropertyAtom>
<uleml:body>
<ruleml:head rdf:parseType="Collection">
<swrl:IndividualPropertyAtom>
<swrl:propertyPredicate

rdf:resource="#onto:isShipped"/>
<swrl:argument1 rdf:resource="#o" />

</swrl:IndividualPropertyAtom>
</ruleml:head>

</ruleml:Imp>

The rule associated with action shipOrder is that: if the
input is an order and the order has been paid, the state of the

order should be updated as “isShipped” after this action is
completed succesfully.

4 RESTful Web Service Composition

By establishing the model for describing RESTful WSs
as ontology resources and “state transfer” of ontology re-
sources, we form a conceptual model which can be used to
facilitate automated composition of RESTful WSs. In this
section, we present a situation calculus [10, 12] based sate
transition system (STS) to automate the composition pro-
cess of RESTful WSs.

4.1 Situation Calculus based STS

Situation calculus is a first order logic based framework
for representing changes and actions, and reasoning about
them. It uses situations to represent the state of the world,
and fluents to describe the changes from one situation to
the other caused by the actions. We briefly explain the
components of situation calculus:

• Actions are first order terms, A(~x), each consisting of
an action name, A, and its argument(s), ~x. In our STS,
the actions are the HTTP operations (GET, PUT, POST
and DELETE) applied to RESTful WSs. We use service
name and HTTP operation (serviceName operation) to
represent the action name, and the argument(s) of the
HTTP operations as the argument(s) of the action. We list
the possible operations in the table below:

Actions:
TYPE I RESTWS + GET
TYPE I RESTWS + PUT
TYPE I RESTWS + POST
TYPE I RESTWS + DELETE
TYPE II RESTWS + GET
TYPE II RESTWS + PUT
TYPE II RESTWS + DELETE
TYPE III RESTWS+ POST

For example,
(1)The action of getting the order information is denoted

as RESTWS-ORDER GET().

(2)The action of placing a new order is denoted as
RESTWS-ORDERSET POST(o), where o is a variable
denoting the resource representation of order.

(3)The action of submitting payment infor-
mation to an order can be denoted as RESTWS-
SUBMITPAYMENT POST(p, o), where p is a variable
denoting the resource representation of payment.

(4)The action of cancel a payment to an order can be
denoted as RESTWS-PAYMENT DELETE(p, o)

• A situation is a sequence of actions describing the state
of the world and usually represented by symbol do(a, s).
For example,

(1)do (RESTWS − ORDERSET POST (o), s0)
denotes the situation obtained after performing
RESTWS − ORDERSET POST (o)) in the ini-
tial situation s0 (s0 is a special situation which is not
represented using a do function).

(2)do (RESTWS − SHIPORDER POST (o),
do(RESTWS − SUBMITPAY MENT POST (p, o),
do(RESTWS − ORDERSET POST (o), s0))) rep-
resents the situation obtained after performing the action
sequence (RESTWS − ORDERSET POST (o),
RESTWS − SUBMITPAY MENT POST (p, o),
RESTWS − SHIPORDER POST (o)) in s0.

• Fluents are situation-dependent relations and functions
whose truth values vary from one situation to another.
For example, isPaid(o, s) represents if the payment has
been submitted to the order denoted by o in situation s.
isShipped(o, s) means the order identified in o has been
shipped in s. In our formal model,

isPaid(o, s) ≡ onto : ORDER(o).isPaid

isShipped(o, s) ≡ onto : ORDER(o).isShipped

• Action precondition axioms: For each action we may
define one axiom, : poss(a(~x, s) ≡ Π((̄x), s), which
characterizes the precondition of the action. For example,
the precondition axiom of action RESTWS −
SHIPORDER POST (o) is:

isPaid(o, s) ⇒
Poss(RESTWS − SHIPORDER POST (o), s)

where Poss denotes the possibility of performing the
action.

• Successor state axioms are axioms that describe the
effects of actions on fluents. Hence there is one such axiom
for each fluent. For example, the successor state axiom for
fluent ReceiveOrder(o) is:

Poss(a, s) ⇒ isPaid(o, do(a, s)) ⇔
a = RESTWS − SUBMITPAY MENT POST (p) ∨
(isPaid(o, s) ∧

a 6= RESTWS − PAY MENT DELETE(p, o)

In other words, the order is paid in the situation that results
from performing the action if and only if we performed the
RESTWS − SUBMITPAY MENT POST (p)
action or we already have it in the current situa-
tion and do not perform an action RESTWS −
PAY MENT DELETE(p, o) that will delete the
payment.

• Regression: Regression is a mechanism for proving
consequences in situation calculus. It is based on express-
ing a sentence containing the situation do(a, s) in terms
of a sentence containing the action a and the situation s,
without the situation do(a, s). The regression of a sentence
ϕ through an action a is ϕ′ that holds prior to a being per-
formed iff ϕ holds after a. Successor state axioms support
regression in a natural way [3]. Suppose that a fluent F’s
successor state axiom is F (~x, do(a, s)) ⇔ ΦF (~x, a, s),
we inductively define the regression of a sentence whose
situation arguments all have the form do(a, s):

Regr(F (~x, do(a, s))) = φF (~x, a, s)

For other properties of regression, see [3].

Regr(F (¬ψ)) = ¬Regr(ψ)
Regr(F (ψ1 ∧ ψ2)) = Regr(ψ1) ∧Regr(ψ1)
Regr(F (∃xψ)) = (∃x)Regr(ψ)

After representing the initial state s0 and goal s using
situation calculus, the composition problem is converted
into a well-formed state transition problem. And the tran-
sition problem can be solved with regression mentioned
above, more specific details about solving a situation cal-
culus based state transition problem can be seen in [10, 12].

5 Related Work

To the best of our knowledge, there is no previous at-
tempts towards a formal modeling of RESTful WSs in terms
of facilitating automated service composition. The follow-
ing three topics are loosely related to our presented work,
although none of these discusses the specific issue of auto-
mated RESTful Web service composition.

5.1 RESTful Web service description lan-
guages

Although the Web service community is still debating
if RESTful WSs really need a formal description language
due to its self-declarative nature, we do need a formal,
machine-understandable description language to enable au-
tomated RESTful Web service composition. Indeed, we
might not need a formal description document like WSDL

to write a client program consuming RESTful WSs, but
if we seek to automate the process of composing REST-
ful Web service from the pool of vast amount of candidate
RESTful WSs, a formal machine-understandable descrip-
tion model is needed.

For RESTful WSs, proposed languages include
WADL [7], WSDL2.0 [4] and SA-REST [9]. But these
languages are strongly influenced by existing imperative
service description languages and do not capture well
the resource-centric nature of RESTful WSs. They have
focused on the descriptions of input/output as traditional
service description languages do, but ignored the descrip-
tion of the resources and the transitions of these resources.
As a consequence, these languages remain at the interface
description level and are not capable of capturing the “state
transfer” between resources. Thus, they can not be directly
used to facilitate automated composition of individual
RESTful WSs.

5.2 WSDL/SOAP Web service composi-
tion

In the past decade, much research effort [11] has been
put on automated approaches to WSDL/SOAP Web service
composition. Since WSDL/SOAP WSs and RESTful Web
service adopt differing styles (imperative against declara-
tive) and view the services from two different perspectives
(operation-centric against resource-centric), the automated
composition problem of these two kinds of WSs are very
different.

WSDL/SOAP Web service composition predominately
uses AI planning approaches, and these approaches focus
on functional composition of individual WSs. That is, how
to compose a new functionality out of existing component
functionalities. However, RESTful WSs model the sys-
tem from the perspective of resources. The composition
of RESTful WSs focuses on the resource composition and
“state transfer” between candidate WSs.

5.3 Mashup

Mashup is a Web application that combines data from
multiple data sources into a single integrated application.
A mashup site must access third party data using APIs,
and should add value to these data during the integration.
Data could come from local databases or various sources
across the Internet via different protocols including HTTP,
RSS [1], ATOM [2] and RESTful WSs. Compared to
RESTful Web service composition, a mashup is restricted
at the data-level integration, and most uses of RESTful WSs
in mashup are limited to fetching data from remote sources.
It usually does not involve updating or manipulating remote
data sources or other resources.

6 Discussion

Due to the declarative nature and other characteristics of
RESTful WSs such as being light-weight, easily accessi-
ble and scalable, we argued that RESTful WSs have some
unique advantages over traditional WSs in terms of service
composition, especially in the context of building Web 2.0
applications. While RESTful WSs have been widely used
in building mashup applications, we believe RESTful WSs
will be playing an increasingly important role in the context
of SOA, where WSDL/SOAP WSs are dominant.

The RESTful approach represents a very promising way
of building WSs. Although it has been considered as an im-
portant technology to realize programmable Web in the in-
dustry, and potentially adopted as widely as WSDL/SOAP
Web service composition, we did not see research effort to-
wards RESTful Web service composition because it is a rel-
atively new technology. In this paper, we discuss two per-
spectives of modeling a system using WSs. We introduce a
formal conceptual model for describing individual RESTful
WSs (identified as three types), and present an automated
composition framework based on this model. This paper
represents our initial efforts towards the problem of auto-
mated RESTful Web service composition. We are hoping
that it will draw some interests from the research commu-
nity on WSs, and engage more researchers in this challenge.

We outline below the challenges we encountered towards
automated RESTful Web service composition and present
some of the future lines of work.

• Resource-centric perspective of building services is
relatively new, and most of the claimed RESTful WSs
do not fully adhere to REST principles.

• Lack of formal modeling or machine-understandable
description languages for RESTful WSs.

• While integrating RESTful WSs (resources) from mul-
tiple parties, data heterogeneity may become a major
obstacle.

Our current work focuses on the service composition ap-
proach and leaves the description of RESTful WSs at a con-
ceptual level. As the future work,

(1) We will seek to ground our conceptual model of de-
scribing RESTful WSs with a formal language. Most uses
of RESTful WSs in the industry follow an ad-hoc approach
by looking at the informal service description document.
The informal nature of these documents is a big obstacle
to applying automated service compositions. To further
realize the potential of RESTful WSs, especially in terms
of facilitating automated composition, a formal, machine-
understandable description language is needed.

(2) RESTful WSs and WSDL/SOAP WSs have shown
advantages and disadvantages in different application situa-
tions. It would be interesting to study how we can automate
the service composition process in an environment mixed
with these two kinds of WSs.

Acknowledgment

This research is supported in part by grant number
R01HL087795 from the National Heart, Lung, And Blood
Institute. The content is solely the responsibility of the au-
thors and does not necessarily represent the official views
of the National Heart, Lung, And Blood Institute or the Na-
tional Institutes of Health.

References

[1] Rss 2.0. http://validator.w3.org/feed/docs/rss2.html, 2002.
[2] Atom 1.0. http://www.atompub.org/2005/07/11/draft-ietf-

atompub-format-10.html, 2006.
[3] C. Boutilier, R. Reiter, and B. Price. Symbolic dynamic pro-

gramming for first-order mdps. pages 690–700.
[4] E. Christensen, F. Curbera, G. Meredith, and S. Weer-

awarana. Web services description language specification
2.0. http://www.w3.org/TR/wsdl20/, 2007.

[5] R. T. Fielding. Architectural Styles and the Design of
Network-based Software Architecture. PhD thesis, Univer-
sity of California, Irvine, 2000.

[6] R. T. Fielding and R. N. Taylor. Principled design of the
modern web architecture. In ICSE, pages 407–416, 2000.

[7] M. J. Hadley. Web application description language (wadl)
specification. https://wadl.dev.java.net, 2006.

[8] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet,
B. Grosof, and M. Dean. Swrl: A seman-
tic web rule language combining owl and ruleml.
http://www.w3.org/Submission/SWRL/, 2004.

[9] J. Lathem, K. Gomadam, and A. P. Sheth. Sa-rest and
(s)mashups : Adding semantics to restful services. In Pro-
ceedings of the First IEEE International Conference on Se-
mantic Computing, pages 469–476, 2007.

[10] J. McCarthy. Situations, actions and causal laws. Technical
report, AI Laboratory, Stanford University, 1963.

[11] J. Rao and X. Su. A survey of automated web service com-
position methods. In Semantic Web Services and Web Pro-
cess Composition, pages 43–54, 2004.

[12] R. Reiter. Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamic Systems. MIT Press,
2001.

[13] L. Richardson and S. Ruby. RESTful Web Services. O’Reilly
Media, Inc., 2007.

[14] E. Wilde07. Declarative web 2.0. In Proceedings of the
IEEE International Conference on Information Reuse and
Integration, pages 612–617, 2007.

