
Towards Automated Security Policy Enforcement

in Multi-Tenant Virtual Data Centers

Serdar Cabuk∗, Chris I. Dalton†, Konrad Eriksson‡, Dirk Kuhlmann§,
HariGovind V. Ramasamy¶, Gianluca Ramunno‖, Ahmad-Reza Sadeghi∗∗,

Matthias Schunter††, and Christian Stüble‡‡

Abstract

Virtual data centers allow the hosting of virtualized infrastructures
(networks, storage, machines) that belong to several customers on the
same physical infrastructure. Virtualization theoretically provides the
capability for sharing the infrastructure among different customers. In re-
ality, however, this is rarely (if ever) done because of security concerns. A
major challenge in allaying such concerns is the enforcement of appropri-
ate customer isolation as specified by high-level security policies. At the
core of this challenge is the correct configuration of all shared resources
on multiple machines to achieve this overall security objective.

To address this challenge, this paper presents a security architecture
for virtual data centers based on virtualization and Trusted Computing
technologies. Our architecture aims at automating the instantiation of a
virtual infrastructure while automatically deploying the corresponding se-
curity mechanisms. This deployment is driven by a global isolation policy,
thus guarantees overall customer isolation across all resources. We have
implemented a prototype of the architecture based on the Xen hypervisor.

Keywords. Virtualization, Virtual Networks, Trusted Computing, Trusted
Virtual Domain, Virtual Data Center.

∗S. Cabuk has been with the Hewlett-Packard Labs, Bristol, UK. Email:
serdar.cabuk@gmail.com.
†C. I. Dalton is with the Hewlett-Packard Labs, Bristol, UK. Email: cid@hp.com.
‡K. Eriksson is with the IBM Zurich Research Laboratory, Rüschlikon, Switzerland. Email:

kon@zurich.ibm.com.
§D. Kuhlmann is with the Hewlett-Packard Labs, Bristol, UK. Email:

dirk.kuhlmann@hp.com.
¶H. V. Ramasamy is with the IBM T. J. Watson Research Center, Hawthorne, NY, USA.

Email: hvramasa@us.ibm.com.
‖G. Ramunno is with the Politecnico di Torino, Turin, Italy. Email: ramunno@polito.it.
∗∗A-R. Sadeghi is with the Ruhr-University Bochum, Germany. Email:

ahmad.sadeghi@trust.rub.de.
††M. Schunter is with the IBM Zurich Research Laboratory, Rüschlikon, Switzerland. Email:

mts@zurich.ibm.com.
‡‡C. Stüble is with the Sirrix AG Security Technologies, Bochum, Germany. Email:

stueble@sirrix.com.



1 Introduction

Hardware virtualization is enjoying a resurgence of interest fueled in part by its
cost-saving potential in data centers. By allowing multiple Virtual Machines
(VMs) to be hosted on a single physical server, virtualization helps improve
server utilization, reduces management and power costs, and controls the prob-
lem of server sprawl.

A large number of the companies that outsource their operations are small
and medium businesses (SMBs) that cannot afford the costs of a dedicated data
center in which all the data center’s resources are used to host a single company’s
IT infrastructure. Hence, the IT infrastructure belonging to multiple SMBs
may be hosted inside the same data center facility. Today, even such “shared”
data centers operate in the so-called physical cages model, wherein different
customers’ IT infrastructures typically run on distinct physical resources (e.g.,
different servers or racks), resulting in physical isolation of customers from each
other inside the same data center. Resource sharing is typically limited to power
and building-related resources.

Moving from the physical cages model to one that allows resource sharing
among customers (called the shared resources or the logical cages model) would
enable a more flexible and efficient management of the data center’s resources
by the infrastructure provider, and thereby result in significant cost benefits.
Despite these advantages, the physical cages model remains the status quo pri-
marily because of security concerns and the increased management complexity
associated with the logical cages model. From a security point of view, cus-
tomers today do not trust that the logical cages model can provide sufficient
isolation for preventing information leakages across the boundary separating the
virtual resources of two customers and for retaining security incidents within
that boundary.

Our Contribution: We describe technologies for realizing the logical cages
model. At the same time we address the customer isolation and management
complexity issues associated with it. Our solution is based on the concept of
Trusted Virtual Domains or TVDs [8]. It allows the grouping of VMs belonging
to a specific customer dispersed across multiple physical resources into a virtual
zone or TVD in which isolation requirements as specified by customer policies1

are automatically enforced. Isolation policies have various aspects, e.g., storage,
networking, and TVD membership. Even if the VMs in a TVD are migrated
to different physical platforms (say, for load-balancing purposes), the logical
topology of the TVD would still be unchanged. Ensuring the integrity of pol-
icy enforcement components and evaluating their trustworthiness are of critical
importance. For this purpose we leverage Trusted Computing concepts [40].

Our main contributions are (1) the realization of TVDs using a combination
of secure networking and storage virtualization technologies, (2) orchestration of
TVDs through a management framework that automatically enforces isolation

1Addressing covert channels would exceed the scope of this paper.



among different customer zones, and (3) a reference implementation for virtual
data centers based on the Xen hypervisor and Trusted Computing mechanisms.
In particular, the management framework takes a significant step forward to-
wards automating the verification, instantiation, and deployment of the appro-
priate security mechanisms and virtualization technologies. The automation is
based on an input security model that specifies the required level of isolation
and permitted information flows.

Outline The remainder of the paper is organized as follows. In Section 2 we
introduce the key concepts such as Trusted Virtual Domains and survey related
work. In Section 3, we explain the security policies that are enforced in a virtual
data center. The key idea is to declare an inter-TVD policy that defines how
customers are isolated. Each customer can then define an intra-TVD security
policy that defines security objectives of TVD-internal data. Both policies are
mandatory and can subsequently be refined. In Section 4, we then discuss how
these policies are enforced. For enforcement, we focus on the two most important
resources that are potentially shared, namely, networking and storage. The key
idea here is to enforce the inter-TVD policy also at the resource level by assigning
virtual networks and storage to a given domain.

In Section 5, we describe our prototype implementation of a virtual data
center. In Section 6, we present the limitations and evaluation of our proto-
type and discuss some useful lessons learned as a result of our implementation
exercise. In Section 7 we conclude the article and summarize our key findings.

2 Background and Related Work

In order to put our work in context we survey key concepts that underlie our
approach. Section 2.1 presents the TVD concept, which can be thought of as
a virtualization of today’s security zones while making security requirements
explicit. Section 2.2 describes Trusted Computing concepts. The core of this
concept is a security hardware device called Trusted Platform Module that guar-
antees certain security functionalities in spite of attacks. We finally survey re-
lated work on trusted channels in Section 2.3 and on secure virtual networking
in Section 2.4.

2.1 Overview of Trusted Virtual Domains

Bussani et al. [8] introduced the concept of TVDs. A Trusted Virtual Domain
consists of a set of distributed Virtual Processing Elements (VPEs), storage for
the VPEs, and a communication medium interconnecting the VPEs [8, 22, 17].
The TVD provides a policy and containment boundary around those VPEs.
VPEs within each TVD can usually exchange information freely and securely
with each other. At the same time, they are sufficiently isolated from outside
VPEs, including those belonging to other TVDs. Here, isolation loosely refers



to the requirement that a dishonest VPE in one TVD cannot exchange informa-
tion (e.g., by sending messages or by sharing storage) with a dishonest VPE in
another TVD, unless the inter-TVD policies explicitly allow such an exchange.
There is a TVD infrastructure (for each TVD) that provides a unified level of
security to member VPEs, while restricting the interaction with VPEs outside
the TVD to pre-specified, well-defined means only. Unified security within a
virtual domain is obtained by defining and enforcing membership requirements
that the VPEs have to satisfy before being admitted to the TVD and for retain-
ing membership. Each TVD defines rules regarding information exchange with
the outside world, e.g., restrictions regarding in-bound and out-bound network
traffic.

Figure 1 shows customer VMs as VPEs belonging to TVD1 spanning two
platforms (contained in the dashed boxes). The Master (TVD1 Master) and
Proxy components (Proxy1 on each platform) are part of the TVD infrastruc-
ture, which we describe in detail in Section 4.1. The TVD Master is the or-
chestrator of the TVD deployment and configuration. There is one TVD Proxy
for each platform hosting VMs belonging to that TVD. If the platform hosts
VMs belonging to multiple TVDs, then there are multiple TVD proxies on that
platform, one per TVD. The TVD Proxy on a platform is configured by the
TVD Master and can be thought of as the local TVD policy enforcer. VMs
belonging to the same TVD can usually exchange information freely with each
other unless restricted by VM-level policies. For example, traffic originating
from VM A1 or VM A2 on Host A is routed to VM Bi (i = 1, · · · , 4) on Host B
without any restrictions. Information exchange among TVDs can be allowed;
however, it is subject to the network and storage policies stated by each TVD
Master and locally enforced by each TVD Proxy.

Hardware Platform
Hypervisor

Security Services

VMA1 VMA2 VMA3 VMA4

TVD1
Master
TVD1
Master
TVD1
Master

Proxy1 …Proxy2

Hardware Platform
Hypervisor

Security Services

VMB1 VMB2 VMB3 VMB4

Proxy1 …Proxy2 H
os

t B
H

os
t A

Figure 1: TVD Architecture: High-Level Overview.

In this paper, we provide a realization of TVDs that enforces high-level



customer isolation policies by configuring and using low-level networking and
storage constructs. We ensure the integrity of the policy enforcement points
(e.g., the TVD infrastructure) by leveraging Trusted Computing techniques.

2.2 Trusted Computing – The TCG Approach

It is important to have reliable mechanisms for a system to reason and verify
the trustworthiness (i.e., compliance with a certain security policy) of a peer
endpoint (local or remote). A recent industrial initiative towards realizing such
a mechanism was put forward by the Trusted Computing Group (TCG) [40], a
consortium of a large number of IT enterprises that proposes a new generation
of computing platforms that employs both supplemental hardware and software
(see, e.g., [30, 38]). The TCG2 has published several specifications on various
concepts of trusted infrastructures [42].

The Trusted Platform Module The core component the TCG specifies is
the Trusted Platform Module (TPM). Currently, the widespread implementation
of the TPM is a small tamper-evident chip3 that implements multiple roots-
of-trust [43, 41], e.g., the root-of-trust for reporting and the root-of-trust for
storage. Each root-of-trust enables parties, both local and remote, to place
trust on a TPM-equipped platform that the latter will behave as expected for
the intended purpose. By definition, the parties trust each root-of-trust, and
therefore it is essential that the roots-of-trust always behave as expected. Given
that requirement, a hardware root-of-trust – especially one that is completely
protected from software attacks and tamper-evident against physical attacks, as
required by the TPM specification – is assumed to provide a better protection
than software-only solutions.

Attestation and Integrity Verification The Trusted Computing features
we leverage in this paper are protection of keys, secure recording of integrity
measurements, attestation, and sealing. Integrity verification mechanisms en-
able a remote party to verify whether system components conform to certain
security policies. Measurement of a component involves computing the SHA-1
hash of the binary code of that component. In particular, each software com-
ponent in the Trusted Computing Base (TCB) is first measured and then its
measurement recorded before control is passed to it. The hash values are then
appended to a hash chain, which is kept in special protected registers called
Platform Configuration Registers (PCRs), thus acting as accumulators for mea-
surements. Recording a measurement means appending it to the hash chain by

2TCG’s claimed role is to develop, define, and promote open and vendor-neutral indus-
try specifications for Trusted Computing, including hardware building blocks and software
interface specifications across multiple platforms and operating environments.

3Many vendors already ship their platforms with TPMs (mainly laptop PCs and servers).



PCR extend operation4. The sequence of measured values are also stored in a
measurement log5, external to the TPM.

TCG proposed attestation, also called binary attestation, refers to the challenge-
response-style cryptographic protocol for a remote party to query the recorded
platform measurement values and for the platform to reliably report the re-
quested values. The verifier first sends a challenge to the platform. The plat-
form invokes the TPM Quote command with the challenge as a parameter. The
invocation also carries an indication of which PCRs are of interest. The TPM
returns a signed quote containing the challenge and the values of the specified
PCRs. The TPM signs using an Attestation Identity Key (AIK), whose pub-
lic key is certified by a third party that the verifier trusts, called Privacy CA
in TCG terminology. The platform then replies to the verifier with the quote
signed by the TPM, along with the AIK public key certificate and the log infor-
mation that is necessary to reconstruct the platform’s configuration. Based on
the reply, the verifier can decide whether the platform is in an acceptable state.

Sealing is a TPM operation that is used locally to ensure that a certain
data item is accessible only under specific platform configurations reflected by
PCR values. The unsealing operation will reveal the data item only if the PCR
values at the time of the operation match the PCR specified values at the time
of sealing.

A more general and flexible extension to the binary attestation is property-
based attestation [36, 34, 24]: Attestation should only determine whether a plat-
form configuration or an application has a desired property. Other approaches
with similar goals have also been proposed: The semantic remote attestation [18]
uses a language-based trusted VM to remotely attest high-level program prop-
erties. The general idea is to use a trusted VM (TrustedVM) that verifies the
security policy of another virtual machine on a given host. In [27, 28, 29] a
software architecture based on Linux is proposed that provides attestation and
binding. It allows for binding short-lifetime data (e.g., application data) to
long-lifetime data (e.g., the Linux kernel) and for accessing that data only if the
system is compatible with a security policy certified by a security administrator.

However, our prototype is based on binary attestation.

2.3 Trusted Channels

The standard approach for establishing secure channels over the Internet is to
use security protocols such as Transport Layer Security (TLS) [12] or Internet
Protocol Security (IPSec) [23]), which aim at assuring confidentiality, integrity,
and freshness of the transmitted data as well as authenticity of the endpoints
involved. However, as mentioned before, secure channels do not provide any

4Extending PCR values is performed as follows: PCRi+1 := SHA1(PCRi|I), with the old
register value PCRi, the new register value PCRi+1, and the input I (e.g. a SHA-1 hash
value).

5Since each PCR holds only the digest of (part of) the chain of trust, keeping the list of
all measured values is required if afterwards, during the attestation process, a remote party
wants to identify each measured component.



guarantees about the integrity of the communication endpoints, which can be
compromised by viruses or Trojans. Based on security architectures that deploy
Trusted Computing functionality, one can extend these protocols with integrity
reporting mechanisms (e.g., the TLS extension proposed in [16, 5]). Such ex-
tensions can be based on binary attestation or on property-based attestation.

2.4 Secure Network Virtualization

Previous work on virtualizing physical networks can be roughly grouped into two
categories: those based on Ethernet virtualization and those based on TCP/IP-
level virtualization. Although both categories include a substantial amount of
work, few of these studies have an explicit focus on security.

A secure network virtualization framework was proposed by Cabuk et al. [10]
for realizing the network flow aspects of TVDs. The focus of [10] is a security-
enhanced network virtualization, which (1) allows groups of related VMs run-
ning on separate physical machines to be connected together as though they
were on their own separate network fabric, and (2) enforces intra-TVD and
inter-TVD security requirements such as confidentiality, integrity, and inter-
TVD flow control. This has been achieved by an automatic provisioning of
networking components such as VPNs, Ethernet encapsulation, VLAN tagging,
and virtual firewalls.

A second concept for managing VLAN access has been proposed by Berger
et al. in [7]. Both papers contain similar concepts for managing VLANs inside
the data center with some differences. The work of Berger et al. has more of
a focus on integrity assurance using Trusted Computing. The work of Cabuk
et al. [10] allows provisioning of secure virtual networking even if no VLAN
infrastructure is present.

3 Security Policies for Virtual Data Centers

Data centers provide computing and storage services to multiple customers.
Customers are ideally given dedicated resources such as storage and physical
machines. In the physical cages approach, only few resources such as the In-
ternet connection may be shared between multiple customers. For cost effi-
ciency, our logical cages approach promotes securely extending sharing to other
resources such as storage and networks. This is enabled by preventing unautho-
rized information exchange through shared resources.

To model and implement the logical caging approach, we introduce a domain-
based security model for enforcing unified security policies in virtualized data
centers. We focus on isolation policies that mimic physical separation of data
center customers. Our goal is to logically separate networks, storage, VMs,
users, and other virtual devices of one customer from another customer. For
our purposes, we define domain isolation as the ability to enforce security poli-
cies within a domain independently of other domains that may co-exist on the
same infrastructure and interact with that domain. The core idea is to use



this isolation property as a foundation for guaranteeing desired security proper-
ties within each virtual domain while managing shared services under mutually
agreed policies.

We now explain the policies that describe this controlled information ex-
change in a virtualized data center. In Section 4 we describe the individual
components that enable us to enforce these policies.

3.1 High-level Policy Model

Our security model is based on TVDs [8], which inherently isolate their resources
from resources of other TVDs to successfully enforce their domain policies. A
TVD comprises a TVD infrastructure and several members that are managed
through this infrastructure. Active elements (subjects) are physical or virtual
machines that can be member of one or more TVDs. Passive elements (objects)
are resources such as physical or virtual disks that can be member of one or
more TVDs. Note that computing platforms that host VMs are not directly
member of a TVD.

The security model includes two high-level policies defining the security ob-
jectives that must be provided by the underlying infrastructure:

Inter-TVD Policy: By default, each TVD is isolated from the outside world.
The high-level information-exchange policy defines whether and how in-
formation can be exchanged with other TVDs. If no information flow with
other TVDs is permitted, no resources can be shared unless the data cen-
ter operator can guarantee that the isolation is preserved. If information
flow to/from other TVDs is allowed, sub-policies further qualify the exact
information flow policy for the individual resources.

Intra-TVD Policy: Domain policies allow TVD owners (e.g., customers) to
define the security objectives within their own TVDs. Examples of such
policies include how the internal communication is to be protected and
under what conditions resources (e.g., storage, machines) can join a par-
ticular TVD.

We further define more fine-grained policies by the use of roles that can be
assigned to any member VM, say to a member machine. This allows us to define
and enforce role-based policies within and across TVDs. For example, machines
can now assume internal or gateway roles with corresponding permissions; while
a workstation may not be allowed to connect to non-TVD networks, machines
with the “firewall” role can be allowed to connect to selected other networks.
Figure 2 depicts three VMs in a single TVD. Each VM is given different levels
of access to resources with respect to its role for that TVD.

3.2 Security Objectives and Policy Enforcement Points

Policies are enforced for all shared resources in the TVD infrastructure (see
Figure 3). The basis of all policies is isolation at the boundary of each TVD.



VPE1 
(Role1)

Roles of Single-Domain
Machines (subjects):

Multi-Domain Resources 
(objects)

Operations[parameter] 
(mode):

VPE2 
(Role2)

VPE3 
(Role3)

Figure 2: Policy Model: Single-TVD Machines operate on Shared Resources

By default, each resource is associated with a single domain. This achieves a
basic level of isolation. If information flow between TVDs is allowed, resources
can also be member of different TVDs. For example, a TVD can allow certain
types of resources on certain hosts to provide services also to other domains.
Each TVD defines rules regarding in-bound and out-bound information flow
for restricting communication with the outside world. The underlying policy-
enforcement infrastructure then has to ensure that only resources trusted by all
TVDs are shared.

Architecturally, there are two ways of enforcing such rules, depending on
the trust between the TVDs. The first method involves two shared resources
connected by an intermediate domain. In this method, each TVD enforces its
side of the flow control by means of its own shared resource. An example of
this type of connection is the one that exists between TVD A and TVD B
in Figure 3. This method is used when the trust level between TVD A and
TVD B is low, and the two cannot agree on a shared resource that is mutually
trusted. The shared resource in TVD A will enforce TVD A’s policies regarding
in-bound traffic from TVD B, even if the shared resource in TVD B does not
enforce TVD B ’s policies regarding out-bound traffic. The shared resources can
be thought of as being a part of a “neutral” TVD (TVD AB) with its own set of
membership requirements. The second method that requires shared trust is to
establish one or more shared resources that are accessed from both TVDs while
allowing controlled information flow. This mechanism is used between TVD B
and TVD C in Figure 3.

Security within a virtual domain is finally obtained by defining and enforcing
membership requirements that resources have to satisfy prior to being admitted
to the TVD and for retaining the membership. This may also include special
requirements for different machine types: Because, for example, shared resources
play a key role in restricting information flow between TVDs, the software on
those machines may be subject to additional integrity verification as compared
to the software on regular VMs.

3.2.1 Permitted Flows in Data Centers

At a high level flow control policies define the allowed traffic flow between two
domains and how the domains should be protected. Allowed information flows



TVD A TVD B

Internet

Membership
Constraints

Flow Enforcement 
by Single-trust 

Shared Resources

Isolation 
Enforcement

TVD C

Flow Enforcement 
by Mutually Trusted
Shared Resources

TVD AB

Shared Resource

Internal

Trusted/Shared

Resource Types:

Machine in Role

Figure 3: Usage Control for Shared Resources: Machines use resources belonging
to TVDs.

From / to DI DD Di

DI 1 1 0
DD 0 1 1
Di 0 1 1

Table 1: High-level Directed Flow Control Matrix for Internet DI , DMZ DD,
and Intranet Di.

can be represented by a simple flow control matrix as depicted in Table 1,
where 1 allows information flow and 0 denies it. This example implements
a basic enterprise policy that regulates incoming flow from untrusted outside
entities (DI) through a semi-trusted intermediary domain (DD), and disallows
any outgoing flow. Note that this matrix is directional, i.e., it might allow flows
in one direction but not in the opposite direction. If flow policies between two
TVDs are asymmetric, only shared resources that can enforce these policies are
permitted.

Device-specific policies (network, storage) can then refine these basic rules.
If an information flow is not permitted, then also shared resources are not
permitted between these TVDs.

3.2.2 Membership Requirements

Membership requirements define under what conditions resources may join a
domain. From a high-level policy perspective, several criteria can be applied to
decide whether an entity is allowed to join a domain, for example:

• Certificates: An authority defined by the TVD policy can certify a re-
source to be member of a TVD. A common example is that an enterprise
issues machine certificates to allow its machines to join the corporate net-
work.

• Integrity Proofs: A resource may prove its right to join a TVD using



integrity proofs. It may, e.g., prove that the integrity of the base operating
system is intact and that all required patches have been applied [39].

• User-identity : Only machines operated by a certain user can join. This
can be validated by user-name/password or by a cryptographic token.

In general, a resource may need to show proper credentials to prove that it fulfills
certain properties before allowing the resource to join the TVD (see, e.g., [36]).
More formally, a machine m is permitted to join a TVD t if and only if there
is at least one property of m that satisfies each security requirement of t. The
validations of these properties are usually done on a per-type and role basis.
For example, requirements for a shared resource are usually stronger than the
requirements for a TVD-internal resource.

3.3 Example Policy Refinements for Protected Resources

Policies alone are not sufficient to enforce customer separation in a virtualized
data center. Ultimately, one needs to transform these policies into data center
configurations and security mechanisms specific to each resource (e.g., VLAN
configuration). To do so, we introduce a policy management scheme that accepts
high-level domain policies and transforms them into resource-specific low-level
policies and configurations. In Section 5 we demonstrate a prototype based on
this architecture that enforces high-level TVD policies by lower-level network
and infrastructure configurations, which is then deployed onto each physical
platform to assist customer separation.

3.3.1 Refinement Model

The high-level policy defines the basic flow control, protection, and admission
requirements. We aim at enforcing these high-level objectives throughout all
resources in the data center.

In the high-level model, flow control across customer domains is specified
by a simple matrix such as the one in Table 1 that defines whether flows are
permitted. This however is not sufficiently fine-grained for specific resources.
TVDs, for example, want to restrict their flow across boundaries by means
of firewall rules. As a consequence, we need to introduce a notion of policy
refinement [44], because as translation moves towards lower levels of abstraction,
it will require additional information (e.g., physical arrangement of the data
center, “subjective” trust information) to be correctly and coherently executed.

Our notion of policy refinement mandates the enforcement of “no flow” ob-
jectives while allowing each resource to refine what it means so that flows are
permitted and how exactly unauthorized flows shall be prevented. Similarly, we
do not allow resources to deviate from the confidentiality/integrity objectives;
however, certain resources can be declared trusted so that they may enforce
these objectives without additional security mechanisms such as encryption or
authentication.



Flow to → DI DD Di

Enforced by ↓ gate internal gate internal gate internal
DI 1 1 PID 0 0 0
DD 0 0 1 1 PDi 0
Di 0 0 PDi 0 1 1

Table 2: Example Network Flow Control Policy Matrix for Three TVDs.

Similarly, the fact that admission is restricted is then refined by specific
admission control policies that are enforced by the underlying infrastructure.

Note that conflict detection and resolution [44, 26] can later be used to
extend this simple notion of refinement. However, we currently stay on the
safe side: Connections are only possible if both TVDs allow them. Similarly, if
one domain requires confidentiality, information flows are only allowed to TVDs
that also require confidentiality. Other schemes for more elaborate flow control
have been proposed in [14, 9, 13, 15].

3.3.2 Network Security Policies

We now survey the policy model of [10] and show how it is related to the
corresponding high-level policy. Similar to our high-level policies, there are two
types of policies governing security in the network. The first limits flow between
networks, whereas the second defines membership requirements to each network.

Network Security Policies across TVDs A policy covers isolation and flow
control between TVDs as well as integrity and confidentiality against outsiders.
These basic security requirements are then mapped to appropriate policies for
each resource. For example, from a networking perspective, isolation refers to
the requirement that, unless the inter-TVD policies explicitly allow such an
information flow, a dishonest VM in one TVD cannot (1) send messages to a
dishonest VM in another TVD (information flow), (2) read messages sent on
another TVD (confidentiality), (3) alter messages transmitted on another TVD
(data integrity), and (4) become a member of another TVD network (access
control).

TVDs often constitute independent organizational units that may not trust
each other. If this is the case, a communication using another TVD can be
established (see the communication between TVD A and B in Figure 3). The
advantage of such a decentralized enforcement approach is that each TVD is
shielded from security failures in other TVDs. For networks, the main inter-
TVD security objectives are controlled information sharing among the TVDs as
well as integrity and confidentiality protection of the channel.

While the high-level model specifies whether information exchange is allowed
between domains or not, we now refine this policy as follows:

• We refine the active elements (subjects) of given domains by introducing



roles that machines can play. This allows us to set different permissions
to boundary machines as compared to internal machines.

• In case information flow is permitted in principle, we refine the network
security policies by introducing flow control rules that can further restrict
the actual information exchange. A network policy may disallow flow even
though it has been allowed from a high-level policy perspective.

An information flow control matrix is a simple way of formalizing these network
connectivity objectives. Table 2 shows a sample matrix for the three example
TVDs introduced earlier. Each matrix element represents a policy specifying
permitted connections between a pair of TVDs, as enforced by one of the TVDs.
The depicted policies Px that limit information exchange will be implemented
by firewall rules that are used to program the boundary firewalls. The 1 values
along the matrix diagonal convey the fact that there is free information exchange
within each TVD. The 0 values in the matrix are used to specify that there
should be no direct information flow between two TVDs, e.g., between the
Internet DI and the intranet Di. Care must be taken to ensure that the pairwise
TVD policies specified in the information flow control matrix do not accidentally
contradict each other or allow undesired indirect flow.

Intra-TVD Network Security Policy Within a TVD, all VMs can freely
communicate with each other while observing TVD-specific integrity and con-
fidentiality requirements. For this purpose, the underlying infrastructure may
ensure that intra-TVD communication only takes place over an authenticated
and encrypted channel (e.g., IPSec), or alternatively, a trusted network6.

3.3.3 Towards Storage Security Policies

Virtual disks attached to VMs must retain the advantages offered by storage vir-
tualization while at the same time enforcing TVD security policies. Advantages
of storage virtualization include improved storage utilization, simplified stor-
age administration, and the flexibility to accommodate heterogeneous physical
storage devices. Similar to network, we now show a refinement of the high-
level TVD policies into access control policies for VMs in certain roles to disks
belonging to a domain.

Inter-TVD Storage Security A virtual disk has a single label corresponding
to the TVD it belongs to. Whenever a virtual machine operates on virtual
storage, the global flow matrix described in Section 3 needs to be satisfied. For
flexibility, each TVD can define a set of storage policies that govern usage and
security of its storage. A single policy is then assigned to and enforced for each
storage volume.

6A network is called trusted with respect to a TVD security objective if it is trusted to
enforce the given objective transparently. For example, a server-internal Ethernet can often
be assumed to provide confidentiality without any need for encryption.



Flow to → DI DD Di

Disk ↓ gate internal gate internal gate internal
DI r/w r/w w 0 0 0
DD r 0 r/w r/w r/w 0
Di 0 0 r/w 0 r/w r/w

Blank r/ 0 r/ 0 r/ 0
w → DI 0 w → DD 0 w → Di 0

Table 3: Example of a Refined Disk Policy Matrix for Three TVDs.

As the starting point of our storage policy refinement, we define a maximum
permission policy as follows:

1. Any machine in domain TVDA playing any role can write to a disk of
domain TVDB iff flow from domain TVDA to domain TVDB is permitted.

2. Any machine in domain TVDA playing any role can read from a disk of
domain TVDB iff flow from domain TVDB to domain TVDA is permitted.

3. Any single machine in any domain can read/write mount a blank disk.
After data is written, the disk changes ownership and is now assigned to
the domain of the machine which has written data.

Table 3 shows the resulting maximum disk access control policy. Actual policies
are then valid with respect to a maximum-permission policy for a domain if
they permit a subset of its permissions. Note that as flow within a domain is
always allowed, this implies that disks of the same domain as the machine may
always be mounted read/write.

Intra-TVD Storage Security By default, we consider the content of a disk
to be confidential while the storage medium (possibly remote) is deemed to
be untrusted. As a consequence, if a given domain does not declare a given
storage medium as trusted, we deploy whole-disk encryption using a key that
is maintained by the TVD infrastructure.7 Another aspect reflected in the disk
policies is the fact that we have a notion of blank disks. Once they are written
by another domain, they change color, and are then associated with this other
domain while being encrypted under the corresponding key. In the future, it
would be desirable to have integrity-protected storage [11, 33] where the TVD
can validate that its content has not been changed by untrusted entities.

For protecting the data in a particular TVD, virtual storage may in addition
specify which conditions on the system must be satisfied before a disk may be
re-mounted by a VM that has previously unmounted the disk, and whether
shared mounting by multiple systems is allowed. Note that these membership

7Note that the VM only sees unencrypted storage, i.e., the TVD infrastructure automati-
cally loops in encryption.



Compartment Manager TVD Proxy

TVD Master

Network Manager
(sub-proxy)

Storage Manager 
(sub-proxy)Virtual Device Manager

Integrity Manager

TVD Component Security Service

Figure 4: TVD Components and Security Services.

restrictions require bookkeeping of disks and management of access of VMs to
disks.

4 Unified Policy Enforcement for Virtual Data
Centers

In this section, we introduce a TVD-based policy enforcement framework that
orchestrates the deployment and enforcement of the type of policies we presented
in Section 3 across the data center. Existing storage and network virtualization
technologies as well as existing Trusted Computing components (in software and
hardware) are the building blocks of our solution. Our framework (1) combines
these technologies to realize TVDs and (2) orchestrates them using the TVD
infrastructure, which provisions the appropriate security mechanisms.

4.1 TVD Infrastructure

The TVD infrastructure consists of a management layer and an enforcement
layer. The TVD management layer includes TVD masters, proxies, and facto-
ries, whereas the TVD enforcement layer consists of various security services.
Each TVD is identified by a unique TVD Master that orchestrates TVD deploy-
ment and configuration. The TVD Master can be implemented as a centralized
entity (as in our prototype described in Section 5) or have a distributed fault-
tolerant implementation. The TVD Master contains a repository of high-level
TVD policies and credentials (e.g., VPN keys). The Master also exposes a TVD
management API through which the TVD owner can specify those policies and
credentials. In the deployment phase, the TVD Master first verifies the suit-
ability and capability of the physical host (which we refer to as pre-admission
control). It then uses a generic TVD Factory service to spawn a TVD Proxy,
which acts as the local delegate of the TVD Master dedicated to that particular
host. The TVD Proxy is responsible for (1) translation of high-level TVD poli-
cies into low-level platform-specific configurations, (2) configuration of the host
and security services with respect to the translated policies, and (3) interaction
with the security services in TVD admission and flow control.



Security services implement the security enforcement layer of our TVD in-
frastructure. They run in a trusted execution environment on each physical host
(e.g., Domain-0 in Xen) and (1) manage the security configuration of the hy-
pervisor, (2) provide secure virtualization of resources (e.g., virtual devices) to
the VMs, and (3) provide support to TVD proxies in enforcing flow and access
control policies within and across TVD boundaries. Figure 4 shows a high-level
list of security services and their interaction with the TVD components. Most
importantly, the compartment manager service manages the life-cycle of VMs in
both para-virtualized and fully virtualized modes. This service works in collab-
oration with the TVD Proxy to admit VMs into TVDs. The integrity manager
service implements Trusted Computing extensions and assists the TVD Proxy
in host pre-admission and VM admission control. The virtual network manager
and virtual storage manager services are invoked by the TVD Proxy. They im-
plement resource virtualization technologies and enforce parts of the high-level
TVD policies that are relevant to their operation. Lastly, the virtual device man-
ager service handles the secure resource allocation and setup of virtual devices
assigned to each VM.

Our TVD infrastructure is geared towards automated deployment and en-
forcement of security policies specified by the TVD Master. Automated refine-
ment and translation of high-level policies into low-level configurations are of
particular interest. For example, for information flow between two hosts in a
trusted data center environment, other mechanisms need to be in place than
for a flow between two hosts at opposite ends of an untrusted WAN link. In
the latter case, the hosts should be configured to allow communication between
them only through a VPN tunnel.

Another important consideration is policy conflict detection and resolu-
tion [44, 26]. In fact, conflicting high-level policies (e.g., a connection being
allowed in the inter-TVD policy but disallowed in the intra-TVD policy) can
potentially result in an incorrect configuration of the underlying infrastructure.
We cannot solely rely on the TVD owner to specify conflict-free policies. It
is important to detect policy conflicts and provide feedback to the owner in
case one is detected. In the present prototype, policy refinement is performed
manually. The result is a set of configuration files that we use for configuring
the security services at the policy enforcement layer (e.g., the virtual network-
ing infrastructure). In future work, we will investigate the automation of this
step using, for example, the IETF policy model [35] and various graph-based
mechanisms from the literature. We will also investigate different techniques for
resolving conflicting policies [14, 9, 13, 15].

4.2 Virtual Networking Infrastructure

Virtual networking (VNET) technologies enable the seamless interconnection of
VMs that reside on different physical hosts as if they were running on the same
machine. In our TVD framework, we employ multiple technologies, including
virtual switches, Ethernet encapsulation, VLAN tagging, and VPNs, to virtu-
alize the underlying network and securely group VMs that belong to the same



VMVM

Eth
erI

P

Host C Host DHost A

VP
N

WANWAN

vSwitch

VMVM OSOS VMVM VMVM VMVM

vSwitch

VMVM

Ta
gg
er

vSwitch

Eth
erI

P

VLAN Switch

Host B

VMVM

Ta
gg
er

vSwitch

VP
N

Ta
gg
er

Eth
erI

P

Eth
erI

P
VP

N

Eth
erI

P
VP

N

vSwitch

VP
N

Figure 5: General vSwitch Architecture.

TVD. A single private virtual network is dedicated to each TVD, and network
separation is ensured by connecting the VMs at the Ethernet level. Logically
we provide a separate “virtual infrastructure” for each TVD in which we control
and limit the sharing of network resources (such as routers, switches) between
TVDs. This also provides the TVD owner with the freedom to deploy a wide
range of networking solutions on top of the TVD network infrastructure. Net-
work address allocations, transport protocols, and other services are then fully
customizable by the TVD owner and work transparently as if the VMs were in
an isolated physical network. To maintain secrecy and confidentiality of network
data (where necessary), network communication is established over encrypted
VPN tunnels. This enables the transparent use of untrusted networks between
physical hosts that contain VMs within the same TVD to provide a seamless
view of the TVD network.

In this section, we introduce the technologies we use to implement a security-
enhanced VNET infrastructure for TVD owners. The concept of virtual switch-
ing is central to our architecture, which is then protected by existing VPN
technologies that provide data confidentiality and integrity where needed. The
VNET infrastructure acts as the local enforcer of VNET policies. As described
in Section 3.3.2, these policies are based on the high-level TVD policies and
translated into network configurations by the TVD Proxy. The Proxy then
deploys the whole VNET infrastructure with respect to the translated configu-
ration.

4.2.1 Virtual Switching

The virtual switch (vSwitch) is the central component of the virtual network-
ing infrastructure and operates similarly to a physical switch. It is responsible
for network virtualization and isolation, and enables a virtual network to span



multiple physical hosts. To do so, the vSwitch uses EtherIP [20] and VLAN tag-
ging [19] to insert VLAN membership information into every network packet.
The vSwitch also implements the necessary address-mapping techniques to di-
rect packets only to those machines that host member VMs. Virtual switches
provide the primitives for implementing higher-level security policies for net-
working and are configured by the higher-level TVD management layer.

Figure 5 illustrates an example architecture in which physical machines host
multiple VMs with different TVD memberships (the light and dark shades in-
dicate different TVDs). Hosts A, B, and D host virtual machines in contrast
to Host C which is a physical machine. Furthermore, Hosts A, B, and C re-
side on the same LAN, and thus can communicate directly using the trusted
physical infrastructure without further protection (e.g., traffic encryption). For
example, the light VMs hosted on Hosts A and B are inter-connected using the
local VLAN-enabled physical switch. In this case, the physical switch sepa-
rates the TVD traffic from other traffic passing through the switch using VLAN
tags. Similarly, the dark VMs hosted on Host A and the non-virtualized Host C
are seamlessly inter-connected using the local switch. In contrast, connections
that require IP connectivity are routed over the WAN link. The WAN cloud
in Figure 5 represents the physical network infrastructure able to deal with
TVD-enabled virtual networks; it can include LANs with devices capable of
VLAN tagging and gateways to connect the LANs to each other over (possibly
insecure) WAN links. For connections that traverse an untrusted medium, we
employ EtherIP encapsulation to denote TVD membership and additional secu-
rity measures (such as encryption) to ensure compliance with the confidentiality
and integrity requirements.

4.2.2 Virtual Private Networking

In Figure 5, VMs hosted on Host D are connected to the other machines over a
WAN link. A practical setting in which such a connection might exist would be
an outsourced remote resource connected to the local data center through the
Internet. As an example, lightly shaded VMs on Host D connect to the lone
VM on Host B over this untrusted link. In this setting, we use a combination
of EtherIP encapsulation and VPN technology to ensure the confidentiality and
integrity of the communication. To do so, we use point-to-point VPN tunnels
with OpenVPN that are configured through the TVD Proxy from the TVD
policies. This enables reconfiguration of the topology and the involved VPNs
within a TVD from a single administration point, the TVD Master.

TVD policies distributed from the TVD Master to the TVD Proxy also
include the secret key for the VPN along with other VPN-specific settings. On
a physical host, the VPN’s endpoint is represented as a local virtual network
interface (vif) that is plugged into the appropriate vSwitch controlled by the
TVD Proxy. The vSwitch then decides whether to tunnel the communication
between VMs, and if so, uses the VPN module to establish the tunnel and access
the VPN secret for traffic encryption and decryption.



Consolidation

Access Control & Encryption

TVD A TVD B TVD C

Heterogeneous 
Physical Storage

Per-TVD 
Raw Storage

Per-TVD 
Virtual Storage

TVD A TVD B TVD C

Metadata

Figure 6: Security Enforcement for Virtualized Storage.

4.3 Virtual Storage Infrastructure

We focus on a simplified security management of virtualized storage. Broadly
speaking, storage virtualization abstracts away the physical storage resource(s).
It is desirable to allow a storage resource to be shared by multiple host com-
puters, and also to provide a single storage device abstraction to a computer
irrespective of the underlying physical storage, which may be a single hard disk,
a set of hard disks, a Storage Area Network (SAN), etc. To satisfy both re-
quirements, storage virtualization is typically done at two levels. The first level
of virtualization involves aggregating all the (potentially heterogeneous) phys-
ical storage devices into one or more virtual storage pools. The aggregation
allows more centralized and convenient data management. The second level
of virtualization concerns the unified granularity (i.e., blocks or files) at which
data in each pool is presented to the higher-level entities (operating systems,
applications, or VMs).

Figure 6 shows our storage security enforcement architecture, in which ex-
isting heterogeneous physical storage devices are consolidated into a joint pool.
This virtual storage pool is then subdivided into raw storage for each TVD.
Each raw storage volume has an owner TVD that determines its policy (indi-
cated by the labels TVD A, TVD B, and TVD C at the per-TVD raw storage
layer in the figure). In addition, when a volume shall be shared among multiple
TVDs, there is also a set of member TVDs associated with it. The access con-
trol and encryption layer helps enforce the storage-sharing policy defined by the
owner TVD, e.g., enforcing read, write, create, and update access permissions
for the member TVDs. This layer is a logical layer that in reality consists of the
virtual storage managers (part of the security services) located on each physical
platform. The virtual storage manager on each physical platform is responsible
for enforcing the owner TVD’s storage security policies (see Section 3.3.3) on
these volumes. If a certain intra-TVD security policy requires confidentiality
and does not declare the medium as trusted, the disk is encrypted using a key
belonging to the owner TVD.8 If conditions for (re-)mounting a disk have been
defined, the disk is also encrypted and the key is sealed against the TCB while
including these conditions into the unsealing instructions. The policy and meta-

8For efficiency reasons, we currently do not provide integrity protection.



data are held on a separate raw volume that is only accessible by the data center
infrastructure.

An administrator of a domain may request a disk to be mounted to a partic-
ular VM in a particular mode (read/write). In Xen, the disk is usually mounted
in the management machine Domain-0 as a back-end device and then accessed
by a guest VM via a front-end device. The virtual storage manager on the
platform validates the mount request against the policies of both the TVD the
VM is part of and the owner TVD for the disk. Once mounted, appropriate
read-write permissions are granted based on the flow control policy for the two
TVDs, e.g., read access is granted only if the policies specified in the disk policy
matrix allow the VM’s TVD such an access to the disk belonging to the owner
TVD.

4.4 TVD Admission Control

When a VM is about to join a TVD, different properties will be verified by
the local TVD Proxy to ensure that policies of all the TVDs that the VM is
currently a member of as well as of the TVD that it wants to join are not
violated. If the verification is successful, then the VM will be connected to that
TVD. The TVD admission control protocol is the procedure by which the VM
gets connected to the TVD. In the case of a VM joining multiple TVDs, the
admission control protocol is executed for each of those TVDs. We now describe
the steps of the protocol.

We assume that the computing platform that executes the VM provides
mechanisms that allow remote parties to convince themselves about its trust-
worthiness. Example mechanisms include trusted (authenticated) boot and the
remote attestation protocol (see Section 2.2) based on TPM technology.

TVD Proxy Initialization Phase: To allow a VM to join a TVD, the plat-
form hosting the VM needs access to the TVD policy, and upon successful
admission, to TVD secrets, such as the VPN key. For this purpose, TVD Proxy
services are started on the platform for each TVD whose VMs may be hosted.
The TVD Proxy can be started at boot time of the underlying hypervisor, by a
system service (TVD Proxy Factory), or by the VM itself, as long as the TVD
Proxy is strongly isolated from the VM.

Pre-Admission Phase: When a VM wants to join a TVD that is going to
be hosted on the platform for the first time, the TVD Master has to establish a
trust relationship with the platform running the VM, specifically with the TVD
Proxy. We call this step the pre-admission phase. It involves the establishment
of a trusted channel (see Section 2.3) between the TVD Master and the TVD
Proxy (or the TVD Proxy Factory). The trusted channel allows the TVD Master
to verify the integrity of the TVD Proxy (Factory) and the underlying platform.
After the trusted channel has been established and the correct configuration of
the Proxy has been verified, the TVD Master can send the TVD policies and
credentials (such as a VPN key) to the TVD Proxy.



Admission Control Phase: The Compartment Manager (part of the plat-
form security services shown in Figure 4) is responsible for starting new VMs.
The Compartment Manager loads the VM configuration and enforces the secu-
rity directives with the help of the Integrity Manager (also part of the platform
security services shown in Figure 4). The security directives may include gather-
ing the VM state information, such as the VM configuration, kernel, and disk(s)
that are going to be attached to the VM.

If the VM configuration states that the VM should join one or more TVDs,
then the Compartment Manager interacts with the corresponding TVD Proxy(ies)
and invokes TPM functions to attest the state of the VM. The TVD Proxy veri-
fies certain properties before allowing the VM to join the TVD. More concretely,
the TVD Proxy has to ensure that

• the VM fulfills the integrity requirements of the TVD;

• the information flow policies of all TVDs the VM will be a member of will
not be violated;

• the VM enforces specific information flow rules between TVDs if such rules
are required by the TVD policy, and that

• the underlying platform (e.g., the hypervisor and attached devices) fulfills
the security requirements of the TVD.

Platform verification involves matching the security requirements with the plat-
form’s capabilities and mechanisms instantiated on top of these capabilities.
For example, suppose that data confidentiality is a TVD requirement. Then, if
hard disks or network connections are not trusted, additional mechanisms, such
as block device encryption or VPN (respectively), need to be instantiated to
satisfy the requirement.

TVD Join Phase: If the VM and the provided infrastructure fulfill all TVD
requirements, a new network stack is created and configured as described in
Section 4.2. Once the Compartment Manager has started the VM, it sends
an attach request to the corresponding TVD vSwitch through the TVD Proxy.
Once the VM is connected to the vSwitch, it is a member of the TVD.

5 Prototype Implementation

5.1 Overview

We realized a prototype of a physical data center implementing multi-tenant
virtual data centers. Each one, usually owned by a different customer, is mapped
onto a different TVD.

Our prototype is based on two classes of building blocks: Physical hosts pro-
viding VMs for the virtual domains and hosts running the data center services.



Dom0 Compartment
(Privileged VM)

Xen Hypervisor

Hardware CRTM CPU TPM

Component Forming the TCB

Linux Kernel

Trusted 
Channel

Proxy TVD A
Proxy

Compartment
Manager 

NIC

VNET

VM:
Dom1,
TVD A

TVD
 Policy
Engine

Local
 Policy
Engine

Linux 
Kernel

VM:
Dom2,
TVD B

Linux 
Kernel

Platform providing VMs to TVDs

Legend:

Control Flow Channel
TVD A Data Flow
TVD B Data Flow

T
V

D
 M

as
te

r (
A

/B
)

TVD Proxy
 Factory

TVD B
Proxy

TVD
 Policy
Engine

Figure 7: Xen Architecture for TVD.

Figure 7 shows a host of the first class, a single secure hypervisor platform
(that we henceforth refer to as “the platform”) that is based on the Xen archi-
tecture [6] (Xen 3.1.1 and Linux kernel 2.6.22). Following the Xen model, the
platform consists of a core hypervisor, the privileged management VM called
Domain-0, and the guest VMs. We have also implemented the TVD Master role
that runs on a second class host and maintains policies and membership for a
given virtual domain.

The following components are provided by our platform. The Compartment
Manager manages the life-cycle and the integrity of the guest VMs (also called
compartments9). The TVD Proxy is the local representative of the TVD Master
running on the platform and enforcing the policies of that TVD. Each TVD
Proxy is created and spawned by a TVD Proxy Factory, whenever a TVD needs
to be extended to a new host. The Secure Virtual Network subsystem creates,
manages, and makes secure the virtual LAN for each TVD. The Trusted Channel
Proxy implements the Trusted Channel needed for the pre-admission phase. In
the current implementation, all these components run in Domain-0. Together
with the Xen hypervisor and the other services in Domain-0, they constitute
the Trusted Computing Base (TCB) of the platform, i.e., the integrity of these
components must be ensured to guarantee the correct enforcement of the TVD
policies.

The integrity measurements of the TCB components are performed during

9A compartment is a protected execution environment, subject to information flow control
policies enforced by the hypervisor: a compartment can securely host a single process running
with threads as well as full-fledged VMs.



the authenticated boot, when the chain of trust begun by the Core Root of Trust
for Measurement (CRTM) is extended using TrustedGRUB [3], a TCG-enhanced
version of the standard GRUB boot loader. The TVD Master implements one
end of the Trusted Channel establishment protocol. The other end is the TVD
Proxy Factory.

Figure 8 shows the simplified layout of our prototype data center. It has
two virtual networks per customer: A management network for managing the
customer’s VMs within the TVD and a user data network for the actual com-
munication between client VMs. Furthermore, the data center has a DMZ for
external connections, a virtual data center management network (VDC) that is
used for communication between our data center management components, and
finally a SAN network that provides storage to the individual platforms.

Each virtual domain has an intra-domain management VM that runs the
management software of the customer and connects to the management network.
This management software interacts with a filtered XenAPI (called XenAPI’)
that hides infrastructure and machines belonging to other virtual domains and
provides a virtual view of the data center. Each administrator in a virtual
domain can then define and start any number of guest VMs that get connected
to the corresponding data network.

5.2 Security Services

In [21], we have described a Xen-based prototype of our security services for
integrity management and obtaining compliance proofs. The prototype enables
the protection of security policies against modification and allows stakeholders
to verify the policies actually implemented. The paper also describes multiple
use cases, in which we demonstrated the policy enforcement and compliance-
checking capabilities of our implementation. For example, we showed how to
validate the configuration of the virtual networking subsystem on each host
(assuming that a TPM is embedded in each host).

Here, we provide an overview of our security services implementation. The
Compartment Manager (CM) is responsible for the VM life-cycle management.
As the sole entry point for VM-related user commands, it communicates directly
with the hypervisor and orchestrates the Integrity Manager (IM) and the secure
device virtualization functions of the platform. These functions base on the
standard Xen management tools.

The CM through the (IM) is responsible for verifying the integrity of the
VMs. The root file system is made available to each VM, including Domain-0,
through a pair of partitions or virtual disks. One of them is read-only, contains
the initial root file system, and is measured together with the VM configuration
file; the resulting whole integrity measurement of the VM is then accumulated
into the TPM by extending one PCR. The other partition or virtual disk, which
is read/write and empty at the beginning of the VM life, records the changes
occurring on the root file system while the VM is running. This is done through
the copy-on-write mechanism provided by unionfs [4, 1] which allows the stack-
ing of multiple file systems and provides the operating system with a unified



view. CM and IM are also responsible for guaranteeing the confidentiality of a
VM’s data (stored on the second read/write image) by encrypting it using dm-
crypt [2], which is the Linux device mapper with support for encrypting block
devices (e.g., physical or virtual disks and partitions). Next, the encryption key
is sealed against the measurement of the TCB and of the VM (stored in a set
of PCRs). We use this “sealed disk” scheme to protect the VM’s confidential
data. This scheme can be applied to all disks, except the root image, depending
on the security requirements given.

The TVD policy defines, for each VM, the disks that need to be measured,
the PCR(s) in which the measurements need to be stored, and the disks that
need to be sealed. Once the policy has been executed and all disks have been
prepared (measured/unsealed), the admission protocol involving the CM and
the TVD Proxy (see Sections 4.4 and 5.3) follows. Then the CM requests Xen
to start the VM. To manage VMs, the CM maintains the association between
a running VM and the policy that was used to start it.

5.3 TVD Master, Proxies and Proxy Factories

The TVD policy of our prototype lists all VMs that can potentially be admitted
to the TVD. Each VM is identified by the Xen domain identifier. For each VM,
the policy specifies the required integrity measurement value. Only if the VM’s
actual measurement value (obtained by the CM) matches the required value the
VM will be admitted to the TVD. The policy also specifies the MAC address
assigned to the VM’s virtual NIC, if the admission is successful. Moreover, it
identifies the VLAN corresponding to the TVD, and the VPN keys needed for
establishing secure connections within the TVD. Currently one shared key per
TVD is used to protect all insecure links.

When a VM wants to be admitted to the TVD (i.e., this is stated in the
configuration file of the VM), the related TVD Proxy is contacted by CM using a
stateless TCP-based protocol called Compartment Admission Protocol (CAP).
Since a platform can host VMs belonging to different TVDs, the CM contacts
the TVD Proxy Factory to obtain the TVD Proxy end-point for the requested
TVD. If such TVD Proxy is not running yet, the TVD Proxy Factory creates and
spawns it. Before starting the VM, CM measures it (as explained in Section 5.2)
and asks the TVD Proxy whether the VM can be admitted to the TVD by
passing the identifier and the measurement of the VM. If the answer is positive,
CM receives the MAC address specified in the policy from the TVD Proxy,
creates the back-end network device (see Section 5.4 for further explanations
about Xen back-end and front-end devices), and sets the MAC address for the
front-end device. Finally, the CM requests the TVD Proxy to attach the VM
to the virtual switch (vSwitch) of the VLAN corresponding to the TVD by
specifying the identifier, measurement value, and the names of back-end devices
for the VM being admitted. In the case of a negative response from the TVD
Proxy, the CM can be configured to either start the VM even though it will not
be connected to the TVD VLAN or not to start it at all.



5.4 Secure Virtual Network subsystem

The prototype implementation of our Secure Virtual Network subsystem has
been documented in [10] and has been integrated in the prototype being pre-
sented in this paper. Our networking extensions consist of vSwitches, VLAN
tagging, and LAN encapsulation modules. They are implemented as kernel
modules in Domain-0, which also acts as the driver VM for the physical NIC(s)
of each physical host.

To specify the particular vSwitch and the particular port in the vSwitch to
which a VM’s Xen back-end device must be attached, the Xen VM configuration
file is used. This file is generated by CM after having received information (MAC
address and VLAN identifier) from the TVD Proxy. We use additional scripts
to specify whether a particular vSwitch should use one or both of the VLAN
tagging and encapsulation mechanisms for isolating separate virtual networks.

The vSwitches maintain a table mapping virtual network devices to ports on
a particular vSwitch. The encapsulation module implements EtherIP processing
for packets coming out of and destined for the VMs. The VLAN segments
associated with different TVDs and the corresponding vSwitches are assigned
unique identifiers. The network identifier field in the EtherIP packets is set to
the identifier of the vSwitch that the target VM is attached to.

The VLAN tagging module tags the packet with the VLAN identifier cor-
responding to the VLAN that the target VM is a part of. At the destination
platform, the VLAN module removes the VLAN tags, and routes the packets
to the appropriate vSwitch based on the VLAN tag.

5.5 Trusted Channel Proxies

The Trusted Channel between TVD Proxy Factory and TVD Master used dur-
ing the pre-admission phase is set up by means of a pair of services called
Trusted Channel proxies. They implement the Trusted Channel at the applica-
tion layer via a TLS tunnel, made available to TVD Proxy Factory and Master
once remote attestation has been successful. The remote attestation is done by
performing the TPM_Quote operation, namely, digitally signing a set of PCRs
and a challenge received from the remote attester using a TPM asymmetric key.
The latter can be certified as Attestation Identity Key (AIK) by a Privacy CA.
The result of the TPM_Quote operation (i.e. the signature over a set of PCR
values), the actual PCR values and the AIK Public Key Certificate are sent
by the TVD Proxy Factory to the TVD Master to be verified. If the verifica-
tion is successful, then the remote attestation can be considered successful, and
the two proxies start tunneling the incoming TCP packets through the TLS
channel. An alternative implementation for attesting via Trusted Channel is
documented in [5] and will be integrated in our prototype. This approach re-
places the TPM_Quote operation with the usage of sealing and TPM certified
keys.



6 Prototype Evaluation and Lessons Learned

6.1 Limitations of our Prototype

One goal of our prototype is to enable independent management of the different
virtual domains. In principle, we aimed at allowing each TVD administrator to
manage a given TVD independently of all other domains. This would require
that a TVD owner can define policies, define images, and start them while being
independent of others. In our prototype policies can be defined and machines
can be started independently. However, images need to be stored in a central
image repository. We implemented this by providing per-domain sub-directories
for storing image files of the respective domains.

There are several additional open problems that our implementation has not
covered so far. The first is globally unique identifiers. Our current prototype
uses a naming authority. In the long run, TVDs should be federated with-
out any mediation of a central authority, making an identification scheme like
UUID [25] necessary to guarantee the uniqueness beforehand. Another class
of open issues is related to the Integrity Measurement Architecture (IMA) im-
plemented by each physical machine. The current scheme for measuring VM
integrity is coarse-grained, because the entire file system is measured. It is a first
attempt of measuring the VMs while allowing a persistent storage; however it
has a big shortcoming: The measurements do not capture the modifications that
occurred on the file system because they are stored on the second read/write
virtual disk, which is never measured. Moreover, the VM is measured only
prior to being started, and so far there is no support for run-time monitoring
yet. In the long run, we will use a finer-grained integrity measurements, e.g.,
through a virtualization-enhanced version of the IMA proposed in [39] while
using integrity-enhanced storage [11, 33] to protect data at rest.

Another part of our architecture that has not been fully implemented is the
TVD Masters. Today, they only perform intra-TVD policy distribution. In
the long run, they should enable trust brokering and delegation to allow trust
establishment between multiple TVDs.

Finally, in this first implementation, all TVD components reside in Domain-
0, the Xen-privileged VM. Following the approach of Domain-0 disaggrega-
tion10 [31], the TVD Proxy and VNET components will be moved away from
Domain-0 to run in dedicated and isolated VMs.

6.2 Performance Evaluation

We implemented our data center prototype using HP ProLiant BL25p G2 blade
servers each fitted with two AMD Opteron processors running at 2 GHz, 8GB
system memory and a Gigabit Ethernet card. We now discuss the performance
of our prototype. Most of our components implement or support management
tasks. They are dedicated to automate the secure set-up of platforms, virtual

10The OpenTC consortium is pursuing this approach to reduce the weight of the trust
assumptions on Domain-0.



System Measured
Operation Prototype Xen
Management Start 3.601s 3.332s

Stop 2.371s 0.460s

Table 4: Performance Measurements of our Prototype

Throughput Linux VLAN Tagging Xen Bridging EtherIP
TX (Mbps) 932 883 872 847
RX (Mbps) 932 881 870 851

Table 5: NetPerf Benchmark: Guest VM to Guest VM Throughput.

machines and domains, if possible with minimal performance impact on the
running system.

Management In Table 4 compares the boot-up and shut-down delay between
virtual machines using the unmodified Xen implementation and our components.
Averaged over 235 measurements, our components add some 10 percent to the
the original time-to boot. The delay is caused by measuring the configuration,
attesting to the VM, transferring and checking configuration measurements, and
(in case of success) attaching the VM to the corresponding network. Stopping a
virtual machine requires 2.4s instead of 0.5s for the original Xen implementation.
Here, the overhead is caused by the fact that the current implementation of the
compartment manager polls the VM in rather long intervals to verify a successful
shut-down.

Networking We obtained the throughput results using the NetPerf network
benchmark and the latency results using the ping tool. Using the former bench-
mark, we measured the Tx (outgoing) and Rx (incoming) throughput for traffic
from one guest VM to another guest VM on the same physical host. To do so,
we ran one instance of the benchmark on one guest VM as a server process and
another instance on the second guest VM to do the actual benchmark.

We report the throughput results for different networking schemes in Ta-
ble 5. The figures show that the throughput results for both VLAN tagging and
EtherIP schemes are comparable to that of the standard Xen (bridge) configu-
ration. As expected, VLAN tagging yields the best throughput in a virtualized
system that outperforms the standard Xen configuration. Both Xen bridging
and VLAN tagging perform better on the Tx path. For EtherIP, the major
cost in the Tx path is having to allocate a fresh socket buffer (skb) and copy the
original buffer data into the fresh skb. When first allocating a skb, the Linux
network stack allocates a fixed amount of headroom for the expected headers
that will be added to the packet as it goes down the stack. Unfortunately, not
enough space is allocated upfront to allow us to fit in the EtherIP header; so,
we have to copy the data around, which is very costly.



Minimum Average Maximum Mean Deviation
Bridged 0.136s 0.180s 0.294s 0.024s
VLAN 0.140s 0.212s 0.357s 0.030s

EtherIP 0.151s 0.246s 0.378s 0.034s

Table 6: Round-trip Times using Ping.

CPU Utilization Linux Xen (Dom0+DomU)
Encrypted 42% 45% (42+3%)

Unencrypted 5% 13% (10+3%)

Table 7: CPU Utilization of Virtual Disks at 30MB/s.

In the Rx path, there is no packet-copying overhead for the EtherIP ap-
proach; the extra EtherIP header merely has to be removed before the packet
is sent to a VM. As compared to VLAN tagging, in which packets are grabbed
from the Linux network stack, EtherIP requires that packets are passed to and
processed by the host OS IP stack before they are handed over to the EtherIP
packet handler of the vSwitch code.

Table 6 shows the round-trip times between two guest VMs on a physical
host for the bridged, VLAN, and EtherIP encapsulation cases obtained using the
ping -c 1000 host command, i.e., 1000 packets sent. The results show that
the average round-trip times for VLAN and EtherIP encapsulation are 17.8%
and 36.7% higher than that of the standard Xen bridged configuration.

Storage Timing the set-up of storage has been part of the management eval-
uation. We now evaluate actual run-time performance of virtual disks.

We compared three set-ups using an IBM Thinkpad T60p: Disk access from
Domain-0, disk access in a Linux without Xen, and disk access from a guest
VM. For each of these three systems we compared encrypted and unencrypted
access.

We first measured read/write throughput. A first observation was that in
all cases, the disk performance limited our overall performance, i.e., encryption
did not result in a performance penalty in a single-VM system (all 6 set-ups
provided approx 30MB/s throughput).

As a consequence, we then measured the overall CPU utilization (i.e. for
Domain-0 and a guest VM) of the different set-ups (see Table 7). This table
points out that encrypting a disk at 30MB/s requires 42% CPU under Linux
and 45% under Xen while servicing a guest VM. This shows that the utilization
is similar to a plain Linux. The fairly high CPU utilization substantially limits
the usage of encryption in a data centers. Fortunately, encryption in a data
center can often be replaced by physical security or other measures. The only
exceptions are removable media that are moved between locations.



6.3 Lessons Learned

Embedding integrity verification mechanisms in a distributed security architec-
ture creates serious challenges. Conceptually, many of them can be addressed
with property-based attestation. However, property-based attestation depends
on well-defined and potentially institutionalized processes for validating the be-
havioral equivalence of different configurations. Certifying that two configura-
tions have identical properties is currently a manual and labor-intensive exercise,
which is costly and does not scale beyond single TVD owners or data center ad-
ministrators.

While the migration of VMs between different physical hosts is well under-
stood, the migration of a complete trust context associated with a VM has
proved to be difficult. The latter type of migration requires the migration of
not only the virtual networking and storage devices (with associated crypto-
graphic keys, if necessary), but also of a virtual TPM, if present, which will be
rooted in different hardware TPMs prior to and after the migration. During the
migration process, the integrity of all these components has to be guaranteed
while managing the handing-off of device access in a transactional fashion. Note
that the importance of securing this transition has been further emphasized by
recently published attacks on virtual machines in transit.

Building a security API that is at the same time flexible, usable, and man-
ageable has proved to be more difficult than expected. A key reason for this
difficulty is the requirement that the API should be easily adaptable to other hy-
pervisor architectures and to workstation scenarios with GUI interfaces. While
addressing each of these requirements separately is feasible, their combination
comes with many trade-offs.

Yet another type of trade-off concerns our aim of decomposing the Xen archi-
tecture into multiple security services each running in dedicated tiny VMs while
reducing the reliance on Domain-0, the privileged management VM. While such
decomposition is advantageous from a security perspective, it tends to reduce
flexibility. The availability of a full-fledged Linux management VM with access
to all subsystems enables easy extensibility and rapid prototyping (scripting,
adding devices, firewalls, VPNs etc), and also corresponds to the expectations
of many Xen users. In general, however, considerations of usability tend to favor
design decisions that are sub-optimal from a strict security perspective.

A final lesson learned was that measuring performance of virtual systems
is not straightforward. We first used iostat to retrieve CPU usage data from
/proc/stat under Linux and in Domain-0. This wrongly indicated that Xen
needs half the CPU as compared to Linux. We then used the Xen tool xentop
that gathers the data via hyper-calls to the hypervisor. Since this represents the
time given to each VM (Domain-0, guest VM) by the hypervisor, the resulting
data was no longer distorted by the virtual notion of time given to the VMs in
Xen.



7 Conclusion

Securing the access to data on persistent media and during transfer over the net-
work is a serious problem in distributed virtual data center and cloud computing
scenarios. We described a framework based on TVDs and Trusted Computing
for secure network and storage virtualization that includes mechanisms for ver-
ifying the integrity of the hypervisor, VMs, and security policy enforcement
points. The concept of TVDs is rigid enough to allow consistent policy enforce-
ment across a group of virtual domain elements, while being flexible enough
to support policy-controlled interactions between different TVDs. TVD poli-
cies and configurations are ‘backward-compatible’ in supporting options that
could be taken for granted in non-virtualized data centers. For example, co-
hosting of specific customer services with those of other data center customers
on the same physical platform could be inhibited if so desired. By incorporating
hardware-based Trusted Computing technology, our framework allows the cre-
ation of policy domains with attestable trust properties for each of the virtual
domain nodes.

The inclusion of integrity measurement and management mechanisms as
part of the physical platform’s TCBs provides both data center customers and
administrators with a much needed view of the elements (hypervisors, VMs,
etc.) that are part of their virtual infrastructure as well as information on
the configurations of those elements. Our framework can be used to obtain
information about the elements on a ‘need-to-know’ basis without having to
introduce all-powerful roles of administrators with access to every aspect of a
platform.

Our performance evaluation shows that the overhead produced by changes
and extensions to the original implementation is modest. Automated set-up
adds a short delay to boot-time, VLAN tagging and IP tunneling lead to an
increase in packet latency of 5 resp. 10 percent, while VLAN tagging provides
slightly improved network throughput. Although the performance overhead
of encrypting a single disk is non-negligible, the observed impact on the disk
transfer rate tends to be small, since the predominant limiting factor is the
capacity of the disk I/O channel. However, the performance of disk encryption
in Xen is comparable to disk encryption under Linux.

Acknowledgements

We would like to thank our anonymous reviewers for providing great and de-
tailed feedback that helped us to substantially improve the article. We would
like to thank in particular Cataldo Basile from Politecnico di Torino, Italy, for
valuable input on the policy framework, Michael Steiner from IBM’s Watson
Research Center for feedback on policy refinement, and Marcel Winandy of
Ruhr-Universität Bochum for feedback on the TVD implementation.

This article is based on input from many members of the OpenTC project
consortium. This work has been partially funded by the European Commission



as part of the OpenTC project [32] (ref. nr. 027635). It is the work of the
authors alone and may not reflect the opinion of the entire project.

References

[1] Aufs – Another Unionfs. http://aufs.sourceforge.net/.

[2] dm-crypt: a device-mapper crypto target. http://www.saout.de/misc/

dm-crypt/.

[3] TrustedGRUB. http://sourceforge.net/projects/trustedgrub.

[4] Unionfs: A Stackable Unification File System. http://www.am-utils.

org/project-unionfs.html.

[5] Frederik Armknecht, Yacine Gasmi, Ahmad-Reza Sadeghi, Patrick Stewin,
Martin Unger, Gianluca Ramunno, and Davide Vernizzi. An efficient im-
plementation of Trusted Channels based on Openssl. In STC ’08: Pro-
ceedings of the 3rd ACM workshop on Scalable Trusted Computing, pages
41–50, New York, NY, USA, 2008. ACM Press.

[6] P. T. Barham, B. Dragovic, K. Fraser, S. Hand, T. L. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the Art of Virtual-
ization. In Proc. 19th ACM Symposium on Operating Systems Principles
(SOSP-2003), pages 164–177, October 2003.

[7] Stefan Berger, Ramón Cáceres, Dimitrios Pendarakis, Reiner Sailer, En-
riquillo Valdez, Ronald Perez, Wayne Schildhauer, and Deepa Srinivasan.
TVDc: managing security in the trusted virtual datacenter. SIGOPS Op-
erating Systems Review, 42(1):40–47, 2008.

[8] A. Bussani, J. L. Griffin, B. Jansen, K. Julisch, G. Karjoth, H. Maruyama,
M. Nakamura, R. Perez, M. Schunter, A. Tanner, L. van Doorn, E. V.
Herreweghen, M. Waidner, and S. Yoshihama. Trusted Virtual Domains:
Secure foundation for business and IT services. Research Report RC 23792,
IBM Research, November 2005.

[9] A. Cappadonia C. Basile and A. Lioy. Algebraic models to detect and solve
policy conflicts. In I. Kotenko V. Gorodetsky and V.A. Skormin, editors,
MMM-ACNS 2007, volume 1 of CCIS, pages 242–247. Springer-Verlag,
2007.

[10] Serdar Cabuk, Chris Dalton, HariGovind V. Ramasamy, and Matthias
Schunter. Towards automated provisioning of secure virtualized networks.
In Proc. 14th ACM Conference on Computer and Communications Security
(CCS-2007), pages 235–245, October 2007.



[11] Dwaine E. Clarke, G. Edward Suh, Blaise Gassend, Ajay Sudan, Marten
van Dijk, and Srinivas Devadas. Towards constant bandwidth overhead
integrity checking of untrusted data. In IEEE Symposium on Security and
Privacy, pages 139–153. IEEE Computer Society, 2005.

[12] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.1. Internet Engineering Task Force: http://www.ietf.org/rfc/
rfc4346.txt, April 2006. Network Working Group RFC 4346.

[13] N. Dunlop, J. Indulska, and K. A. Raymond. A formal specification of
conflicts in dynamic policy-based management systems. DSTC Technical
Report, CRC for Enterprise Distributed Systems, University of Queensland,
Australia, August 2001.

[14] H. Hamed E. Al-Shaer, R. Boutaba and M. Hasan. Conflict classification
and analysis of distributed firewall policies. IEEE Journal on Selected Areas
in Communications, IEEE, 23(10):2069–2084, Oct. 2005.

[15] Zhi Fu, Shyhtsun Felix Wu, He Huang, Kung Loh, Fengmin Gong, Ilia
Baldine, and Chong Xu. IPSec/VPN security policy: Correctness, conflict
detection, and resolution. In POLICY, pages 39–56, 2001.

[16] Yacine Gasmi, Ahmad-Reza Sadeghi, Patrick Stewin, Martin Unger, and
N. Asokan. Beyond Secure Channels. In STC ’07: Proceedings of the second
ACM workshop on Scalable Trusted Computing, pages 30–40. ACM Press,
2007.

[17] John Griffin, Trent Jaeger, Ron Perez, Rainer Sailer, Leendert Van Doorn,
and Ramon Caceres. Trusted Virtual Domains: Toward secure distributed
services. In Proc. 1st Workshop on Hot Topics in System Dependability
(Hotdep-2005), Yokohama, Japan, June 2005. IEEE Press.

[18] Vivek Haldar, Deepak Chandra, and Michael Franz. Semantic Remote
Attestation - virtual machine directed approach to Trusted Computing.
In USENIX Virtual Machine Research and Technology Symposium, pages
29–41, 2004. also Technical Report No. 03-20, School of Information and
Computer Science, University of California, Irvine.

[19] IEEE. Standards for local and metropolitan area networks: Virtual bridged
local area networks. Technical Report ISBN 0-7381-3662-X, IEEE, 1998.

[20] IETF. EtherIP: Tunneling Ethernet Frames in IP Datagrams, 2002. RFC
3378.

[21] Bernhard Jansen, Harigovind Ramasamy, and Matthias Schunter. Pol-
icy enforcement and compliance proofs for Xen virtual machines. In 4th
International ACM SIGPLAN/SIGOPS Conference on Virtual Execution
Environments (VEE-2008), pages 101–110. ACM Press, New York, 2008.



[22] Y. Katsuno, M. Kudo, Y. Watanabe, S. Yoshihama, R. Perez,
R. Sailer, and L. van Doorn. Towards Multi–Layer Trusted Vir-
tual Domains. In The Second Workshop on Advances in Trusted
Computing (WATC ’06 Fall), Tokyo, Japan, November 2006. From
http://www.trl.ibm.com/projects/watc/program.htm.

[23] S. Kent and K. Seo. Security Architecture for the Internet Protocol. In-
ternet Engineering Task Force: http://www.ietf.org/rfc/rfc4301.txt,
December 2005. Network Working Group RFC 4346. Obsoletes: RCF2401.

[24] Ulrich Kühn, Marcel Selhorst, and Christian Stüble. Realizing property-
based attestation and sealing with commonly available hard- and software.
In STC ’07: Proceedings of the 2007 ACM workshop on Scalable trusted
computing, pages 50–57, New York, NY, USA, 2007. ACM.

[25] P. Leach, M Mealling, and R. Salz. A Universally Unique IDentifier (UUID)
URN Namespace. Internet Engineering Task Force RFC 4122, July 2005.

[26] Emil Lupu and Morris Sloman. Conflicts in policy-based distributed system
management. IEEE Transaction on Software Engineering, 25(6):852–869,
November 1999.

[27] Rich MacDonald, Sean Smith, John Marchesini, and Omen Wild. Bear:
An open-source virtual secure coprocessor based on TCPA. Technical Re-
port TR2003-471, Department of Computer Science, Dartmouth College,
Hanover, NH, USA, 2003.

[28] John Marchesini, Sean W. Smith, Omen Wild, and Rich MacDonald. Ex-
perimenting with TCPA/TCG hardware, or: How I learned to stop wor-
rying and love the bear. Technical Report TR2003-476, Department of
Computer Science, Dartmouth College, 2003.

[29] John Marchesini, Sean W. Smith, Omen Wild, Josh Stabiner, and Alex
Barsamian. Open-source applications of TCPA hardware. In 20th Annual
Computer Security Applications Conference, pages 294–303, Washington,
DC, USA, December 2004. ACM, IEEE Computer Society.

[30] Craig Mundie, Pierre de Vries, Peter Haynes, and Matt Corwine. Trust-
worthy computing. White paper, Microsoft Corporation, October 2002.

[31] D. G. Murray, G. Milos, and S. Hand. Improving Xen security through dis-
aggregation. In 4th International ACM SIGPLAN/SIGOPS Conference on
Virtual Execution Environments (VEE-2008), pages 151–160. ACM Press,
New York, 2008.

[32] Open Trusted Computing (OpenTC) Project. The OpenTC Project Home-
page, 2008. http://www.opentc.net/.



[33] Alina Oprea, Michael K. Reiter, and Ke Yang. Space-efficient block storage
integrity. In Proceedings of the Symposium on Network and Distributed
Systems Security (NDSS 2005), San Diego, CA, February 2005. Internet
Society.

[34] Jonathan Poritz, Matthias Schunter, Els Van Herreweghen, and Michael
Waidner. Property attestation—scalable and privacy-friendly security as-
sessment of peer computers. Technical Report RZ 3548, IBM Research,
May 2004.

[35] D. Pendarakis R. Yavatkar and R. Guerin. A framework for policy-based
admission control. RFC 2753, January 2000.

[36] A-R. Sadeghi and C. Stüble. Property-based Attestation for Computing
Platforms: Caring about Properties, not Mechanisms. In Proc. 2004 Work-
shop on New Security Paradigms (NSPW-2004), pages 67–77, New York,
NY, USA, 2005. ACM Press.

[37] David Safford. Clarifying misinformation on TCPA. White paper, IBM
Research, October 2002. Available at http://www.research.ibm.com/

gsal/tcpa/tcpa_rebuttal.pdf. See also [38] and http://www.research.

ibm.com/gsal/tcpa/.

[38] David Safford. The need for TCPA. White paper, IBM Research, Octo-
ber 2002. Available at http://www.research.ibm.com/gsal/tcpa/why_

tcpa.pdf. See also [37] and http://www.research.ibm.com/gsal/tcpa/.

[39] Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert van Doorn. De-
sign and implementation of a TCG-based integrity measurement architec-
ture. In SSYM’04: Proceedings of the 13th conference on USENIX Security
Symposium, pages 16–16, Berkeley, CA, USA, 2004. USENIX Association.

[40] Trusted Computing Group (TCG).
www.trustedcomputinggroup.org.

[41] Trusted Computing Group (TCG). TCG TPM specification version 1.2 re-
vision 103. https://www.trustedcomputinggroup.org/specs/TPM/, July
2007. See also [43] and http://www.trustedcomputing.org/.

[42] Trusted Computing Group (TCG). About us. https://www.

trustedcomputinggroup.org/about/, May 2008.

[43] Trusted Computing Platform Alliance (TCPA). Main specification version
1.1b. https://www.trustedcomputinggroup.org/specs/TPM/, February
2002. See also [41] and http://www.trustedcomputing.org/.

[44] Andrea Westerinen. Terminology for policy-based management. RFC 3198,
November 2001.



VDC
SAN

DMZ

TVDdata
TVDmgn

TVDproxy
Factory

TVDproxy

vSwitch
(mgnt.)

vSwitch
(data)

XenAPI

XenAPI'

Xen

DC Host Platform
TVD

Master

F
irew

all

Internet

DHCP
Server

PXEboot
Server

DC infrastructure components

SAN/
NFS

Guest
NFS

Intra-TVD 
Mgmt. VM

TVD Guest
VMs

VDC mgnt.
Server

TVD Guest
VMs

TVD Guest
VMs

TVD Guest
VMs

NOTE: dashed lines denote connections that are internal to the virtual domain

Figure 8: Layout of our prototype virtual data center.


