

Towards Automated SLA Management for Web Services

Akhil Sahai, Anna Durante, Vijay Machiraju
Software Technology Laboratory
HP Laboratories Palo Alto
HPL-2001-310 (R.1)
July 11th , 2002*

E-mail: {asahai, annad, vijaym}@hpl.hp.com

web services,
service level
agreements,
SLA
management,
automation

In order to automate SLA management it is essential to specify
SLAs in precise and unambiguous manner as well as keep the
specification flexible. While precision will help automate the
process of monitoring and metric collection, flexibility will enable
extending it to unforeseen service level agreement specifications.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2002

 Towards Automated SLA Management for Web Services

Keywords: web services, service level agreements, SLA management, and automation.

Abstract: In order to automate SLA management it is essential to specify SLAs in precise and unambiguous manner as
well as keep the specification flexible. While precision will help automate the process of monitoring and metric collection,
flexibility will enable extending it to unforeseen service level agreement specifications.

1 Introduction
Recent spurt in growth of e-commerce on Internet has led to conceptualization of web services.
Increasingly businesses on the web are being turned into services that are accessible over the web. A
web service is a service available via the Internet that completes tasks, solves problems, or conducts
transactions. A web service drives new revenue streams or creates new efficiencies in the Internet
economy. These services can be distinguished by the following characteristics:

• They are accessible on the web at a particular Uniform Resource Locator.
• They are composable in nature. A web service may depend on other web services. This

composition may be static (at creation time) or dynamic (at run time).
• They are federated in nature. These web services would interact across enterprise boundaries.
• Their implementations are often different. They could be J2EE [11], .Net based [12].
• They agree upon document exchange protocols and web service language standards to

communicate and interoperate with each other, like UDDI, XML, WSDL[14], SOAP.

If cross-enterprise dynamic composition of web services were to become a reality, a number of
fundamental issues need to be addressed beyond agreement on document exchange formats. Some of
these issues are (a) How will web services agree on what will be executed by each of the participants?
(b) How will web services agree upon how well (performance, quality, etc) each of them will execute?
(c) Who will be responsible for the overall execution or completion? (d) Who will be responsible if
there is a failure in the overall execution or completion? (e) How will web services trust each other?
Service level agreements (SLAs) are the corner stone for addressing these issues in web services. A
service level agreement is an agreement between two web services regarding the guarantees that one of
the web services (provider) offers to the other (consumer). The guarantees are about what transactions
need to be executed and how well they should be executed. SLAs help in dividing up the
responsibilities and risks among web services, thereby bringing more order to web services.

Akhil Sahai, Anna Durante, Vijay Machiraju
HP Laboratories, 1501 Page Mill Road, Palo-Alto, CA 94034

{asahai, annad,vijaym}@hpl.hp.com

 - 2 -

In a real-world scenario each web service interacts with many other web services, switching between
the roles of being a provider in some interactions and consumer in others. Each of these interactions
could potentially be governed by an SLA. Considering the number of interactions that a web service
typically executes for completing one transaction, and the number of transactions that are executed
within a day, the job of manually keeping track of which SLAs are violated, why they are violated, and
how many times they are violated becomes an overwhelming task. Further, considering the legal and
monetary implications in violating SLAs, it is in the best interest of a web service to predict and correct
violations before they occur. On the other hand, if there is too much leeway in the specification of
SLAs, a web service may not be able to fully capitalize on its capabilities.

Web services SLA management refers to automatic monitoring, enforcement, and optimization of
SLAs between web services. One of the enablers for automated SLA management is a flexible but
precise formalization of what an SLA is. The flexibility is needed since we neither completely
understand nor can anticipate all possible SLAs for all the different types of web service providers.
This will also help create a generic SLA management system for managing a range of different SLAs.
The precision is essential so that an SLA management system can unambiguously interpret, monitor,
enforce, and optimize SLAs.

In this paper, we discuss an SLA formalization that is flexible and precise. We expect this
formalization will help us in creating an automated SLA management system (which is currently being
worked on). The rest of this paper is organized as follows: Section 2 describes the state of the art in
SLA specifications. In section 3, we explain the causes for ambiguity in SLAs with examples. This
motivates our SLA formalization as explained in section 4. Section 5 describes three common SLAs
that are useful for web services – performance, availability, and cost. We summarize our conclusions in
section 6.

2 Background and Related Work
An SLA is typically signed between two parties, which have the role of provider and consumer
respectively. A typical SLA [16] has the following components:

Purpose – describing the reasons behind the creation of the SLA

Parties – describes the parties involved in the SLA and their respective roles.

Validity Period- defines the period of time that the SLA will cover. This is delimited by start
time and end time of the term.

Scope - defines the services covered in the agreement.

Restrictions - defines the necessary steps to be taken in order for the requested service levels to be
provided.
Service-level objectives - are the levels of service that both the users and the service providers agree
on, and usually include a set of service level indicators, like availability, performance and reliability. Each
aspect of the service level, such as availability, will have a target level to achieve. Service Level
objectives have day-time constraints associated with them, which delineate their validity.

 - 3 -

Service-level indicators - the means by which these levels can be measured. Service Level
Indicators (SLI) are the base level indicators. SLIs (that are relevant for web services) are
mentioned in appendix A.

Penalties- spells out what happens in case the service provider under-performs and is unable
to meet the objectives in the SLA. If the agreement is with an external service provider, the
option of terminating the contract in light of unacceptable service levels should be built in.

Optional services - provides for any services that are not normally required by the user, but
might be required as an exception.

 Exclusions - specifies what is not covered in the SLA.

Administration - describes the processes created in the SLA to meet and measure its
objectives and defines organizational responsibility for overseeing each of those processes

SLA specification has been researched earlier. Quality management Language (QML) [2] has been
proposed for specifying Quality of Service for applications. In QML contracts are instances of
contract types. A contract type defines the structure of its instances. In general a contract contains a
list of constraints. A constraint consists of a name, an operator and a value. The name refers to a
dimension and can also refer to a dimension aspect. A dimension aspect can be a percentile, mean,
variance, and frequency. Usually SLAs have validity periods (start and end dates) and have SLOs that
in turn have daytime constraints (e.g. an SLO may be valid only from Mon-Wed, between 6:00 PM-
8:00 PM). It is quite essential to capture this kind of information in the contracts. This kind of
information is however not captured in QML. In addition there should be a possibility of specifying a
wide range of mathematical operations on the measured data. An example would be to guarantee
response time of 5 longest running transactions in last 24 hours < 25ms. As it does not fall in the allowed
dimension aspects it would not be possible to capture this in QML.

Bhoj et al. [3] describe a contract to be defined by a triple (P,M,A), where P is a set of properties, A is
the set of assertions and M is the set of methods available on the contract. An assertion is an atomic
group of statements agreed upon between the parties agreeing to the contract. Statements in an
assertion are made up of logical predicates whose values can be uniquely determined. The logical
predicates are composed using variables as well as logical operators, quantifiers, set operations and
constraints on these variables. An example assertion may be response time < 25 ms. We believe however,
that assertions have to be unambiguously specified, and the web services being autonomous should
not need human intervention to understand the meaning of SLAs, and to monitor and measure their
compliance. Also the web services will sign numerous SLAs with multiple parties over time and the
SLA management process should be automated as much as possible. An assertion as mentioned above
is quite ambiguous. This could mean an instance response time or average response time. Again if it is
average response time that is being referred to, is it averaged over every 5 minutes, an hour or 24
hours? It is also necessary to indicate when the averages are calculated. Is it at 6PM everyday? Or at
any time? The assertions thus have to be quite unambiguous. Also the assertions have to be captured
in such a way that their meaning is clear to web services software that handle them, even if they are
implicitly understood by humans. It is also necessary to identify components in assertions that are
common across SLAs so that base modules can be identified and SLA management can be automated.

 - 4 -

3 Rethinking SLA Specification
3.1 Precision
To understand the notion of precision in SLAs, consider the following example. Imagine a web service
for ordering supplies on the Internet. Assume that “order-supplies” is an operation supported by this
web service. In order to execute this operation, a client should send a “purchase-order” document and
should obtain a “confirmation” document in response. Now, consider the following guarantee by the
supplier:

95% of the time, the time for executing “order-supplies” will be less than 20 seconds.

While this may seem like a reasonable specification that can be automatically managed on the first
look, there are several ways to interpret this:

a. When? When should a web service check for the compliance of this SLA? Here are some
examples when the evaluation of this SLA can be triggered: (i) whenever a new “order-
supplies” execution is completed, (ii) after every 10 “order-supplies” executions, (iii) at the end
of the day, or (iv) just before the termination of the SLA. It is trivial to note that if this
guarantee holds true in one of these cases, it does not necessarily hold in the rest.

b. Which? Which inputs should be considered in evaluating the SLA? In order to check whether
the above guarantee is upheld or not, one can consider (i) all executions of “order-supplies”
since the formation of the SLA, (ii) all executions of “order-supplies” since the beginning of
that day, (iii) all executions of “order-supplies” no matter who the client is, (iv) all executions
of “order-supplies” initiated by the client with which the SLA is created, or (v) the last 100
executions of “order-supplies”, no matter when they happened.

c. Where? Where is the timing of the execution monitored? It can either be monitored at the
client issuing the request or at the service provider handling the request. Usually, clients are
interested in SLAs that give guarantees from their perspective as opposed to the service
provider’s perspective. On the other hand, it is quite hard for the service provider to make
client-side guarantees since that could be influenced by factors that are outside the control of
the service provider (e.g., the documents between the client and service provider often flow
through other service providers such as ISPs).

d. What and How? In the above example, the metric of interest is the response time from the
when the purchase-order is sent out to when a confirmation is received. The guarantee is on
the 95th percentile. One way to interpret this is that out of every 100 executions, 95 will have a
response time of less than 20 s. Another way to interpret this is that 95 out of every 100
executions will have a mean response time of less than 20 s. Metrics that are not as well defined
as the typically well known metrics like availability, reliability, cost, and quality will further
complicate how an SLA should be evaluated.

For a system to automate the management of SLAs, all of the above ambiguities should be removed
from the SLA specification.

 - 5 -

3.2 Flexibility
There are many kinds of interactions between consumers and providers of web services – single
request-reply interaction, multiple back-and-forth messages, short-lived interactions, or interactions
that last for several hours or days. Web services themselves are quite diverse. The metrics that are of
interest in an SLA are, many times, quite specific to the web service. For example, a bookseller would
like to provide a guarantee on the number of days it takes to deliver a book. A credit card
authorization service provider would like to provide a guarantee on the security of the transmitted
information. The vast diversity in the kinds of interactions as well as metrics that are of interest
necessitates the need for a flexible SLA formalization. One should be able to build an automated SLA
management system (or at least a framework for SLA management) using the flexible formalization.

Emerging standards such as Web Services Definition Language (WSDL) [14] and Web Service Flow
Language (WSFL) [15] are creating flexible and generic interaction models for web services. For
example, WSDL introduces concepts such as messages, operations, ports, and end points – which are
useful for describing the operations of any web service. Similarly, WSFL introduces the notion of
activities and flows – which are useful for describing both local business process flows and global flow
of messages between multiple web services. So, one way to create a flexible SLA formalization is to
build upon these concepts. In other words, one can create a flexible SLA formalization by associating
“quality metrics” to the formalizations that are already defined in WSDL and WSFL. Here are some
examples that show how such association can be done.

• Response time of a web service operation.
• Response time of a flow.
• Security of an operation.
• Number of times an activity is executed in a flow.
• Cost of executing an operation.
• Availability of an end point.

Another way to guarantee flexibility is to identify generic components in typical SLA specifications,
which in turn are extensible so that new components can be defined by extending these base
components.

4 SLA specification
An SLA typically has a date constraint (start date, end date, nextevaldate) and a set of Service Level
Objective (SLO). An SLO in turn has typically a day–time (Mo-We, 6:00PM-8:00 PM) constraint and
a set of clauses that make up the SLO. A clause is based on measured data. This is referred to as a
measuredItem. A measuredItem can contain one or more items. A measuredAt element relates to the
“where” part of the specification, referring to the side the measurements are taken (provider or
consumer). A clause evaluation is done either when an event happens, e.g. say a message arrives, an
operation completes or at a fixed time, say at 6PM. We call this an evalWhen component. This refers to
the “When” component of the specification. Once the evalWhen trigger arrives, a set of samples of
measuredItem are obtained applying a sampling function. The evalOn component determines the set
of samples over which a condition is applied. The sample set is a constrained set of measured data that
is obtained by applying the evalOn component. Examples of evalOn components may be a number or

 - 6 -

a time period, e.g. the 5 longest running transactions, or all the samples for last 24 hours. The evalOn
component refers to the “which” part of the specification. A condition is thereafter applied on the
sample set so obtained. This component is the actual evalFunc which is applied on the sample set so
obtained from the evalOn component. An example of evalFunc would be average response time
function < 5 ms. The evalFunc must be a mathematical function that is expressible in terms of its
inputs and logic. The evalFunc refers to the “What” and “How” part of the specification. A sample
clause like At 6 PM the Average response time for the 5 longest running bookbuy transactions measured on the client
side should be < 5 ms can be broken up into a measuredItem (item:bookbuy transaction
measuredAt:consumer), evalWhen(at 6PM), evalOn function(set of 5 longest running transactions) and
the evalFunc (average response time < 5 ms). The evalAction could be notification to the
administrator in this case.

An SLA specification thus must contain components as described in section 2. These are also
mentioned in Appendix B as a part of the full SLA specification. Here we will bring out the essential
components of the SLA specification.

<xsd:schema xmlns:xsd=http://www.w3.org/2001/XMLSchema”
xmlns:wsdl= http://schemas/xmlsoap.org/wsdl/
xmlns:wsfl = http://schemas/xmlsoap.org/wsfl/
xmlns:wsml= http://schemas/hp.com/wsml/>

<xsd:element name="SLA" type="SLAtype" minOccurs = “1” maxOccurs = “unbounded”>

<xs:complexType name=”SLAtype”/>
<attribute name="name" type="NCName" use="required"/>
<attribute name="SLAId" type="xsd:integer" use="optional"/>
<xsd:sequence>

<xsd:element name=”startDate” type=”xsd:date” />
<xsd:element name=”endDate” type=”xsd:date” />

SLA = Dateconstraint Parties SLO*

Dateconstraint = Startdate Enddate Nextevaldate

SLO = Daytimeconstraint Clause*

Dateconstraint = Day* Time*

Clause = MeasuredItem EvalWhen EvalOn EvalFunc EvalAction

MeasuredItem = Item*

Item = MeasuredAt ConstructType ConstructRef

http://www.w3.org/2001/XMLSchema
http://schemas/xmlsoap.org/wsdl/
http://schemas/xmlsoap.org/wsfl/
http://schemas/hp.com/wsml/

 - 7 -

<xsd:element name=”nextEvalDate” type=”xsd:date” />
<xsd:element name=”provider” type=”xsd:String” />
<xsd:element name=”consumer” type=”xsd:String” />
<xsd:element name=”SLO” type=”SLOType” minOccurs =”1”

maxOccurs=”unbounded” />
<xsd:sequence>

</xsd:complexType>

An SLA specification essentially consists of a set of service level objectives that have to be achieved.

4.1 SLO Schema
The Service Level Objective provides the specifics of how a service provider will perform. For the
purpose of the SLO Schema, the SLO is broken down into two items: a time constraint and one or
more clauses.

<xsd:complexType name=”SLOtype”/>
<attribute name="id" type="xsd:ID" use="required"/>
<xsd:sequence>

<xsd:element name=”timeConstraint” type=”timeConstraintType” />
<xsd:element name=”clause” type=”clauseType” minOccurs =”1”

maxOccurs=”unbounded”/>
<xsd:sequence>

</xsd:complexType>

4.1.1 SLO Time Constraint

The time constraint essentially describes the days and times during the week when an SLO will be in
effect. This can be a single day or a set of days. When there is more than one day defined, it is
assumed that the SLO is defined as space delimited list of days (i.e. Mo Tu We). It also has time
description for specifying fixed times of day when the SLA will be effective (e.g. 6PM –8PM).

<xsd:complexType name=”timeConstraintType”/>
<attribute name="id" type="xsd:ID" use="required"/>
<xsd:all>

<element name="daytimeConstraints" type="daytimeConstraintsType"/>
</xsd:all>

</xsd:complexType>

<xs:complexType name=”daytimeConstraintType”/>
<xs:sequence>
<xsd:simpleType name=”day”>
<xsd:list itemType=”dayType”>
<xsd:restriction>
<xsd:minLength value = 1>
<xsd:maxLength value = 7>
</xsd:restriction>
</xsd:simpleType>
<xsd:element name=”startTime” type=”xs:time” />
<xsd:element name=”endTime” type=”xs:time” />

 - 8 -

<xsd:sequence>
</xsd:complexType>

<xsd:simpleType name = ”dayType”>
<xsd:restriction base="xsd:NMTOKEN">
<xsd:enumeration value="Mo"/>
<xsd:enumeration value="Tu"/>
<xsd:enumeration value="We"/>
<xsd:enumeration value="Th"/>
<xsd:enumeration value="Fr"/>
<xsd:enumeration value = “Sa” />
<xsd:enumeration value = “Su” />
</xsd:restriction>
</xsd:simpleType>

4.1.2 SLO Clause

The clause provides the exact details on the expected performance. Five descriptors are used to
capture these details namely measuredItem, evalWhen, evalOn, evalFunction, evalAction.

<xsd:complexType name=”clauseType”/>
<attribute name="id" type="xsd:ID" use="required"/>
<xsd:sequence>

<xsd:element name=”measuredItem” type=”measuredItemType”
minOccurs="1" maxOccurs="1"/>

<xsd:element name=”evalWhen” type=”evalWhenType”
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name=”evalOn” type=”evalOnType”
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name=”evalFunc” type=”evalFunctionType”
minOccurs="1" maxOccurs="1"/>

<xsd:element name=”evalAction” type=”evalActionType”
minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
</xsd:complexType

The measuredItem gives a precise definition of what is being measured. The execution of an SLO is not
always a single process, where the measurement is applied to every measuredItem. In some cases,
measurements are applied across a set of measuredItems (e.g. over a set of operations). For SLA's that are
based on WSDL and WSFL, the measuredItem may indicate which messages, operations, ports, activities
or flows that are being measured.

The evalWhen element specifies the instant of evaluation of the SLA. An SLA evaluation can happen
at a point of time say 6 PM everyday or it can happen when an event occurs, e.g. an operation or an
activity completes.

Once the SLA evaluation is planned, it is necessary to obtain a set of data over which the evaluation
takes place. This is described by the evalOn element . The evalOn element can refer to a set of samples,
(e.g. over all instances in last 24 hours) or to a selected set sampled out of the available data (5 longest
running transactions).

 - 9 -

The evalFunc refers to the actual function that is applied on the set of data obtained by applying the
evalOn component. The evalFunc component can be a function to ensure that the “average response
time < 5 ms”.

The evalAction refers to the action that needs to be activated. It could refer to a method call or a
message exchange or any other type of action.

In order to ensure flexibility and extensibility each of the clause components are described in such a
manner that they can be extended to express unforeseen service level specifications.

4.1.2.1 MeasuredItem

It is important to note that a measuredItem may be a collection of items. This enables the same
measurement to be applied across one or more monitored items. For example, it allows a customer to
specify a response time of 5 seconds across ALL of the service provider's operations. Additionally, it
allows parts of a flowModel to be measured so that a subset of a flow (or set of activities) can be
monitored.

<xsd:complexType name=”measuredItemType”>
<attribute name="id" type="xsd:ID" use="required" default="NoName"/>
<xsd:sequence>
<xsd:element name=”item” type=”itemType” minOccurs = 1 maxOccurs =
“unbounded”/>
<xsd:sequence>
</xsd:complexType>

<xsd:complexType name=”itemType”/>
<xsd:sequence>
<xsd:element name=”measuredAt” type=”xsd:uri” minOccurrs = 0 maxOccurs =1/>
<xsd:element name=”constructType” type=”Name” />
<xsd:element name =”constructRef” type =”xsd:uri” />
<xsd:sequence>
</xsd:complexType>

The measuredAt element is required to clearly define where the measurements are being undertaken so
that the SLA management engine can operate on the right set of management data. This could be a
http URL , or a TCP address.

4.1.2.2 EvalFunc

An evalFunc when applied to a set of data always evaluates to a Boolean, i.e. The condition expressed
through the evalFunction results in either TRUE or FALSE. For example, responseTime of a
buyBook transaction < 5s will yield either TRUE or FALSE when evaluated on a particular buyBook
transaction instance. A set of evaluation functions and corresponding terms will be defined in WSML
(Web Services Management Language) namespace. The mathematical functions will be expressed
using XML based languages to express mathematical logic, e.g. MathML[13]. As arbitrary evalFunc
functions (in fact any function that is expressible in a mathematical logic that operates over a pool of
data samples) can be described and used at will, this enables definition of a wide range of such
functions ranging from simple to complex. This also enables the possibility of definition of evalFuncs

 - 10 -

in future that would be required in unforeseen service level specifications. This makes the SLA
specification process flexible.

<xsd:complexType name=”evalFunctType” abstract="true"/>
<attribute name="id " type="xsd:ID" use="optional"/>

</xsd:complexType>

A few examples of these types of extensions are provided below. In addition, a library of the basic
evalFunc measurement extensions may be defined that will be used by web services dynamically to
define their typical service level agreements. Extensions for availability and response time (that would
form part of the web service management language (WSML) namespace1 are defined below,

<xsd:complexType name="evalFuncPercentageAvailabilityType"/>
<extension base="evalFuncType">
<documentation xml:lang="en">
“This function evaluates the availability of a measuredItem. If the
Availability percentage meets the specified value it returns true else
False”
</documentation>
<xsd:attribute name=”percentage” type=”xsd:int” />
</extension>
</xsd:complexType>

<xsd:complexType name="evalFuncResponseTimeType"/>
<extension base="evalFuncType">
<documentation xml:lang="en">
The response time function calculates the time a system takes to react to a
given input. It then compares the response time to a threshold value.
The evaluation of the threshold is based on the type of operator. The function
evaluates to "true" if it met the threshold requirements and "false" if it did
not".
</documentation>
<sequence>
<xsd:attribute name=”operator” type=”wsml:operatorType” />
<xsd:attribute name=”threshold” type=”xsd:duration”/>
</sequence>
</extension>
</xsd:complexType>

<xsd:complexType name="evalFuncResponseTimeOf5sType"/>
<extension base="wsml:evalFuncResponseTime ">
<documentation xml:lang="en">
The responseTimeof5Sfunc checks to see if the response time was less than 5
seconds.
</documentation>
<sequence>
<xsd:attribute name=”operator” type=”wsml:operatorType” default =”LT”>
<xsd:restriction base=”wsml:operatorType”>

<xsd:enumeration value=”LT”>

1 WSML namespace is partially defined in appendix C

 - 11 -

</xsd:restriction>
</xsd:attribute>

<xsd:attribute name=”threshold” default=”P5S”>
<xsd:restriction base=”xsd:duration”>
<xsd:enumeration value=”P5S”>
</xsd:restriction>
</xsd:attribute>

</extension>
</xsd:complexType>

4.1.2.3 EvalOn

The evalOn function is used for determining the samples over which the evalFunc is evaluated. The
samples could be the longest lasting transactions, first 5 samples over an hour or the last 5 samples
over an hour. If EvalOn is not provided, it is assumed that the evalFunction will be evaluated on each
instance.

<xsd:complexType name=”evalOnType” abstract="true"/>
<attribute name="id" type="xsd:ID" use="optional" default="NoName"/>

</xsd:complexType>

Similar to evalFunc, the abstract evalOnType must be extended in order to provide meaning. The
following are some examples of extension.

<xsd:complexType name=”evalOnLastNtimePeriodsType” abstract="true"/>
<extension base="evalOnType">
<documentation>
Applies the evalFunc on the last N number of time periods (e.g. measured items
gathered over the last 5 hours)
</documentation>
<xsd:attribute name=”number” type=”xsd:int” minOccurs="1" maxOccurs="1"/>
<xsd:attribute name=”timePeriod” type=”xsd:duration”
minOccurs="1" maxOccurs="1"/>
</extension>
</xsd:complexType>

<xsd:complexType name=”evalOnLastNItemsType” abstract="true"/>
<extension base="evalOnType">
<documentation> Applies the evalFunc on the last N items
</documentation>
<xsd:attribute name=”number” type=”xsd:int” minOccurs="1" maxOccurs="1"/>
</extension>
</xsd:complexType>

<xsd:complexType name="evalOnLastNhoursType"/>
<extension base="evalOnLastNtimePeriodsType"/>
<documentation> Applies the evalFunc on the measured items collected over the
past N hours.
</documentation>
<xsd:attribute name=”timePeriod” default=”P1H”>
<xsd:restriction base=”xsd:duration”>
<xsd:enumeration value=”P1H”>
</xsd:restriction>
</xsd:attribute>

 - 12 -

</extension>
</xsd:complexType>

<xsd:complexType name="evalOnLast5hoursType"/>
<extension base="evalOnLastNtimePeriodsType"/>
<documentation>
Applies the evalFunc on the measured items collected over the past 5 hours.
</documentation>

<xsd:attribute name=”number” default=”5”>
<xsd:restriction base=”xsd:int”>
<xsd:enumeration value=”5”>
</xsd:restriction>
</xsd:attribute>

<xsd:attribute name=”timePeriod” default=”P1H”>
<xsd:restriction base=”wsml:duration”>
<xsd:enumeration value=”P1H”>
</xsd:restriction>
</xsd:attribute>

</extension>
</xsd:complexType>

4.1.2.4 EvalWhen

The evalWhen element describes when the evaluation of the SLO happens. Examples of the evalWhen
can be an instant of time at which the SLO is evaluated, say at 6 PM or when an attribute of
measuredItem data changes, say an activity completion will change its status to completed. An absence
of evalWhen element means the SLO is evaluated everytime an instance of management data is
generated.

<xsd:complexType name=”evalWhenType”/>
<attribute name="id" type="xsd:ID" use="required"/>
</xsd:complexType>

The following are three basic extensions to the evalWhenType:

<xsd:complexType name="evalWhenTimeOccursType" abstract="true"/>
<extension base="evalWhenType/>
<documentation>Execute the evalFunc when a specific time occurs (e.g. at 6pm).
</documentation>
<xsd:element name=”time” type=”xsd:time” minOccurs = 1 maxOccurs = “1”/>
</extension>
</xsd:complexType>

<xsd:complexType name="evalWhenTimePeriodOccursType" abstract="true"/>
<extension base="evalWhenType/>
<documentation>Execute the evalFunc when a specific time period has passed
(e.g. evaluate every 24 hours)
</documentation>
<xsd:element name=”timePeriod” type=”xsd:duration” minOccurs = 1 maxOccurs
= “1”/>
</extension>

 - 13 -

</xsd:complexType>

<xsd:complexType name="evalWhenEventOccursType" abstract="true"/>
<extension base="evalWhenType/>
<documentation>Execute the evalFunc when a specific event has occurred (e.g.
message is received).
</documentation>
<xsd:element name=”measuredItemAttribute”
type=”measuredItemAttributeType ” minOccurs = 1 maxOccurs = “1”/>
</extension>
</xsd:complexType>

<xsd:complexType name=”measuredItemAttributeType”/>
<attribute name="id" type="xsd:ID" use="optional"/>
<attribute name=”ref” type =”xsd:uri” minOccurs =”0” maxOccurs = “1”
use=”required”/>
<attribute name=”value” type =”xsd:string” minOccurs =”0” maxOccurs = “1” use
=”required”/>
</xsd:complexType>

Below is an example of an evalWhen instance that leverages one of the above extensions:

<evalWhenTimeOccurs time=”6pm”>
<documentation>Evaluate evalFunc at 6pm
</documentation>

</evalWhenTimeOccurs>

4.1.2.5 Examples

The SLO Clause is clearly the most complex part of the SLA. For this reason, we provide this section
to illustrate how a number of the traditional service level objectives would be specified using the
schema defined above.

All examples will use the same measuredItem and evalFunctionType. The measuredItem used in the
examples is referred to as the stationaryPurchase. It can be defined in two different ways as follows:

<xsd:element name=”stationaryPurchase” type =”stationaryPurchaseMIType”>

<xsd:complexType name =”stationaryPurchaseMIType”>
<attribute name="id" type="xsd:ID" use="required" use=”optional”/>
<xsd:restriction base=”measuredItemType”>
<xsd:element name=”item” type=”stationaryItemType” minOccurs = 1
maxOccurs = “1”/>
</xsd:restriction>
</xsd:complexType>

<xsd:complexType name=”stationaryItemType”/>
<xsd:restriction base=”itemType”>
<xsd:sequence>
<xsd:element name=”constructType” type=”wsfl:flowModel”/>
<xsd:element name =”constructRef” type=”xsd:uri” default=
“www.stationary.com/flowModel”>

 - 14 -

</xsd:sequence>
</xsd:restriction>
</xsd:complexType>

OR

<measuredItem id = “stationaryPurchase”>
<item>
<constructType>flowModel</constructType>
<constructRef>www.stationary.com/flowModel</constructRef>
</item>
</measuredItem>

The evalFunc used is the avgResponseTimeOf5S in all the following examples. Few examples of some
commonplace clauses are explained as follows:

1. Average Response time for every stationary purchase transaction should be less than
5s.

This clause can be specified in the following manner:

<clause id="avgRTforEachTransaction"
<measuredItem idref = “stationaryPurchase” >
<evalFuncResponseTime idref = “avgResponseTimeOf5S”>

</clause>

or

<clause id = "avgRTforEachTransaction">
<stationaryPurchase></stationaryPurchase>
<avgResponseTimeOf5s></avgResponseTimeOf5s>

</clause>

Note: Since this measurement is applied to every instance, there is no EvalWhen or EvalOn
components in the specification. No EvalAction is specified.

2. Average response time of last 5 transactions at any given instance of time should be
less than 5 seconds.

<clause id="AvgRTofLast5Transactions"
<measuredItem idref = “stationaryPurchase” >
<evalFuncResponseTime idref = “avgResponseTimeOf5S”>
<evalOnLastNitems N = “5”>

</clause>

or

<clause id="AvgRTofLast5Transactions"
<stationeryPurchase></stationaryPurchase>
<avgResponseTimeOf5s></avgResponseTimeOf5s>

 - 15 -

<evalOnLast5Items> </evalOnLast5Items>
</clause>

Note: EvalWhen is "per instance" which is default.

3. Average response time of all transactions thus far is less than 5 seconds.

<clause name="AvgRTofAllTransactions"
<stationeryPurchase></stationaryPurchase>
<avgResponseTimeOf5s></avgResponseTimeOf5s>

</clause>

Note: EvalWhen and EvalOn are default. No EvalAction.

4. Average response time of all transactions in the last 2 minutes at any given time thus
far is less than 5 seconds.

<clause name="AvgRTofTransactionsEvery2min"
<stationeryPurchase></stationaryPurchase>
<avgResponseTimeOf5s></avgResponseTimeOf5s>
<evalOnLastNtimePeriods number =”2” timePeriod =”P1M” >

</evalOnLastNtimePeriods>
</clause>

Note: EvalWhen is default because it is on every instance. No EvalAction is
specified.

5. Average response time of 5 longest-lasting transactions in the last 24 hours should be
less than 5 seconds.

<clause name="AvgRTofLast5LongestTransIn24Hrs"
<stationeryPurchase></stationaryPurchase>
<avgResponseTimeOf5s></avgResponseTimeOf5s>
<evalOnLastNtimePeriods number =”24” timeperiod =”P1H”>
</evalOnLastNtimePeriods>
<evalOnNlongestTransactions number = “5”>
</evalOnNlongestTransactions>
</clause>

Note: EvalWhen is "per instance". At any given instance, we should be able
to look at the 5 longest-lasting transactions over a period of 24 hours.

 - 16 -

6. Average response time of all transactions, averaged at the end of the day, should be
less than 5 seconds.

<clause name="AvgDailyResponseTime"
<stationeryPurchase></stationaryPurchase>
<avgResponseTimeOf5s></avgResponseTimeOf5s>
<evalOnLastNtimePeriods number =”24” timeperiod =”P1H” >
</evalOnLastNtimePeriods>
<evalWhenTimeOccurs time =”11:59PM”>
</evalWhenTimeOccurs>
</clause>

Note: The evaluation is specifically done at the end of the day. EvalWhen
indicates when the measurement should be taken.

7. Average response time of all transactions in the last 10 minutes averaged at 5 minute
intervals, should be less than 5 seconds.

<clause name="AvgRTOver10minutes"

<stationeryPurchase></stationaryPurchase>
<avgResponseTimeOf5s></avgResponseTimeOf5s>
<evalOnLastNtimePeriods number =”10” timeperiod =”P1M” >
</evalOnLastNtimePeriods>
<evalWhenTimePeriodOccurs timeperiod =”P5M”>
</evalWhenTimePeriodOccurs>
</clause>

5 Specifying SLA for Web Services: An Example
The following is an example of an SLA that is based on a web service’s WSDL and WSFL
descriptions. It focuses on the relationship between an office supplies broker and one if its suppliers.
The WSDL and WSFL for these services are kept simple, so that the focus is placed on the supporting
SLAs.

Diagram 1 gives an overview of the flow between the service provider (stationery.com) and the
customer (officesupplies.com).

OfficeSupplies.com Stationery.com

Place
Order

Process
Estimate

Process
Order

Request

Estimates

Receive
Shipment

Confirmation
Send

Shipment
Confirmation

 - 17 -

OfficeSupplies.com has established a service level agreement with Stationery.com, based on the
WSDL and WSFL defined by these two services. The focus of this SLA is on four key performance
agreements:

1. Stationery.com will respond to estimate requests in less than 5 minutes.

2. Stationery.com will provide 100% availability to all “estimate” requests, Monday through
Friday.

3. Stationery.com will provide 90% availability to all “process order” requests, Monday
through Friday.

4. Stationery.com will process and ship orders in less than 24 hours of receiving the
“process order” request.

The WSDL and WSFL for these services are defined in Appendix D. Section 5.3 presents the SLA
between OfficeSupplies.com and Stationery.com, based on the constructs presented in this paper.

Assumptions:

• Process is significantly oversimplified in order to make example easy to follow.

• Port bindings are ignored in order to simplify the example.

All items are shipped at the same time. Realistically, back-ordered items would ship at a later date. For
the purpose of keeping this example simple, we require that all items ship at the same time. TheWSDL
and WSFL definitions are mentioned in Appendix C.

Service Level Agreement for web service OfficeSupplies.com

<?xml version="1.0"?>

targetNamespace =
http://www.OfficeSupplies.com/WebServices/Messages/SLA
xmlns:ssla="http://www.OfficeSupplies.com/WebServices/Messages/SLA"
xmlns:osn= http://www.officesupplies.com/WebServices/Messages/Procurement”

<import namespace=
"http://www.officesupplies.com/WebServices/Messages/Procurement"
location="http://www.officesupplies.com/WebServices/Messages/Procurement" />

<daytimeConstraint id="alldayConstraints">

 - 18 -

<day> MO Tu We Th Fr Sa Su </day>
<startTime>12AM</startTime>
<endTime>12 PM</endTime>
</daytimeConstraint>

<daytimeConstraint id="workdayConstraints">
<day> MO Tu We Th Fr </day>
<startTime>12AM</startTime>
<endTime>12 PM</endTime>
</daytimeConstraint>

<daytimeConstraint id="weekendConstraints">
<day>Sa Su</day>
<startTime>12AM</startTime>
<endTime> 12PM </endTime>
</daytimeConstraint>

<SLA id = “stationary.com/SLA1”>
<startDate>01-01-01</startDate>
<endDate>01-01-02</endDate>
<nextEvalDate>01-01-02</nextEvalDate>
<provider>Stationery.com</provider>
<consumer>OfficeSupplies.com</consumer>

<SLO id = “SLO1”>
<daytimeConstraint idref=”alldayConstraints”>
<clause id = ”SLO1Clause1”>
<measuredItem id =”estimateMeasuredItem”>
<item>
<constructType>wsdl:operation</constructType>
<constructRef>osn:processEstimate</constructRef>
</item>
</measuredItem>
<avgResponseTimeOf5s></avgResponseTimeOf5s>
</clause>
</SLO>

<SLO id = “SLO2”>
<daytimeConstraint idref=”workdayConstraints”>
<clause id = ”SLO2Clause1”>
<measuredItem idref =”estimateMeasuredItem”>
<evalFuncPercentageAvailabilty percentage= “100”>
</evalFuncPercentageAvailability>
</clause>
</SLO>

<SLO id = “SLO3”>
<daytimeConstraint idref=”workdayConstraints”>
<clause id = ”SLO3Clause1”>
<measuredItem id =”processOrderMeasuredItem”>
<item>
<constructType>wsdl:operation</constructType>
<constructRef>osn:processOrder</constructRef>
</item>
</measuredItem>

 - 19 -

<evalFuncPercentageAvailabilty percentage= “90”>
</evalFuncPercentageAvailability>
</SLO>

<SLO id = “SLO4”>
<daytimeConstraints idref=”alldayConstraints”>
<clause id =”SLO4Clause1”>
<measuredItem idref =”processOrderMeasuredItem”>
<evalFuncResponseTime operator =”LT” threshold=”P24H” >
</evalFuncResponseTime>
</clause>
</SLO>

6 Conclusion
We have identified the base components in typical SLA specifications, so as to define SLAs in a
precise manner. A clear enunciation of the base components of a typical SLA specification will help
automate their monitoring and compliance. We have also made sure that these base components are
flexible and extensible, so that unforeseen SLAs can be specified. The proposed specification has been
used to specify SLAs between typical web services defined in standard Web Service Languages.

Acknowledgements
We would like to thank Klaus Wurster and Aad van Moorsel for their feedback and inputs on this
paper.

References

1. Campbell A, Aurrecoechea C., Hauw L .QoS review Architectures, Proceedings of the 4th International Workshop on Quality of

Service (IWQoS), 1996

2. Svend Frolund, Jari Koistinen. Quality-of-Service Specification in Distributed Object Systems. HPL-98-159.

3. Bhoj P, Singhal S, Chutani S. SLA Management in Federated Environments. HPL-98-203

4. Dirk Thiβen and Helmut Neukirchen. Internet Trading and Load Balancing for Efficient Management of Services in Distributed
Systems. Third International IFIP/GI Working Conference, USM 2000. Munich, Germany, September 12-14, 2000. In Proceedings
Lecture Notes in Computer Science 1890 titled “Trends in Distributed Systems: Towards a Universal Service Market”.

5. Jerome Daniel, Bruno Traverson, and Sylvie Vignes. A QoS Meta Model to Define a Generic Environment for QoS Management.

Third International IFIP/GI Working Conference, USM 2000. Munich, Germany, September 12-14, 2000. In Proceedings Lecture
Notes in Computer Science 1890 titled “Trends in Distributed Systems: Towards a Universal Service Market”. Springer Verlag.

6. Long T P, Jong W B, Woon HJ. Management of service level agreements for multimedia Internet service using a utility model. IEEE

communications Managezine Vol 39, no.5, May 2001

7. Forbath T. Why and how of SLAs [service level agreements]. Business Communications Review, Vol 28. No. 2, Feb 1998

8. Chatterjee BS, Sydir M, Lawrence T. Taxonomy for QoS specifications. In the proceedings of WORDS’97, February, 1997

9. Lewis L, Ray P. Service Level Management: Definition, Architecture, and Research Challenges. In the proceedings of IEEE
GlobeCom’99.

10. Katcgabaw M, Lutfiyya H, and Bauer M. Driving Resource Management with Application-Level Quality of Service Specifications. In

the proceedings of ICE 98, USA.

11. Java 2 Enterprise Edition (J2EE) . http://java.sun.com/j2ee/

http://java.sun.com/j2ee/

 - 20 -

12. .Net at Microsoft http://www.microsoft.com/net/

13. Mathematical Markup Language (MathML) specification. http://www.w3.org/TR/REC-MathML/

14. Web Services Description Language (WSDL). http://www.w3.org/TR/wsdl

15. Web Services Flow Language (WSFL). www.ibm.com/software/webservices

16. R. Sturm, W. Morris, M. Jander. Foundations of Service Level Management. (SAMS, 4/00).

17. Tele Management Forum SLA Management Handbook. http://www.tmfcentral.com/kc/repository/documents/GB917v1.5.pdf.
GB917, public evaluation version 1.5, June 2001.

http://www.microsoft.com/net/
http://www.w3.org/TR/REC-MathML/
http://www.w3.org/TR/wsdl
http://www.ibm.com/software/webservices
http://www.tmfcentral.com/kc/repository/documents/GB917v1.5.pdf

 - 21 -

Appendix A Service Level Indicators

Metrics Definition Applicable for following
web service constructs

 Target specification

 Availability Availability of an entity minus the
impact time from any events (scheduled
or unexpected) other than loss of
network or system availability

Port
Port Type
ServiceProvider
Endpoint
Flow

Expressed as percentage or in time

Response Time The time taken for an entity to
complete a client request and
return a response

Operation
Activity
Flow

normally specified as service to complete
X% of transactions of type Y to be
completed within Z seconds

Throughput

Number in unit of time Operation
Activity
Flow
Endpoint
Port

Expressed as tps

Security

The security at different levels need to
be agreed upon in the SLAs

Service Provider
Port
Operations
Activity
Flow
Endpoint

Level supported
1. High
2. Medium
3. None

Payment Rate

Rate at which the service/transactions
are charged

Operations
Activity
Port
Service Provider
Endpoint
Flow

The payment rate can be a subscription
based model or can be expressed per
transaction type or instance level.

Problem Response

The time required for a client to receive
a response after reporting a problem

Service Provider
Port
Endpoint

1-High Priority[md]
expressed in target time
2-Medium Priority[md]
expressed in target time
3-Low Priority[md]
expressed in target time

Problem Circumvention or Resolution
Time

The time required for a client to receive
a circumvention or a solution after
reporting a problem

Service Provider
Port
EndPoint

Expressed as times for various categories
of problems. High category problems
have to be resolved faster than low
category problems.

Repeat Trouble Rate Number of times the trouble is
repeated before it is escalated.

Service Provider
Port
Endpoint

This is usually expressed as a rate

Account set up time Time taken to create and set up new
accounts on the system

Service Provider
EndPoint
Port

Expressed as unit of time

 - 22 -

Appendix B: Web Service SLA template

The schema for the web service template SLA can be described as follows:
<xsd:schema xmlns:xsd=http://www.w3.org/2001/XMLSchema>
<xsd:annotation>
<xsd:documentation xml:lang ="en">

SLA template schema for web services
</xsd:documentation>
</xsd:annotation>

<xsd:element name="purpose" type="xsd:string" />
<xsd:element name="parties" type="partyType" />
<xsd:element name= "validityPeriod" type= "xsd:decimal" />
<xsd:element name = "scope" type="scopeType"/>
<xsd:element name = "restrictions" type="restrictionsType"/>
<xsd:element name = "penalties" type="penaltiesType"/>
<xsd:element name = "optionalServices" type="optionalServicesType"/>
<xsd:element name = "exclusions" type="exclusionsType"/>
<xsd:element name = "administration" type="adminType"/>
<xsd:element name = "SLO" type="SLOType" minOccurs = “1” maxOccurs =
“unbounded”/>

<xsd:complexType name ="scopeType">
<xsd:sequence>
<xsd:element name ="scopedesc" type = "xsd:string" minOccurs ="1" />
<xsd:element name ="servicehours" type = "xsd:string" minOccurs ="1" />
<xsd:element name ="responsibilities" type = "xsd:string" minOccurs ="1" />
<xsd:element name ="supportHours" type = "xsd:string" minOccurs ="1" />
</xsd:sequence>
</xsd:complexType>

.

.

.
</xsd:schema>

http://www.w3.org/2001/XMLSchema

 - 23 -

Appendix C: Web Services Management Language NameSpace Definitions

<xsd:schema xmlns:xsd=http://www.w3.org/2001/XMLSchema”
xmlns:wsdl= http://schemas/xmlsoap.org/wsdl/
xmlns:wsfl = http://schemas/xmlsoap.org/wsfl/
targetNameSpace= http://www.hp.com/wsml>

<xsd:complexType name="webServiceItemType">
<complexContent>
<xsd:extension base="itemType">
<xsd:sequence>
<xsd:restriction base ="constructType">
<xsd:enumeration value ="wsdl:message">
<xsd:enumeration value ="wsdl:portType">
<xsd:enumeration value ="wsdl:port">
<xsd:enumeration value ="wsdl:binding">
<xsd:enumeration value ="wsdl:service">
<xsd:enumeration value ="wsfl:serviceProviderType">
<xsd:enumeration value ="wsfl:serviceProvider">
<xsd:enumeration value ="wsfl:flowModelType">
<xsd:enumeration value ="wsfl:flowModel">
<xsd:enumeration value ="wsfl:activityType">
<xsd:enumeration value ="wsfl:dataLinkType">
<xsd:enumeration value ="wsfl:controlLinkType">
<xsd:enumeration value ="wsfl:plugLinkType">
<xsd:enumeration value ="wsfl:globalModel">
<xsd:enumeration value="wsfl:globalModelType">
<xsd:enumeration value="wsfl:spawnResult">
</xsd:restriction>
<xsd:sequence>
</complexContent>
</xsd:complexType>

<xsd:element name=”operator” type =”operatorType”>
<xsd:element name=”timeThreshold” type =”timeThresholdType”>

<xsd:complexType name = ”operatorType”/>
<xsd:restriction base = ”xsd:NMTOKEN”>
<xsd:enumeration value = ”LT”/>
<xsd:enumeration value = ”GT“/>
<xsd:enumeration value = ”EQ“/>
<xsd:enumeration value = ”GE”/>
<xsd:enumeration value = ”LE"/>
<xsd:sequence>
</xsd:complexType>

<xsd:complexType name = “timeThresholdType”>
<attribute name = “number” type =”xsd:integer”>
<attribute name = “timeUnit” type = timeUnitType>
</xsd:complexType>

<xsd:complexType name = ”timeUnitType”/>

http://www.w3.org/2001/XMLSchema
http://schemas/xmlsoap.org/wsdl/
http://schemas/xmlsoap.org/wsfl/
http://www.hp.com/wsml

 - 24 -

<xsd:restriction base = ”xsd:NMTOKEN”>
<xsd:enumeration value = ”ms”/>
<xsd:enumeration value = ”s“/>
<xsd:enumeration value = ”min“/>
<xsd:enumeration value = ”hr“/>
<xsd:enumeration value = ”day”/>
<xsd:enumeration value = ”month”/>
<xsd:enumeration value = “year”/>
<xsd:sequence>
</xsd:complexType>

Appendix D: WSDL,WSFL definitions of the web service example

6.1 WSDL Definitions
The following diagram provides an overview of the ports that are externalized by the two flow models.
WSDL definitions of the ports and messages are provided below. Key terms are highlighted in bold.

Note that the element totalEstimate plays an important role in the overall flow. This element
carries a description of all ordered items, along with their estimated costs and the flowInstanceId
that is generated by the Stationery.com flow. In essence, it provides the unique identifier for the entire
transaction.

Return
Estimate Solicit

Estimate

OfficeSupplies.com Stationery.com

o

o

o

port: officeSuppliesSeller port: officeSuppliesPurchaser

p: requestEstimate
msg:requestEstimateOutput: allItems
msg:requestEstimateInput:
 totalEstimate

NAME SPACE DEFINED:

<?xml version="1.0"?>
<definitions name=“officesupplies“
targetNamespace=

"http://www.OfficeSupplies.com/WebServices/Messages/Proc
xmlns:osn=

http://www.OfficeSupplies.com/WebServices/Messages/Pr
xmlns="">

TYPES DEFINED:

<types>
<schema

xmlns= “http://www.w3.org/2000/10/XMLSchema”
targetNamespace =

"http://www.OfficeSupplies.com/WebServices/Messages/P

Send
Order

Complete
Order

Get

Shipment
Details

Notify
Shipment

p: placeOrder
msg:placeOrderOutput: totalEstimate

p: receiveShipmentConfirmation
msg:shipmentConfirmationMsg:
 confirmation
op: processEstimate
 msg:processEstimateInput: allItems
 msg:processEstimateOutput:
 totalEstimate
- 25 -

urement"

ocurement/

rocurement"

op: processOrder
 msg:processOrderInput:
 totalEstimate

op: sendShipmentConfirmation
 msg:shipmentConfirmationMsg:
 confirmation

http://www.officesupplies.com/WebServices/Messages/Procurement/

 - 26 -

xmlns:osn=
"http://www.OfficeSupplies.com/WebServices/Messages/Procurement">

<complexType name="item">
<all>

<element name="Manufacturer" type="string"/>
<element name="Product" type="string"/>
<element name="ModelNumber" type="string"/>
<element name="Color" type="string"/>

</all>
</complexType>

<element name="allItems" type="osn:item"
minOccurs="1" maxOccurs="unbounded"/>

<complexType="itemCost">
<all>

<element ref="osn:item"/>
<element name="cost" type="float"/>

</all>
</complexType>

<element name="allItemsAndCosts">
<complexType>

<all>
<element name="allItemCosts" type="osn:itemEstimate"

minOccurs="1" maxOccurs="unbounded"/>
<element name="total" type="float"/>

</all>
</complexType>

</element>

<element name="totalEstimate">
<complexType>

<all>
<element name="estimatedTotalCost" type="osn:allItemsAndCosts"/>
<element name="supplierFlowInstanceId" type="wsfl:FlowInstanceId"/>
<element name="estimatedShipmentDate" type="date"/>
<element name="estimatedShipmentTime" type="time"/>

</all>
</complexType>

</element>

<element name="order">
<complexType>

<all>
<element name="orderedItems" type="osn:allItems"/>
<element name="supplierFlowInstanceId" type="wsfl:FlowInstanceId"/>

<all>
<complexType>

</element>

<element name="orderConfirmation">
<complexType>

<all>
<element name="totalCost" type="osn:allItemsAndCosts"/>
<element name="supplierFlowInstanceId" type="wsfl:FlowInstanceId"/>

<all>
<complexType>

</element>

Note: FlowInstanceId of
supplier's flow is
returned with estimate.

 - 27 -

<element name="shipmentConfirmation"
<complexType>

<all>
<element name="actualShipmentDate" type="date"/>
<element name="acutalShipmentTime" type="time"/>
<element name="supplierFlowInstanceId" type="wsfl:FlowInstanceId"/>

</all>
</complexType>

</element>

</schema>
</types>

MESSAGES DEFINED:

Stationery.com

<message name="processEstimateInput" >
<part name= "estimate" element="osn:allItems"/>

</message>

<message name="processEstimateOutput" >
<part name= "estimate" element="osn:totalEstimate"/>

</message>

<message name="processOrderInput" >
<part name= "order" element="osn:order"/>

</message>

<message name="processOrderOutput" >
<part name= "orderConfirmation" element="osn:orderConfirmation"/>

</message>

<message name="sendShipmentConfirmationOutput">
<part name="confirmation" element="osn:shipmentConfirmation"/>

</message>

OfficeSupplies.com

<message name="requestEstimateOutput" >
<part name= "estimate" element="osn:allItems"/>

</message>

<message name="requestEstimateInput" >
<part name= "estimate" element="osn:totalEstimate"/>

</message>

<message name="placeOrderOutput" >
<part name= "order" element="osn:order"/>

</message>

<message name="placeOrderInput" >
<part name= "orderConfirmation" element="osn:orderConfirmation"/>

</message>

<message name="getShipmentConfirmationInput">
<part name="confirmation" element="osn:shipmentConfirmation"/>

</message>

INTERNAL MESSAGES DEFINED:

 - 28 -

Stationery.com

<message name=“requestedEstimate”>

<part name=“requestedItems” element=“osn:allItems”/>
<part name=“estimatedItems” element=“totalEstimate”/>

</message>

<message name=“processedOrder”>
<part name=“requestedOrder” element=“osn:order” />
<part name=“confirmedOrder” element=“osn:orderConfirmation”/>

</message>

<message name=“shipmentDetails”>
<part name="confirmationDetails" element="osn:shipmentConfirmation"/>

</message>

OfficeSupplies.com

<message name=“request”>

<part name=“requestedItems” element=“osn:allItems”/>
<part name=“estimatedItems” element=“totalEstimate”/>

</message>

<message name=“order”>
<part name=“orderedItems” element=“osn:order” />
<part name=“orderConfirmed” element=“osn:orderConfirmation”/>

</message>

<message name=“shipmentInfo”>
<part name="shippingInfo" element ="osn:shipmentConfirmation"/>

</message>

PORTS DEFINED:

<definitions name="officeSuppliesPortTypes"

targetNamespace =
"http://www.OfficeSupplies.com/WebServices/Messages/Procurement"

xmlns:osn= http://www.OfficeSupplies.com/WebServices/Messages/Procurement”>

Stationery.com

<portType name="officeSuppliesSeller">
<operation name="processEstimate">

<input message="osn:processEstimateInput"/>
<output message="osn:processEstimateOutput"/>

</operation>

<operation name="processOrder">
<input message="osn:processOrderInput"/>
<output message="osn:processOrderOutput"/>

</operation>

<operation name="sendShipmentConfirmation">
<output message="osn:sendShipmentConfirmationOutput"/>

</operation>
</portType>

OfficeSupplies.com

<portType name="officeSuppliesPurchaser">
<operation name="requestEstimate">

<output message="osn:requestEstimateOutput"/>

 - 29 -

<input message="osn:requestEstimateInput"/>
</operation>

<operation name="placeOrder">
<output message="osn:placeOrderOutput"/>
<input message="osn:placeOrderInput"/>

</operation>

<operation name="getShipmentConfirmation">
<input message="osn:getShipmentConfirmationInput"/>

</operation>
</portType>

</definitions>

6.2 Flow Model Definitions

6.2.1 Service Provider Type Definitions
<definitions name="officeSuppliesPortTypes"

targetNamespace =
"http://www.OfficeSupplies.com/WebServices/Messages/Procurement"

xmlns:osn=
"http://www.OfficeSupplies.com/WebServices/Messages/Procurement">

<serviceProviderType name="supplierFlow">
<portType name="osn:processEstimate"/>
<portType name="osn:processOrder"/>
<portType name="osn:sendShipmentConfirmation"/>

</serviceProviderType>

<serviceProviderType name="purchaserFlow">
<portType name="osn:requestEstimate"/>
<portType name="osn:placeOrder"/>
<portType name="osn:getShipmentConfirmation"/>

</serviceProviderType>

6.2.2 Stationery.com Flow Model

<flowModel name="purchaseSupplies" serviceProviderType="supplierFlow">

<flowSource name="purchaserFlowSource">
<output name="processInstanceData" message="osn:requestedEstimate"/>

</flowSource>

<serviceProvider name="purchaser" type="purchaserFlow"/>
<serviceProvider name="supplier" type="supplierFlow"/>

<export lifecycleAction="spawn">
<target portType="osn:officeSuppliesSeller" operation="processEstimate">

<map sourceMessage="processEstimateInput"
targetMessage="processInstanceData"
targetPart="requestedItems"/>

<map sourceMessage="processInstanceData"
sourcePart="estimatedItems"
targetMessage="processEstimateOutput"
targetPart="estimate"/>

 - 30 -

</target>
</export>

<activity name="completeOrder">
<input name="completeOrderInput" message="osn:processedOrder"/>
<output name="completeOrderOutput" message="osn:shipmentDetails"/>
<performedBy serviceProvider="purchaser"/>
<implement>

<export portType="officeSuppliesSeller" operation="processOrder">
<map sourceMessage=“processOrderInput”

sourcePart=“order”
targetMessage=“completeOrderInput”
targetPart=“requestedOrder”/>

<map sourceMessage="completeOrderInput"
sourcePart=“confirmedOrder”
targetMessage=“processOrderOutput”
targetPart=“orderConfirmation”/>

</export>
</implement>

</activity>

<activity name="notifyShipment" >
<input name="shippingDetailsInput" message="osn:shipmentDetails"/>
<performedBy serviceProvider="purchaser"/>
<implement>

<export portType="osn:officeSuppliesSeller"
operation="sendShipmentConfirmation"
<map sourceMessage="shippingDetailsInput"

sourcePart=" confirmationDetails "
targetMessage="sendShipmentConfirmationOutput"
targetPart="confirmation"/>

</activity>

</flowmodel>

6.3 OfficeSupplies.com Flow Model
<flowModel name="purchaseSupplies" serviceProviderType="supplierFlow">

<flowSource name="purchaserFlowSource">
<output name="processInstanceData" message="osn:request"/>

</flowSource>

<serviceProvider name="purchaser" type="purchaserFlow"/>
<serviceProvider name="supplier" type="supplierFlow"/>

<export lifecycleAction="spawn">
<target portType="osn:officeSuppliesPurchaser"

operation="requestEstimate">
<map sourceMessage="processInstanceData"

sourcePart="requestedItems"
targetMessage="requestEstimateOutput"
targetPart="estimate"/>

<map sourceMessage="requestEstimateInput"
targetMessage="processInstanceData"
targetPart="estimatedItems"/>

</target>
</export>

 - 31 -

<activity name="sendOrder">
<input name="sendOrderInput" message="osn:order"/>
<output name="sendOrderOutput" message="osn:order"/>
<performedBy serviceProvider="supplier"/>
<implement>

<export portType="officeSuppliesPurchaser"
operation="placeOrderOutput">
<map sourceMessage=“sendOrderInput”

sourcePart=“orderedItems”
targetMessage=“placeOrderOutput”
targetPart=“order”/>

<map sourceMessage=“placeOrderInput”
sourcePart=“orderConfirmation”
targetMessage=“sendOrderInput”
targetPart=“orderConfirmed”/>

</export>
</implement>

</activity>

<activity name="getShipmentDetails" >
<input name="getShipmentDetailsInput" message="osn:shipmentInfo"/>
<performedBy serviceProvider="supplier"/>
<implement>

<export portType="osn:officeSuppliesPurchaser"
operation="getShipmentConfirmation"
<map sourceMessage="getShipmentConfirmationInput"

sourcePart="confirmation"
targetMessage="getShipmentDetailsInput"
targetPart="shippingInfo"/>

</activity>

</flowmodel>

	Introduction
	Background and Related Work
	Rethinking SLA Specification
	Precision
	Flexibility

	SLA specification
	SLO Schema
	SLO Time Constraint
	SLO Clause
	MeasuredItem
	EvalFunc
	EvalOn
	EvalWhen
	Examples

	Specifying SLA for Web Services: An Example
	
	
	Stationery.com will respond to estimate requests in less than 5 minutes.
	Stationery.com will provide 100% availability to all “estimate” requests, Monday through Friday.
	Stationery.com will provide 90% availability to all “process order” requests, Monday through Friday.
	Stationery.com will process and ship orders in less than 24 hours of receiving the “process order” request.

	Service Level Agreement for web service OfficeSupplies.com

	Conclusion
	Acknowledgements
	Appendix C: Web Services Management Language NameSpace Definitions
	Appendix D: WSDL,WSFL definitions of the web service example
	WSDL Definitions
	Flow Model Definitions
	Service Provider Type Definitions
	Stationery.com Flow Model

	OfficeSupplies.com Flow Model

