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ABSTRACT Heterogeneous computing systems with tightly coupled processors and reconfigurable logic
blocks provide great scope to improve software performance by executing each section of code on the
processor or custom hardware accelerator that best matches its requirements and the system optimisation
goals. This article is motivated by the idea of a software tool that can automatically accomplish the task
of deploying code, originally written for a conventional computer, to the processors and reconfigurable
logic blocks in a heterogeneous system. We undertake an extensive survey of high-level synthesis tools
to determine how close we are to this vision, and to identify any capability gaps. The survey is structured
according to a new framework that clearly expresses the relationships between the many tools surveyed.
We find that none of the existing tools can deploy general high-level code without manual intervention.
Logic synthesis from arbitrary high-level code remains an open problem with dynamic data structures,
function pointers and recursion all presenting challenges. Other challenges include automating the tasks
of code partitioning, optimisation and design space exploration.

INDEX TERMS Automatic code deployment, field programmable gate arrays, high level synthesis,
heterogeneous platforms.

I. INTRODUCTION

For the last four decades, Moore’s law and Dennard scaling
have relentlessly delivered improvements in computing per-
formance [1]. Since the early 2000s their impact has begun
to wane and alternative ways to improve performance have
begun to emerge. Heterogeneous computing is a promising
approach in which a group of processing nodes execute a
workload in parallel. Given different kinds of nodes including
multi-core CPUs, real-time processors, DSPs, GPUs, and
accelerators on FPGAs or ASICs, the computing workload
can be partitioned such that each part is executed on a
processor that is well-matched to its requirements and the
performance optimisation goals.
This article is concerned with the engineering task of writ-

ing software for a heterogeneous system and considers how
close existing tools and technologies are to a fully automatic
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system in which high-level source code is partitioned and
deployed to heterogeneous nodes with a minimum of human
intervention. This is an ambitious scope so we constrain
ourselves, in this article, to the task of deploying source code
blocks onto custom FPGA logic.

It is possible, of course, to write software specifically for
a particular heterogeneous system by manually partitioning
tasks among the processors, and using the most appropriate
programming language for each of the different processors.
For example a Hardware Description Language (HDL) such
as Verilog could be used for tasks executing on an FPGA, and
CUDA for those on a GPU. An alternative, which has seen a
great deal of research activity in recent years, is to use High-
Level Synthesis (HLS) for generating hardware modules from
code written in a High-Level Language (HLL) (such as C,
C++ or Python).
There are benefits of using HLS instead of HDL so that

the entire application is in a high-level language: simulation
speed is generally faster; debugging is less difficult; it is
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easier to explore and evaluate design alternatives; and the
high-level language may include features that cannot be eas-
ily expressed in a HDL [2].
Although current HLS tools do not always produce

performance-optimised implementations, applications with-
out stringent performance requirements can be more quickly
and easily developed using HLS. HLS software developers
do not necessarily need to be FPGA or HDL experts, and
optimisation opportunities can be exposed to the designer
that cannot be easily explored via HDL approaches. In some
cases, a project that would not have been practical in HDL,
given its complexity, limited time frame and small develop-
ment team, can be feasible in HLS at a low performance cost
compared to an HDL-based approach [3]–[5].
An HLS-based design for a heterogeneous system could

be started from scratch, or use pre-existing code origi-
nally written for a conventional CPU. Either way, to effec-
tively use current HLS technology, system developers require
considerable knowledge and experience in the applica-
tion domain, computer programming, and HLS design
flow.
Deploying pre-existing code written for a conventional

CPU onto a heterogeneous system with the aim of improving
performance or efficiency is even more difficult. The code
needs to be substantially restructured to be synthesisable, and
to produce optimised hardware. This needs to be done for all
the code: not just the application source code but also any
library functions it uses. To date Automatic Code Deploy-
ment (ACD) tools capable of performing this challenging
task without human intervention have been the subject of
limited research (e.g. [6], [7]) but a considerable amount
of work has been done on automating some of the more
challenging, tedious and time-consuming steps in this process
(e.g. [8]–[11]).
This article surveys recent toolchains and workflows for

high-level synthesis to FPGA with a focus on technologies
that might eventually be used for automatic code deployment.
Section I introduces HLS and the motivation for heteroge-
neous computing based on HLS. Section II categorises dif-
ferent contemporary approaches to deploy compute-intensive
code segments to FPGA hardware accelerators. The cate-
gories introduced in Section II are used to organise a thorough
survey, in Sections III and IV, of approaches that take a
candidate function expressed in a HLL and produce low-level
HDL suitable for FPGA deployment. The arguments in these
sections focus on contemporary HLS tools currently used in
academia or industry; legacy tools are included in summary
tables for completeness. Specification of a hypothetical tool
for ACD to FPGA, as well as a brief summary of progress
reported in the literature towards making HLS-based FPGA
code deployment less dependent on human judgement and
proficiency, are provided in Section V.

II. HIGH-LEVEL CODE DEPLOYMENT APPROACHES

To build an FPGA-based heterogeneous system, a common
practice is to begin with an application running on a CPU,

which is profiled to identify functions (or code blocks) to
be offloaded to the FPGAs. Careful choice of the offloaded
code blocks can improve latency, throughput or energy effi-
ciency of the application as a whole. One part of the applica-
tion, which controls and synchronises the execution, usually
remains on a host CPU; and compute-intensive parts are syn-
thesised as accelerators on the FPGAs. In the past, hardware
developers had to manually rewrite the compute-intensive
HLL functions as custom accelerators at the Register Transfer
Level of abstraction (RTL), using a Hardware Description
Language (HDL) (e.g. VHDL or Verilog). Hardware synthe-
sis for FPGAs from a manually written HDL description is
a well-understood process in the literature, and is beyond the
scope of this article. However, we have illustrated this method
with the label 1© in FIGURE 1, to indicate that it is still one
possible approach.
The manual transformation of a HLL function to RTL has

some fundamental limitations:
• Understanding the HLL code and then manually writ-
ing the HDL code for the accelerator, requires repeated
design effort that reduces productivity and increases
time-to-market of the end product.

• Notions of timing at RTL require the developer to have a
good understanding of the hardware platform. It is hard
to find experts with the necessary blend of software and
hardware expertise. For a hardware developer, under-
standing the HLL code can be as problematic as under-
standing hardware optimisation for a software engineer.
This gap often results in an inefficient hardware imple-
mentation.

• High-level constructs that lead to an efficient imple-
mentation on a CPU can be problematic in an FPGA.
For example, floating point operations, dynamic data
structures, functions called by reference, and recursion
can all be difficult to map to efficient hardware.

• Even small changes to the software application to fix
bugs or add new features can require significant mod-
ification of the HDL code and extensive restructuring of
the hardware.

• The task becomes even more challenging if there is a
legacy software code base, such as in runtime libraries,
that needs to be deployed on the FPGA.

• Parallelism is usually key to improved performance on
FPGA but it is difficult to extract parallelism from code
that was originally optimised for sequential CPUs.

Researchers have been working towards defining hardware
accelerators at higher levels of abstraction using HLLs, and
building tools to automatically transform HLL code to an
RTL description. Common practice at present is to write the
compute-intensive parts of the code as functions that use only
a subset of the HLL such that that they are synthesisable for
the FPGA. C and C-based HLLs are most common because
of their wide-acceptance among both software and hardware
engineers.
This design flow is shown as 2© in FIGURE 1, and will be

discussed in Section III. It can be divided into subcategories:
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FIGURE 1. Design flows for high-level code deployment.

• Behavioural High-Level Synthesis (HLS) 2a©: In this
approach, the hardware developer selects compute-
intensive functions and rewrites them to synthesisable
HLL. The behavioural HLS tool then converts the func-
tions into RTL descriptions for FPGA implementation.
Tools to support this flow are surveyed in Section III-A.

• Synthesisable behavioural code generation 2b©: There
are some tools to generate synthesisable code (some-
times just called ‘HLS code’) from HLL code. They

are usually ‘semi-automatic’ tools that require some
manual code refactoring and annotation. The generated
synthesisable code can be passed to HLS tools to gen-
erate RTL descriptions. This approach is discussed in
Section III-B.

• Domain-Specific Language (DSL) for HLS 2c©: In this
approach, compute-intensive HLL code is manually
re-written using a DSL, and a DSL compiler trans-
lates it to synthesisable code directly, or by using a
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synthesisable code generator. The generated synthesis-
able HLL code is then used by a HLS tool to generate
an RTL description. DSL tools for HLS are discussed in
Section III-C.

Dataflow descriptions are another way to express
compute-intensive HLL functions for FPGA implementation.
This is illustrated as design flow 3© in FIGURE 1. A dataflow
description represents a system as a directed graph, known as
dataflow graph (DFG), with nodes as computational units and
the edges as data flow between them. The asynchronous and
concurrent behaviour of the computation units provide a good
match with likely implementations on FPGAs. Dataflow
descriptions can be defined at different levels of abstraction.
We will discuss this design flow in Section IV under two
subcategories:

• Dataflow HLS 3a©: In this approach, a synthesisable
DFG is manually described using a meta-language (e.g.
MaxJ [12], CAL [13]), and then transformed into anRTL
description using an appropriate HLS tool. Section IV-A
surveys efforts using this approach.

• High-level DFG representation 3b©: Some tools allow
developers to define DFGs at higher level of abstraction,
and transform them to synthesisable representations.
Then, using dataflow HLS they are translated to RTL
descriptions. These tools usually work for particular
application domains. The effort to define DFGs at high
levels of abstractions are discussed in Section IV-B.

III. BEHAVIOURAL APPROACH FOR FPGA SYNTHESIS

A common and straightforward approach to deploy a
compute-intensive function on an FPGA is to write
a behavioural description of that function in a HLL as a
sequence of statements with control structures such as loops
and conditions. Existing tools support a variety of HLLs
including including C, C++, Java, Python, C# and Matlab
and are able to transform the behavioural description into an
RTL description in HDL (typically VHDL, Verilog or Sys-
temVerilog). This design flow is labelled as 2© in FIGURE 1.
Variations of this design flow are discussed in the following
subsections.

A. BEHAVIOURAL HIGH-LEVEL SYNTHESIS (HLS) 2A©
High-Level Synthesis (HLS) allows developers to define
hardware using a HLL (e.g. C, C++ or SystemC). A HLS
tool automatically transforms the untimed HLL code to a
fully timed circuit specification in HDL to perform the same
function on an FPGA. The introduction of HLS in the design
flow reduces the transition from the HLL code to the start of
the automatic process, as can be seen from the design flow in
FIGURE 1.
FIGURE 2 shows a generic HLS design flow to synthe-

sise an accelerator on an FPGA as in [14], [15]. The flow
starts with a behavioural description, which is written in a
synthesisable way using a HLL. Not all HLL constructs are
synthesisable by all HLS tools. For example, many HLS
tools do not support pointers, recursion or dynamic memory

FIGURE 2. A generic HLS design flow.

allocation. After parsing the source code during compilation,
the HLS tool generates an intermediate representation (IR)
and performs source code optimisations such as dead-code
elimination and redundant expression elimination. Most HLS
tools are based on the LLVM compiler infrastructure [16],
which generates a Control and Data Flow Graph (CDFG) to
capture all dependencies of the IR. The HLS tool determines
the right functional units, memory elements and connectivity
components to use from a design library during resource allo-
cation. In the scheduling step, each operation from the source
code is assigned to a control step, which will correspond
to system clock cycles in the hardware. Next, in resource

binding, the HLS tool maps operations to specific functional
units, variables to memory elements, and data transfers to
interconnection components such that data can be correctly
computed and passed, according to the scheduling. Finally,
an RTL model of the synthesised design is produced in the
RTL generation step. Depending upon the scheduling and
the binding information, interconnections between the cir-
cuit modules of the datapath are created, and a finite state
machine (FSM) is generated to control the data flow in the
datapath.

HLS has been the subject of continuous research since
the 1970s, but these efforts were not notably successful
until the early 2000s. The historical evolution of HLS tools
and the reasons behind the success and failure of different
generations of HLS development are discussed in [17], [18].
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TABLE 1. Currently available commercial HLS tools.

The authors of [18] describe a state-of-the-art HLS tool of
the time, AutoPilot [19], which was later acquired by Xilinx,
and renamed Vivado HLS. The major research efforts in
compilingHLLs for reconfigurable computingwere surveyed
in [14], [20]. The paper [21] presented an evaluation of more
recent HLS tools in terms of capabilities, usability and quality
of results. A survey of HLS tools and compilers targeting
heterogeneous high performance computing was presented
in [15]. The authors of [22] provided studies to compare
the performance of three commercially available HLS tools:
Vivado HLS [23], Intel FPGA SDK for OpenCL [24], and
MaxCompiler [12]. A comprehensive survey of commonly
used open-source HLS tools appears in [25].

A recent survey on HLS tools along with a compar-
ative study of three academic HLS tools – Bambu [26],
DWARV [27] and LegUp [28] – was published in [29].
This article surveyed an exhaustive list of HLS tool includ-
ing abandoned ones. Since it was published, some of
the tools have merged (e.g. Forte Cynthesizer [30] and
Cadence C-to-Silicon Compiler [31] are combined in Stratus
HLS [32]), some have lost their importance (e.g. eXCite [33],
NAPA-C [34]), and some interesting new tools have appeared
in the industry and academia (e.g. Intel FPGA SDK for
OpenCL [24]). We provide updated lists of the currently
available commercial and academic HLS tools in TABLE 1
and TABLE 2. Here, we consider only those tools that are in
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TABLE 2. Currently available academic HLS tools.

use, under active research and popular in industry. We also
provide the pedigrees of HLS tools, if available.
The choice of a HLS tool is often dominated by avail-

able applications, price, community support and its sup-
port for FPGAs from a particular vendor, such that no
specific HLS tool dominates the industry. However, Xilinx
Vivado HLS [23], Intel HLS Compiler [35], Intel FPGA
SDK for OpenCL [24], Mentor Catapult [36], and Cadence
Stratus [32] are some popular commercial HLS tools.
LegUp [28], Bambu [26], ROCCC [37], [38], GAUT [39],
[40] and Kiwi Compiler (KiwiC) [41], [42] are some notable
HLS tools produced as research outputs. We will discuss
these commercial and academic HLS tools in this section.
Other available HLS tools are mentioned in TABLE 1
and TABLE 2. It should be noted that it is generally
harder to find the design details (e.g. compiler architec-
ture) of commercial tools than those of research products.
Commercial tools built upon university research outputs
(e.g. Vivado HLS [23]) have more information in the lit-
erature than those built entirely in industry (e.g. Intel HLS
Compiler [35]).

1) VIVADO HLS

Vivado HLS [23] is a commercial HLS tool provided by
Xilinx for their own FPGAs. It is based on AutoPilot [19],
which was actually a commercialisation of the xPilot sys-
tem [54] developed in the University of California, Los Ange-
les. Vivado HLS provides a design environment to generate
RTL descriptions in VHDL andVerilog from synthesisable C,
C++, SystemC or OpenCL HLL code. Being a commercial
tool, the internal design flow of Vivado HLS is not avail-
able but it seems reasonable to assume it adopts the same
design flow as AutoPilot, which is shown in FIGURE 3.
Vivado HLS is based on LLVM compiler infrastructure,
which compiles the HLL code to a LLVM-IR. The LLVM-IR
then passes through a series of standard compilation tasks
including dead-code elimination, constant propagation and
loop unrolling, and hardware-specific optimisations such as
bit-width optimisation for reducing code complexity and
redundancy, maximising data locality and exposing paral-
lelism. Vivado HLS uses the modified IR to perform synthe-
sis and interconnect-centric optimisations during operation
scheduling and resource binding phases taking user-specified
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FIGURE 3. AutoPilot design flow [19].

constraints into account. Vivado HLS has a rich set of annota-
tions to direct the compilation and synthesis processes to opti-
mise performance, resource utilisation, data communication
between CPU and custom hardware. It also contains many
hardware-optimised libraries and APIs to support hardware
developers. Finally, the IR is synthesised into RTL implemen-
tations for Xilinx FPGAs. The generated RTL can be saved in
a IP library for later use. Vivado HLS also provides features
to verify the functionality of the RTL against HLL description
using a testbench. This HLS tool is included in VivadoDesign
Suite [55], and can be used with heterogeneous system devel-
opment tools SDSoC [56] and SDAccel [57]. In Xilinx’s
recently released Vitis Unified Software Platform [58], it is
named as Vitis HLS with some additional functionalities.

2) INTEL FPGA SDK FOR OpenCL

Open Computing Language (OpenCL) is a framework for
programming parallel applications for heterogeneous plat-
forms including processors, GPUs and FPGAs. It is an open
standard maintained by the Khronos Group [59]. Altera intro-
duced an OpenCL SDK for multi-core programming in 2013.
Intel acquired Altera in 2015 and renamed the product as
the Intel FPGA SDK for OpenCL [24]. Instead of executing
parallel threads of expensive functions on multiple cores,
this compiler generates deeply pipelined hardware circuits
that can be implemented on Intel FPGAs. The tool trans-
forms OpenCL to Verilog RTL and runtime libraries for
the part of the system running on the processor. It uses
LLVM-Clang [60] to parse OpenCL constructs and pro-
duces a IR. The IR passes through a series of optimisations
including branch elimination, loop fusion and auto vectori-
sation. Users guide optimisation by inserting annotations for
loop unrolling, pipelining and streaming data. The compiler

automatically applies these optimisations and translates the
optimised IR to Verilog RTL.

3) INTEL HLS COMPILER

The Intel HLS Compiler [35] transforms a high-level hard-
ware description written in C++ to an RTL description
for Intel FPGAs. In addition to standard compiler opti-
misations, the compiler performs optimisation tasks such
as loop unrolling, data dependency and pipelining based
on user-provided annotations. It allows the user to explore
hardware architectures including interfaces, parallelism,
memories, datapaths and loops using specific attributes and
annotations. Like Vivado HLS, Intel HLS Compiler also
facilitates generation of reusable IPs for system integration,
and reduces FPGA development time. The tool supports
software testbench verification against the generated RTL.
It is included in the Intel Quartus Prime Design Software
Suite [61].

4) CATAPULT HLS PLATFORM

The Catapult HLS Platform [36] was initially developed by
Mentor Graphics as Catapult-C [62], and was later owned by
Calypto Design Systems [63]. It was reacquired by Mentor
Graphics in 2015. Using Catapult HLS, developers can define
hardware using a subset of C++ and SystemC and generate
optimised Verilog and VHDL description for FPGAs and
ASICs. Catapult supports most C++ constructs including
classes, structs, arrays and pointers to statically allocated
objects. However, it does not support dynamic memory allo-
cation. It allows developers to include integers of arbitrary
length, fixed-point, floating-point and complex data types
using Mentor Graphics’s Algorithmic-C data types [64].
Hardware developers can specify parallelism, throughput and
memory configuration at high levels of abstraction using
attributes and annotation; however an in-depth understanding
of the underlying hardware is required to achieve a good
result. During hardware synthesis, Catapult performs a num-
ber of optimisations including loop unrolling, loop merging
and pipelining. Catapult can automatically generate simula-
tion infrastructure for verifying HLS-generated RTL against
the original HLL source code. Catapult HLS also allows
incorporating specification changes and porting to a different
technology by the separation of the design functionality and
the implementation details. The RTL can simply be regener-
ated based on the modified HLS model and new constraints.

5) STRATUS HLS

Stratus HLS [32] is a popular HLS tool provided by Cadence.
Cadence acquired Forte Design Systems in 2014 and tied
Forte’s Cynthesizer [30] with its own C-to-Silicon Com-
piler [31] under the name Stratus HLS. The HLS tool accepts
hardware specification in SystemC and C/C++ and gen-
erates a Verilog RTL utilising high-level implementation
constraints. By separating these constraints from hardware
functionality, Stratus HLS allows the verified HLL hard-
ware specification to be reused as behavioural IPs without
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modification for different platforms and clock speeds. The
HLS tool allows hardware developers to design hardware
hierarchically to manage design complexity. By support-
ing hierarchical decomposition, it allows design and verifi-
cation of multiple functions and their interfaces operating
concurrently.

6) CyberWorkBench

CyberWorkBench [43] is a HLS tool developed over 25 years
of research in NEC. It allows developers to write SoC applica-
tions in C for the software part and in Behavioural Description
Language (BDL) [65] for hardware accelerators. The BDL
is an extended C language that excludes non-synthesisable
constructs (such as dynamic allocation with pointers and
recursions) but includes a number of hardware-specific con-
structs (such as user-defined variable bitwidth and explicit
clock boundary specification). CyberWorkBench uses the
Cyber behavioural synthesiser [44] to transform the BDL
description into RTL descriptions in Verilog or VHDL. The
tool provides automatic pipelining and parallelism extraction,
which are guided by attributes in the source code and global
synthesis options. CyberWorkBench is built based on the
idea ‘‘all-in-C’’, as described in [66], meaning all modules
including control-intensive and data-dominant circuits are
described in BDL. The synthesis and verifications are also
done at the higher level of abstraction. The tool has its own
verifier to check functionality of the generated RTL against
the BDL description.

7) LegUp

LegUp [28], [49] is an open-source HLS compiler developed
by researchers at the University of Toronto, and now sup-
ported by LegUp Computing Inc. It accepts ANSI C code as
input and generates Verilog code that can be synthesised onto
FPGAs. LegUp supports FPGAs provided by Intel, Xilinx,
Lattice, Microsemi and Achronix. It works in two modes:
hardware-only and software-hardware modes. In hardware-
only mode, the entire input C code is synthesised to RTL.
In software-hardware mode, the high-level C code is profiled
using a built-in profiler [67] to identify compute-intensive
functions for hardware offloading. After manual selection
of the functions for hardware acceleration, LegUp synthe-
sises a heterogeneous system comprising a processor and
accelerators built on an FPGA. The tool supports most C
features for FPGA synthesis but not recursion or dynamic
memory allocation. LegUp is built using the LLVM frame-
work with Clang as its frontend. It allows hardware optimisa-
tions to perform function inlining, loop unrolling and source
code modifications to parallelise sequential executions using
Pthreads or OpenMP annotations. However, the insertion of
these annotations is a manual process.

8) BAMBU

Bambu [26] is an open-source HLS framework built in
Politecnico di Milano under the PandA project [68]. It takes
a behavioural description in C and an XML file specifying

the configurations corresponding to different stages of the
design flow. It uses the gcc compiler to perform target and
language-independent optimisations and produces IRs in the
form of a call-graph and CDFG. Bambu generates hardware
modules for the functions separately, reflecting the struc-
ture of the call-graph. The modules include datapaths, FSM
controllers and memory interfaces. Finally, the HLS tool
combines these modules to generate an HDL description and
produces logic synthesis scripts for the desired toolchains,
as specified in the XML file. Currently Bambu is compatible
with Xilinx Vivado Design Suite [55], Intel Quartus [61]
and Lattice Diamond [69]. Bambu also produces testbenches
and scripts for RTL simulation that can be run in Xilinx
simulators, MentorModelsim [70], Verilator [71] and Verilog
Icarus [72].

9) ROCCC

Riverside Optimizing Compiler for Configurable Circuits
(ROCCC) [37], [38] is an open-source HLS compiler initially
developed at the University of California Riverside. The latest
versions of this tool have been developed by Jacquard Com-
puting, who are currently maintaining it. The developers of
this tool consider that it is a code accelerator instead of a
HLS tool because ‘‘typically, accelerators have their semantic
root in a loop nest while a general HLS tool can target any
arbitrary C code. Hence, the focus of the ROCCC compiler
transformations has been on loop nests’’ [37]. FIGURE 4
illustrates a high-level design flow of the ROCCC compiler.
It does not compile entire applications to hardware, rather
it allows modules and system code to be transformed to
hardware. Modules refer to compute-intensive functions that
can be synthesised to hardware modules. They can be reused
as hardware building blocks in other modules. System code
blocks perform computations on large streams of data using
repeated loop iterations. The may or may not be synthesised
to hardware modules but they usually result in hardware
for memory interfaces. The modules and system code can
be written using a subset of C constructs. Common C fea-
tures including generic pointers, dynamicmemory allocation,
recursion, including C-library calls, and while loops are not
supported by the ROCCC compiler. The compiler performs
high-level transformations, such as loop and array transfor-
mations, using the SUIF compiler infrastructure [73] and
generates an IR. The IR passes through the LLVM framework
for low-level optimisations, such as pipelining, before VHDL

FIGURE 4. ROCCC design flow [74].
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code is generated. It does not require annotations in the HLL
source code to generate efficient pipelined hardware.

10) GAUT

GAUT [39], [40] is an open-source HLS tool developed at
Université de Bretagne-Sud, France for DSP applications.
It generates a RTL description in VHDL from bit-accurate
high-level C/C++ code. The compiler allows develop-
ers to use the Algorithmic-C library [64] from Mentor
Graphics for signed and unsigned bit-accurate integer and
fixed-point variables. The design flow of GAUT is depicted
in FIGURE 5. This gcc-based HLS tool generates a
bit-width information annotated dataflow graph (DFG) of
the application, which is then converted to GIMPLE-IR. The
IR undergoes performance optimisation including dead-code
elimination, redundancy eliminations and loop optimisations,
and instruction-level parallelism is extracted from it. GAUT
performs resource allocation, operation scheduling and bind-
ing, and storage optimisation on the IR, and finally gener-
ates a VHDL and/or SystemC description for a particular
FPGA platform. During this process, GAUT uses a library of
time-characterised operators that were generated using DFG
and logic synthesis tools fromXilinx and Intel. The generated
RTL contains a controller FSM, a datapath, and memory and
communication interfaces. The tool also generates necessary
scripts and data for testbenches for simulations using the
Modelsim simulator. The generated RTL can be synthesised
using Xilinx Vivado Design Suite [55], Intel Quartus [61] and
Synopsys Design Compiler [75].

FIGURE 5. GAUT design flow [39].

11) KIWI COMPILER

Kiwi Compiler (KiwiC) [41], [42] was developed as an
open-source tool at the University of Cambridge and
Microsoft Research Limited, and is now maintained by the

university. Most HLS tools accept C-like sequential programs
and synthesise them for FPGAs. This HLS compiler and
its associated library allow programmers to model parallel
computations using a subset of the C# language and trans-
forms them into circuits for realisation on Xilinx and Intel
FPGAs. The compiler converts.NET bytecode generated as
an IR from Microsoft.NET or Mono C# compilers to Ver-
ilog RTL. It maps system-level concurrency such as events,
monitors and thread onto appropriate hardware implementa-
tions. The Kiwi Compiler is based on the Value State Flow
Graph (VSFG) compilation technique [76]. The compilation
technique exploits dynamic execution scheduling, aggressive
branch prediction and loop unrolling to achieve significant
performance improvements. KiwiC supports a wider sub-
set of HLL features than many other HLS tools, including
multi-dimensional arrays, threading, file-server I/O, object
management and limited recursion. The tool also provides a
performance predictor to allow users to explore the expected
speed-up without fully synthesising the hardware.

B. SYNTHESISABLE HLL CODE GENERATION 2B©
Although HLS tools allow design space exploration more
quickly and easily by avoiding the restrictions of HDLs,
developers still need to be aware of hardware implementation
constraints while writing HLS code. Naive HLS code written
without an understanding of the resultant hardware structure
often yields results worse than simply running the code on a
processor. Moreover, HLS tools often use C-based HLLs as
inputs, and the generic C/C++ programming model does not
take advantage of the concurrent nature of an FPGA. Hence,
developers have to manually do complex code restructuring
and insert special directives to generate synthesisable code
and efficient hardware. Authors of [77] provide a guideline
for transforming high-level C++ to efficient synthesisable
code. But this manual process significantly impacts the pro-
ductivity of system development and this situation becomes
more acute for complex applications with a large base of
existing code written for conventional computers.

Investigations are underway in academia and industry for
generating efficient synthesisable code (i.e. HLS code) from
existing HLL. After identifying compute-intensive functions,
these tools analyse the source code to extract parallelism
before generating synthesisable code using their own source-
to-source compilers. The generated code is then fed into
existing HLS tools to generate accelerator code in RTL for
deployment on FPGAs. This approach is shown in FIGURE 1
on Page 174694 as design flow 2b©. Because this process
still involves human interventions in many cases, we consider
it to be ‘‘semi-automatic’’. The major synthesisable code
generation tools are listed in TABLE 3 and will be discussed
in the following subsections.

1) SLX-FPGA

Silexica developed the SLX-FPGA Tool Suite [78] to help
convert non-synthesisable C/C++ code to synthesisable HLS
C code for Xilinx’s Zynq SoC and MPSoC devices. It uses
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TABLE 3. HLS code generation tools.

FIGURE 6. SLX-FPGA tool flow [78].

Vivado HLS [23] and SDSoC [56] under the hood to imple-
ment the HLS code onto the Zynq devices. SLX-FPGA
also works with Xilinx’s recently released Vitis Unified
Software Platform [58]. This tool suite is based on an
academic project called MPSoC Application Programming
Studio (MAPS) [79], which started in 2007 at RWTHAachen
University.

FIGURE 6 illustrates the tool flow of SLX-FPGA. It first
analyses an existing conventional C/C++ application and
identifies parallelisation opportunities in the form of task,
data and pipeline level parallelism. It performs static analysis
of the source code and dynamic analysis of the executable
code, and converts the source code to a language called C for
Process Networks (CPN). This language is a C extension that
models concurrent processes and applications. Next, it sug-
gests a partitioning of the application between the embedded
host processor and FPGA regions of the Zynq device by
analysing the computation and communication behaviour of
the CPN specification. The expected benefits of this parti-
tioning are then evaluated using Xilinx’s performance estima-
tion engine. Finally, the tool suite performs source-to-source
translation to emit HLS C code (‘‘synthesisable behavioural

code’’ in path 2b©) considering both the CPN and the mapping
configuration generated by the SLXMapper. Vendor-specific
annotations for loop unrolling and pipelining are automati-
cally inserted into the HLS code to extract parallelism and
define interfaces based on optimisation decisions taken by
the programmer. SLX-FPGA also provides hints for manual
code restructuring to make any designated non-synthesisable
functions synthesisable. The generated HLS C code then
passes through the Xilinx toolchain including Vivado HSL
(the ‘‘behavioural HLS tool’’ in path 2b©) for implementation
onto the Zynq devices.

SLX-FPGA provides some useful features that move
the state of the art closer to the ACD, however it is
still not fully automatic. It does not perform automatic
code refactoring to make a non-synthesisable function syn-
thesisable, or to optimise the performance of the gener-
ated hardware accelerator. Although the latest release of
SLX-FPGA supports some Vivado HLS annotations for loop
unrolling, pipelining, array partitioning and function inlin-
ing, it still does not support all of the available annota-
tions to extract best possible performance in the generated
hardware.
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2) MERLIN COMPILER

Merlin Compiler [80] is a synthesisable code generation tool
introduced by Falcon Computing Solutions that automates
the code rewrite effort for FPGA programming. It accepts
C/C++ HLL code as input and transforms it to optimised
OpenCL code that can be synthesised on Xilinx and Intel
FPGAs using the vendor-specific toolchains. FIGURE 7
illustrates the design flow of Merlin Compiler.

FIGURE 7. Merlin Compiler design flow [80].

Merlin Compiler can work in two modes. In manual opti-
misationmode, developersmanually annotate the source code
with a small set of OpenMP-like annotations for pipelining
and parallelism. Developers who are not familiar with FPGA
constructs can use automatic optimisation mode, in which
they can annotate functions for acceleration, and the compiler
will use a machine learning based Deep Space Exploration
(DSE) to perform micro-architecture optimisations, such as
global memory bursting and coalescing, memory partition-
ing, data reuse and data flow streaming. Merlin Compiler
produces synthesisable OpenCL code (the ‘‘synthesisable
behavioural code’’ in design flow 2b©) that is transformed
to binary files for FPGA configuration using Xilinx SDAc-
cel [57] or Intel OpenCL SDK [24] (the ‘‘behavioural HLS
tools’’ in path 2b©) in the background. Although, the auto-
matic mode can accelerate the application, there is more
scope for improving performance by manually annotating
the code. Moreover, in either mode the developer must still
modify the code with annotations, and to include header files
and initialise the Merlin runtime libraries.
Merlin compiler provides various verification strategies at

different stages of the process. It generates an optimised C
program before OpenCL generation, which can be compared
with the input C program in CPU execution to confirm func-
tional correctness of the accelerator. The generated OpenCL
is also verified by a CPU emulation, and RTL generated by
HLS is verified by co-simulation.
Merlin Compiler is available on the AWS marketplace so

that FPGA-accelerated applications can be developed using

FIGURE 8. Implementation flows using the Hot & Spicy tools [81].

Amazon AWS F1 instances that contain Xilinx FPGA accel-
erator cards. In addition to cloud-based data centres, it also
supports on-premise data centres that include Intel and Xilinx
FPGA acceleration cards for data processing.

3) HOT & SPICY

Researchers at the Information Sciences Institute, University
of Southern California, have developed Hot & Spicy [81],
an open-source framework and toolchain for exploiting
FPGA accelerators in applications developed completely in
Python. The Hot & Spicy workflow consists of: the Python-
to-C or sPyC tool, which is a source-to-source translation
tool for Python syntax (at the function level) to HLS C/C++

code for the Xilinx Vivado HLS tool; the Python linker,
Pylon, which generates C API wrappers/bindings for link-
ing the Python application to C/C++ call accelerators; the
Python rewriter, Pyrite, which refactors the original Python
source code to make importing the accelerators possible via
the wrappers generated by Pylon (instead of the Python
functions, the C functions are called); and Pyramid, which
generates scripts to drive the EDA implementation flow (i.e.
by employing the Xilinx Vivado HLS through invoking the
Xilinx SDSoC tool to generate a complete system design).

4) DELFT WORKBENCH

Delft Workbench (DWB) [53] is a toolchain to develop het-
erogeneous systems applications. As shown in FIGURE 9,
a high-level application is first profiled and characterised
using Quipu [84] and Quad [85] to identify candidate
hardware functions. Quipu predicts the hardware resources
needed to implement different functions on a reconfigurable
hardware platform. Quad provides an overview of the mem-
ory access behaviour of the application. Based on the profil-
ing information, the application is manually annotated, and
partitioned and mapped to the processor and FPGA. The
compute-intensive functions are mapped to the FPGA, and
the reminaing functions are executed on the processor. It uses
the DWARV (Delft Workbench Automated Reconfigurable
VHDL) HLS compiler [27] (the ‘‘behavioural HLS tool’’
in path 2b©) to translate the selected functions to VHDL
RTL code for synthesis for the FPGA. The HLS compiler
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FIGURE 9. Delft Workbench toolchain [53].

FIGURE 10. FROST design flow [86].

computes common expressions and ensures data locality by
putting the results in registers for subsequent use, performs
register allocation based on operation chaining, and allocates
register and memory interfaces for parallel memory accesses.
The toolchain implements a network-on-chip (NoC) based
custom interconnect for communication among the acceler-
ators. It automatically invokes the architecture-specific syn-
thesis tools to generate bitstreams from the generated VHDL.

5) FROST

Research publications [82], [86] introduce FROST as a com-
mon backend for Domain-Specific Language (DSL) compil-
ers (to be discussed in Section III-C) such as Halide [87] and
Tiramisu [88], targeting FPGAs. As presented in FIGURE 10,
DSL compilers generate IRs (the ‘‘intermediate represen-
tation’’ in path 2b©), and use FROST to generate efficient
HLS code for Xilinx FPGAs. In these IRs, functions are
represented as abstract syntax trees (ASTs). FROST takes an
IR and a list of scheduling commands to produce an efficient
hardware implementation. It provides a way for the hardware
developer to apply guided optimisations at different design

levels as well as to select the best architecture for realising
the function on the target FPGA. Using the scheduling com-
mands, a developer can specify FPGA-specific optimisations
such as loop pipelining, unrolling and vectorisation, as well as
the type of communication with the off-chipmemory. FROST
analyses the IR and manipulates function ASTs to apply
FPGA-oriented transformations and optimisations. It then
analyses the updated ASTs to identify libraries and vari-
able data types for HLS code generation. FROST generates
HLS-friendly C/C++ code (the ‘‘synthesisable behavioural
code’’ in path 2b©), and applies the remaining scheduling
commands as HLS annotations. The generated HLS code
can be synthesised and implemented on Xilinx FPGAs using
the SDAccel toolchain, which involves Vivado HLS (the
‘‘behavioural HLS tool’’ in path 2b©) in it.

6) CAOS

CAD as an Adaptive Open-platform Service (CAOS) [83] is a
design platform developed to help application designers iden-
tify and optimise kernel functions for hardware acceleration.
It also helps produce efficient, fine-tuned, accelerators for
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the FPGA, by generating the runtime management and the
configuration files needed.
The tool takes as inputs the application code written in

C/C++, datasets for code profiling, and details of the target
FPGA. Users are encouraged to make use of pre-defined
architectural templates, which describe the computational
model of the hardware accelerator and how it communicates
with the off-chip memory. This not will only improves the
performance of the hardware implementation but also facili-
tates and improves the analyses and optimisations that might
need to be carried out on the corresponding algorithms later
in the CAOS workflow.
The CAOS interactive design flow consists of three phases:

frontend, function optimisation, and backend. In the frontend
phase, CAOS generates an IR. Using the IR and through
application profiling, it then pinpoints the bottleneck func-
tions (core/kernel functions) that may benefit from being
offloaded onto the FPGA as accelerators. It also gives some
hints to the designer on how the application can be parti-
tioned into FPGA- and CPU-friendly functions. To do that,
the CAOS frontend performs an applicability check which is
meant to find suitable architectural templates for the applica-
tion code [89].
In the functional optimisation phase, based on the archi-

tectural template suggested in the frontend phase, and using
a series of static analyses and hardware resource estimations
on the candidate functions for FPGA acceleration, CAOS pro-
vides performance and resource estimates for the functions
offloaded to the FPGA, and suggests a range of optimisation
strategies including, but not limited to, loop pipelining, loop
tiling and loop unrolling. This design loop may iterate until
the system developer is satisfied with the application perfor-
mance and the design meets the provided constraints.
In the backend phase, CAOS produces both the runtime

for executing the CPU functions and the final bitstreams
needed to configure the FPGAs within the system, by lever-
aging the specific FPGA vendor tools (high-level synthesis
and hardware synthesis tools) including Xilinx’s SDAccel
and Vivado HLS as well as MaxCompiler from Maxeler
Technologies, based on the selected architectural template.
Wherever possible, the backend can also support runtime
reconfiguration of the FPGA devices through partial dynamic
reconfiguration [90].

C. DOMAIN-SPECIFIC LANGUAGE (DSL) FOR HLS 2c©
Although HLS tools are improving, the benefit delivered by
an FPGA hardware accelerator still depends strongly on the
system developers’ hardware expertise.
Domain-Specific Languages (DSLs) are another promis-

ing step towards design automation [91]. A DSL can be
used to describe a domain-specific computing system at a
higher level of abstraction than an HDL. This frees the system
developers from hardware-influenced programming details
so they can focus on describing the domain-specific design.
At the same time the DSL can improve the efficiency of the
FPGA accelerator by matching computing patterns typical of

the domain with well optimised hardware. TABLE 4 shows
current DSL tools for HLS.

1) OptiML DSL

An automated design framework for realising FPGA
accelerators from high-level programs written in OptiML
is presented in [92], [102]. OptiML is a Scala-embedded
machine learning DSL implemented using the Delite com-
piler framework [103], which provides a programming envi-
ronment similar to MATLAB that supports machine learning
code structures.

Using OptiML the parallelism of the application can be
efficiently identified, possible optimisation opportunities can
be located, domain-specific operations can be mapped into
the corresponding structured computation patterns and, as a
result, the best architecture template (which describes how
different hardware modules in the final realisation need to be
connected) for FPGA implementation can be suggested.

As shown in FIGURE 11 the automated OptiML method-
ology first takes an application program written in OptiML.
Then the Delite compiler (the ‘‘DSL compiler’’ in path 2c©
in FIGURE 1) applies general optimising transformations,
as well as domain-specific algorithms (based on the DSL
domain). The Delite compiler also extracts DSL opera-
tions from the input and maps them onto a collection
of serial/parallel computational patterns or kernels (the
‘‘intermediate representation’’ in path 2c© in FIGURE 1).
In addition, the compiler constructs the dependency graph
expressing the order those kernels must be executed in
the final FPGA implementation. The Delite compiler also
selects the best system-architecture template that expresses
the way hardware kernels are needed to interconnect on the
FPGA.
Then for every kernel received, the kernel synthesis

stage (the ‘‘synthesisable code generator’’ in FIGURE 1)
synthesises multiple hardware realisations (or variants) with
different area/performance trade-offs but with the same com-
putational functionality as the corresponding kernel, using the
configuration information about the target FPGA as well as
the nominated system-architecture template.
The next step in the flow, system synthesis takes the

many possible hardware realisations and all the information
extracted during compilation, and finds the combination of
hardware variants that provides the best performance within
the design constraints and the FPGA resource budget. Using
the system-architecture template, the selected variants are
connected together to form the final design’s data path. This
stage also extracts the final hardware system’s control unit
from the application’s dependency graph generated by the
Delite compiler. In the final step of the workflow, the Xilinx
Vivado HLS (the ‘‘behavioural HLS tool’’ in FIGURE 1)
is used to generate the RTL representation, produce the
bitstream and program the target FPGA.
Similar to OptiML, there are OptiQL, OptiMesh and

OptiGraph DSLs for data querying and transformation,
mesh computation and graph analysis [104] applications
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TABLE 4. Current DSL tools for HLS.

respectively. These all use the Delite compiler as their back-
end to transform input DSL to an IR, explore and perform
possible optimisations, and generate HLS-friendly parallel
code for hardware synthesis. The Delite compiler, which was
originally developed for heterogeneous platforms including
CPUs and GPUs, has been modified by various research
teams so it can target FPGAs through Xilinx Vivado HLS and
also other HLS tools such as the Maxeler MaxCompiler [12]
and vMagic [105].

2) FPGA HLS BASED ON THE PolyMage DSL

PolyMage [93] is a complete framework including a
new Python embedded DSL and a model-driven com-
piler (an optimiser and an autotuner) that can implement
high-performance image processing pipelines described in
the PolyMage DSL onto reconfigurable hardware. While
the image processing pipeline must be in PolyMage DSL,
the rest of the application software can be expressed in other
high-level languages.
The user develops code in PolyMage DSL (the ‘‘manual

coding’’ in path 2c© in FIGURE 1) that describes pipelines

as directed acyclic graphs (DAGs). In these graphs each
pipeline stage is mapped to a processing node and the depen-
dencies among the stages are represented by the vertices.
The PolyMage compiler (the ‘‘DSL compiler’’ in path 2c©
in FIGURE 1) takes the pipeline specification from the
DSL and automatically extracts the ‘‘pipeline graph’’ (the
‘‘intermediate representation’’ in path 2c© in FIGURE 1).
The compiler also checks static bounds, inconsistencies and
invalid accesses, and also inlines nested functions wherever
necessary.

The next step carried out by the compiler is running a
model-driven heuristic to break the pipeline into a num-
ber of smaller groups of stages. The process continues
with optimisation via the overlapped tiling technique for a
set of heterogeneous functions (pipeline stages) and con-
structing schedules for overlapped tiles. The PolyMage
compiler then iteratively merges groups until no further
merging is possible. Generating the HLS code (in C++ aug-
mented with directives/pragmas) and auto-tuning are the final
steps (corresponding to the ‘‘synthesisable code generator’’
in FIGURE 1).
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FIGURE 11. Overview of OptiML-based HLS methodology [92].

FIGURE 12. Workflow of PolyMage-HLS for FPGA [107].

Using the PolyMage compiler, researchers in [106],
[107], introduce PolyMage-HLS, a technique to efficiently
realise image processing pipelines, already described in the
PolyMage DSL, onto FPGAs. As shown in FIGURE 12,
PolyMage-HLS can be considered as an FPGA backend that
translates an input that expresses image processing stages
into an equivalent HLS C++ code that can be synthesised
on FPGAs using conventional HLS suites (the original Poly-
Mage compiler [93] produces only OpenMP C++ outputs).
It should be noted that the code generator, as part of the new
PolyMage DSL compiler, automatically annotates (restruc-
tures) the output C++ code with appropriate pragmas to
make it an optimised HLS code that can generate an efficient
HDL.

The HeteroCL programming platform is anther, more
recent, Python-embedded DSL that captures the design at a
very high-level of abstraction and hence, separates the pro-
cessing algorithm from hardware-related concerns, including
compute/data customisation and memory architectures [108].

3) FPGA HLS BASED ON HALIDE DSL

Halide [94] is a DSL specifically designed for
high-performance image and array processing code for a wide
variety of CPU families and operating systems, as well as
GPUs capable of running APIs in CUDA, OpenCL, OpenGL,
OpenGL Compute Shaders, Apple Metal and Microsoft

Direct X 12. Like many other DSLs, which are based on con-
ventional software programming languages, Halide is actu-
ally an internal DSL in C++ such that the system developer
can use Halide’s C++API to express the pipelined structures
needed for effective implementation of image-processing
algorithms.

The main contribution of the Halide workflow is that the
implementation of the algorithm is separated from the algo-
rithm’s resource assignment schedule. As a result, any modi-
fication in the execution schedule does not necessarily change
the computing algorithm. This helps application designers
experiment with different scheduling schemes such as loop
nesting, parallelisation, loop unrolling and vector instructions
to tune the scheduling for maximum performance.

The Halide DSL and its compiler (the ‘‘DSL compiler’’
in path 2c© in FIGURE 1) have recently been upgraded to
support HLS code generation for FPGA acceleration [109],
[110]. System developers can now capture the hardware
functionality at a very high level of abstraction, and can
also generate the complete software application including the
sequential part of the code that runs on the CPU, and which is
responsible for communicating with the functions offloaded
onto the FPGA. This workflow is illustrated in FIGURE 13.

FIGURE 13. Halide DSL compilation flow for FPGA HLS [110]. Blue blocks
are new, green blocks are unchanged/existing Halide [94] compilation
steps.

In the Halide DSL workflow for FPGA HLS, once a few
optimisations are performed, the final IR of the pipeline is
simultaneously processed by two code generator tools, HLS
and LLVM. While the former (the ‘‘synthesisable code gen-
erator’’ in FIGURE 1) translates the FPGA-friendly func-
tions into HLS-C++ code, the latter converts the rest of
the IR into a C++ wrapper. Wherever applicable, using a
synthesisable C++ template library, the HLS code generator
also automatically incorporates HLS pragmas to implement
loop pipelining and array partitioning into the final design
realised on the FPGA. The final bitstream generation and
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FPGA programming are carried out using third-party HLS
tools such as Xilinx Vivado HLS (the ‘‘behavioural HLS
tool’’ in FIGURE 1).
GENESIS [111] is another work that uses Halide with a

new DSL source-to-source compiler for FPGA implemen-
tation (the ‘‘synthesisable code generator’’ in FIGURE 1).
By analysing and transforming the input code (Halide’s out-
put), this FPGA backend is able to generate highly opti-
mised HLS C++ code that can eventually be realised as
an efficient hardware accelerator running a specific image
processing algorithm on the target FPGA by using the Xilinx
Vivado HLS compiler [112]. The workflow is illustrated in
FIGURE 14.

FIGURE 14. FPGA HLS workflow through combination of Halide and
GENESIS [112].

In conventional domain-specific hardware design work-
flows, the optimised implementation can be achieved by
heuristic search through the design space but this requires
lots of manual coding. It is claimed the GENESIS com-
piler can reduce this coding effort by controlling different
performance-affecting factors just by scheduling the func-
tions in Halide generated outputs.
In addition to major works exploiting the Halide com-

piler within their toolchain, there are a number of projects
such as [113]–[115] that follow the same workflow but
with either extended versions of the Halide compiler
or Halide-inspired DSL compilers to support their own
domain-specific structures.

4) DARKROOM DSL

Darkroom [95] is a Terra-embedded [96] DSL that can cap-
ture image processing algorithms as DAGs of basic image
processing operations. By restricting image operations to
fixed-size windows of pixels, Darkroom can generate very
efficient hardware accelerators on the target FPGA that ben-
efit from the line-buffering technique in which intermediate
data passing between pipeline stages is saved in on-chip
buffers.

FIGURE 15. Overview of Darkroom DSL workflow [95].

After the system designer describes the application in
Darkroom DSL, the high-level code is transformed into
a DAG (the ‘‘intermediate representation’’ in path 2c©
in FIGURE 1) of high-level image processing operations
(or the Darkroom IR) by the Darkroom compiler (the ‘‘DSL
compiler’’ in path 2c© in FIGURE 1). Then an integer lin-
ear programming (ILP) solver analyses and optimises the
design’s IR and converts it into a simple and optimised
line-buffered pipeline that processes one input pixel at a time
and as a result, generates one pixel of output at a time. In the
next step, the ILP module (the ‘‘synthesisable code gener-
ator’’ in FIGURE 1) represents the candidate pipelines for
hardware acceleration in Genesis2 [116], a Verilog metapro-
gramming language (the ‘‘synthesisable behavioural code’’
in FIGURE 1), that can be later translated into RTL Ver-
ilog using a code generator (the ‘‘behavioural HLS tool’’
in FIGURE 1).

A Halide inspired DSL language, Rigel [100], is another
framework for implementing optimised image processing
accelerators on FPGAs, and is based on the Darkroom frame-
work. It can be understood as an extension to Halide that
supports more advanced kernels as well as static and dynamic
scheduling.

5) HIPAcc DSL

Heterogeneous Image Processing Acceleration (HIPAcc)
framework [97] is shown in FIGURE 16. It is a DSL and
source-to-source compiler that supports C/C++, CUDA,
OpenCL, Renderscript, and HLS-friendly C/C++, which is
able to produce low-level code for image processing kernels
on a wide range of GPUs, CPUs and FPGAs.

Like other DSLs, image processing algorithms are cap-
tured in the frontend as DSL code using embedded C++

template classes predefined in HIPAcc. When the code is
supplied to the HIPAcc workflow, the image processing struc-
tures are detected and translated into an AST using then
Clang/LLVM compiler (the ‘‘DSL compiler’’ in path 2c© in
FIGURE 1). In the next step, HIPAcc parses the AST detect
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FIGURE 16. HIPAcc framework and its target architectures [97].

data dependencies and hence, to form the internal HIPAcc

IR and construct the application’s dependency graph (the
‘‘intermediate representation’’ in path 2c© in FIGURE 1). The
workflow can apply common transformations on the AST
followed by vendor-specific AST transformations (Xilinx or
Intel) for high performance implementation of the image
processing algorithms as FPGA accelerators. The workflow
then translates the AST representation into either HLS C++

code (for Xilinx FPGAs) or OpenCL (for Intel FPGAs) using
the pretty printer from Clang (the ‘‘synthesisable code gen-
erator’’ in FIGURE 1) and finishes with generating FPGA
synthesisable HDL followed by using the appropriate HLS
tool to generate the bitstream and program the FPGA.

IV. DATAFLOW APPROACH FOR FPGA SYNTHESIS

The semantic gap between sequential HLL code and its
parallel dataflow representation as FSMs often leads devel-
opers to manually optimise hardware accelerators, or to use
a restricted subset of HLL constructs. They have to manu-
ally insert platform-specific annotations, and use particular
libraries to optimise the hardware. These ad-hoc approaches
imposed by the target platform lead to a fundamental change
in the application design and require developers to have
expertise in both hardware and HLL design.
Dataflow-based design, as denoted by label 3©

in FIGURE 1 on Page 174694, allows developers to define
an application in a different way. Dataflow programming
arose from research into parallel computing in the 1970s
[117], [118], however it has only emerged as a suitable
alternative for configuring FPGAs in the last decade. In this
approach, an application is represented as a directed graph,
known as a dataflow graph (DFG), of computational units
with edges defining communication channels between them
to transmit atomic pieces of data known as tokens. As soon as
the inputs of a unit arrive, the unit executes, and its output is
forwarded to the next computational units in the flow. Unlike,
von-Neumann machines [119], there is no global instruction
load or store as each computational unit contains all its rele-
vant instructions. The concurrent execution of computational
units is a good match with the parallel execution of FPGAs.

DFG representations for FPGA implementation can be
defined in two levels of abstractions. At the lower level
they are represented using meta-languages, which can be
transformed to RTL using Dataflow HLS tools. This flow is
denoted as 3a© in FIGURE 1. DFGs can also be defined at
a higher level of abstraction using C or C-originated code.
They are translated to low-level DFG representations using
synthesisable DFG generators as in design flow 3b©. We will
discuss these two approaches in the following sub-sections.

A. DATAFLOW HLS 3A©
In dataflow HLS, the application is expressed using a
meta-language such as MaxJ [120] or CAL Actor Language
(CAL) [13], as a DFG with computation nodes and com-
munication channels between them. Then, using dataflow
HLS tools (e.g. MaxCompiler [12], Exelixi [121]), the hard-
ware specification is transformed to an RTL description. This
approach simplifies the translation to actual hardware, as the
major task is optimisation. It also makes it easier to estimate
resource utilisation and performance directly from the DFG
specification. TABLE 5 provides a list of currently available
dataflow HLS tools, which will be discussed in the following
sections.

1) MaxCompiler

MaxCompiler [12], [128] is a compilation tool from Max-
eler Technologies for their proprietary FPGA-based dataflow
engines (DFEs) [129]. The DFEs are connected to a processor
via PCIe and to other DFEs via high-bandwidth intercon-
nects. The host application is written in C, Python or Fortran
to run on the processor and to manage accelerators. The
compute-intensive portions of the application are written for
DFEs using a Java meta-language named MaxJ (the ‘‘synthe-
sisable DFG representation’’ in path 3a© in FIGURE 1). MaxJ
has been recently standardised as OpenSPL (Open Spatial
Programming Language) by the OpenSPL Consortium [122].
Each DFE configuration contains one or more computation

kernels (i.e. accelerators) for implementing arithmetic and
logical computations and a single manager configuration to
orchestrate global dataflow between kernels and external I/O.
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TABLE 5. Dataflow HLS tools.

FIGURE 17. MaxCompiler component interactions [120].

Dividing an application into kernels and a manager enables
logic to be deeply pipelined without control flow hazards.
FIGURE 17 illustrates the flow and components of the Max-
Compiler. MaxCompiler transforms the kernel code into an
IR, which is manipulated and optimised by simplifying and
flattening the code, expanding objects and converting dynam-
ically determined loops into static loops. This intermediate
form is FPGA neutral. The compiler then maps the kernel
directly to a specific FPGAusing the vendor-specific backend
and produces an RTL description. A DFE configuration file
(.maxfile) is finally generated (not shown in FIGURE 1, as it
is a specific step for MaxCompiler), which contains the con-
figuration bitstream generated from the RTL and other data
used to access the accelerator at runtime. This configuration
file can be accessed by the processor via an automatically
generated SLiC (Simple Live CPU) interface. A Linux-based
runtime called MaxelerOS is used to manage the DFEs. The
compiler also generates cycle-accurate simulation models of
the kernels being compiled.

2) CAPH

CAPH [123], [124] is a domain-specific toolchain for spec-
ification and implementation of stream processing appli-
cations on FPGAs that follows the ‘‘dataflow HLS tool’’
path 3a© of FIGURE 1. It relies upon the actor/dataflow
model of computation. Applications are specified as net-
works of purely dataflow actors exchanging tokens through

FIGURE 18. CAPH toolchain [123].

unidirectional channels using a high-level, polymorphic func-
tional language. The behavior of each actor is defined as a
set of transition rules using pattern matching. The CAPH
toolchain, as shown in FIGURE 18, provides a graph visu-
aliser to represent the actor network, a reference interpreter
and a compiler producing both SystemC and synthesisable
VHDL code. The reference interpreter provides reference
results to check the correctness of the generated SystemC and
VHDL code. It is also used to test and debug programs during
initial stages of application development. The compiler turns
the AST into target-independent IR where each process is
represented as a FSM and channels as unbounded FIFOs.
Two backends produce cycle-accurate SystemC code for sim-
ulation and profiling, and VHDL code for FPGA synthesis.
SystemC execution provides information to refine the VHDL
implementation e.g. to define the sizes of the FIFOs used to
implement channels.
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3) OpenDF

Open DataFlow (OpenDF) [125], [130] is an open-source
initiative of Xilinx. In the OpenDF environment, an algorithm
is defined as a DFG with edges representing the data flow
through lossless directed FIFO channels. The accelerators
are called actors (the ‘‘synthesisable DFG representation’’ in
path 3a© in FIGURE 1) and are written using CAL Actor
Language [13]. Each actor contains one or more actions,
each defining a firing rule of the actor. An action accepts
tokens at its input ports, modifies the state of the actor, and
produces tokens at the actor’s output ports. A CAL-to-HDL
converter (the ‘‘dataflow HLS tool’’ in path 3a©) first trans-
forms the actor to an XML Language Independent Model
(XLIM), which is then transformed into a static single assign-
ment (SSA) form to indicate explicit data dependencies
between parts of the program. Next, in the synthesis stage,
SSA threads are translated into circuits of basic operators
(e.g. arithmetic, logic, flow control and memory accesses)
with directives to specify loop unrolling and register inser-
tion for improving the maximum clock rate. Finally the
CAL-to-HDL converter produces a Verilog RTL to specify
the hardware implementation of the actor.

4) ORCC AND EXELIXI

RVC-CAL (RVC for Reconfigurable Video Coding) is a sub-
set of CAL standardised by ISO-MPEG for describing video
coding specifications [127]. To support RVC-CAL dataflow
applications, a new open-source framework called the
Open RVC-CAL Compiler (Orcc) was introduced in [126].
As illustrated in FIGURE 19, frontend of the Orcc toolchain
translates RVC-CAL into an AST and then to an IR. The
frontend performs semantic validation, type inference and
expression evaluation. The Orcc transformation provides
a type-accurate simulation of an RVC-CAL program by
interpreting its IR. Exelixi [121], which is a successor
of Xronos [131], works as a middle and backend of the
toolchain. It performs a series of transformations and optimi-
sations on the Orcc IR, and converts it to a HLS-C function
HLS stream input and output interfaces. Each RVC-CAL
action is turned into a static function, and state variables
are also declared as static. Next, a HLS tool consumes this
code to generate a synthesisable Verilog representation of the
actor. Exelixi also produces C++ code for the processor and
necessary configuration for host-accelerator interfaces.
A tool for generating C-based HLS descriptions from a

RVC-CAL dataflow description has recently been described
in [132]. This work proposes a new interface synthesis
approach by using a shared memory that behaves as a cir-
cular buffer. Simulation results for one application show this
approach increased throughput by 5.2 times and reduced
latency by a 3.8 times over a state-of-the-art implementation.

B. HIGH-LEVEL DFG REPRESENTATION 3B©
Some behavioural HLS tools (e.g. Vivado HLS and
Intel HLS) provide a mechanism to represent dataflow

computing at the task-level using specific directives. This
approach achieves some goals of dataflow HLS, without
requiring a DSL, but the developers need to have sufficient
knowledge to guide the synthesis process through those direc-
tives and annotations to achieve an efficient design. On the
other hand, although dataflowHLS compilers (e.g.MaxCom-
piler, Orcc and Exelixi) allow developers to specify DFG
applications for FPGAs, they have to use a meta-language
such as MaxJ or CAL. The use of these languages is some-
times tedious and error-prone.

To take the advantage of dataflow approach, there is some
work underway to write DFG applications at a higher level
of abstraction, using C and Scala-based languages. These
are mostly DSLs (e.g. Spatial [133]), with some exceptions
that are not explicitly described as ‘domain-specific’ e.g.
OXiGen [134]. In either case, they use a HLL to describe
dataflow applications, and then use dataflow HLS tools as
discussed in the previous sub-section. TABLE 6 gives a list
of high-level DFG compilers.

1) SPATIAL

Spatial [133], [140] is a DSL and an open-source com-
piler developed at Stanford University. It is based on Delite
Hardware Definition Language (DHDL) [135]. In contrast to
MaxJ [12], which is a lower-level representation to config-
ure Maxeler devices, Spatial is a Scala-based high-level lan-
guage to define hardware accelerators as a hierarchical DFG
(the ‘‘high-level DFG representation’’ in path 3b©). Nodes in
this DFG represent control structures, data operations and
memory allocations, while edges represent data and effect
dependencies. The accelerator code is embedded into the host
program using specific constructs. The language provides
a set of control structures to allow the compiler to iden-
tify parallelism opportunities. Users can exploit the memory
hierarchy through a library of on-chip and off-chip memory
templates. The Spatial compiler (the ‘‘synthesisable DFG
generator’’ in path 3b©) generates an IR, which goes through
a number of passes including controller scheduling, memory
analysis, design space exploration, pipelining and unrolling.
In the final pass, the code generator works on the modified
IR (the ‘‘synthesisable DFG representation’’ in FIGURE 1)
to instantiate hardware modules from a library of custom and
parameterised RTL templates written in Chisel RTL [136].
The generated RTL can be synthesised on a subset of Xilinx
and Intel (Altera) FPGAs. The compiler also generates a
C++ code for the host CPU to control the FPGA accelerator.

2) OXiGen

OXiGen [134] is a very recent hardware compilation tool that
takes a compute-intensive C function and translates it to a
dataflow representation for the MaxCompiler (the ‘‘dataflow
HLS tool’’ in FIGURE 1). The C function is first transformed
into a LLVM-IR at the frontend. The IR passes through a
series of standard LLVM analysis and vectorisation optimi-
sations. Vectorisation allows the user to specify the size of
input and output vectors, and changes the data types of the
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FIGURE 19. Orcc and Exelixi compilation flow [121].

TABLE 6. High-level DFG compilers.

C function to vector types. It permits the MaxCompiler to
improve parallelism and utilise available bandwidth as the
hardware resources for each vector element are replicated and
they are processed in parallel. The IR is then translated into
a custom DFG representation. The tool applies loop rerolling
optimisation to control the amount of hardware replication
for computations within nested loops. The DFG is eventually
translated into a MaxJ kernel and its MaxJ manager (the
‘‘synthesisable DFG representation’’ in FIGURE 1). OXiGen
still does not support recursive functions and loop-carried
dependencies inside the C function.

3) RIPL DSL

The Rathlin Image Processing Language or RIPL is a
stand-alone high-level DSL for developing memory-efficient
image processing applications [137]. Image processing algo-
rithms developed in RIPL can share data between two
image data pipelines. The RIPL DSL is designed based on
higher-order algorithmic skeletons [141] (basic sets of com-
puting patterns) in the image processing domain, and it can
clearly and unambiguously capture highly regular image pro-
cessing stencil computations, as well as recursive functions
with irregular access patterns to nonlocal memory locations.
When processing infinite image streams, the RIPL work-
flow generates pipelines automatically since parallel FPGA
circuits are inherently represented by independent computa-
tional blocks of the RIPL dataflow representation.
The RIPL compiler (the ‘‘DSL compiler’’ in path 2c© in

FIGURE 1) takes the input program in RIPL language and
converts it into dataflow process networks (DPNs) [142],
an IR for image processing computations. Optimisations are
performed on this IR before it is transformed to CAL [13]
(the ‘‘synthesisable HLL code’’ in FIGURE 1). In the next

step, the CAL representation is translated into synthesisable
Verilog using Exelixi [121] (the ‘‘behavioural HLS tool’’ in
FIGURE 1). Finally, Xilinx Vivado is used to convert the
HDL representation into a bitfile to program the FPGA.

4) FAST-LARA

FAST (Facile Aspect-driven Source Transformation) [138]
is a C-based DSL to describe compute-intensive parts of
an application as high-level dataflow representations. FAST
functions (the ‘‘high-level DFG representation’’ in path 3b©)
can be embedded within a C application, and are invoked via
specific annotations to indicate alternate hardware implemen-
tation. The FAST compiler generates interconnected func-
tional kernels that perform computation asynchronously as
soon as all the inputs are available. FAST is combined with
the LARA aspect-oriented design flow [139], as shown in
FIGURE 20. LARA allows non-functional concerns such as
optimisation and transformation strategies to be developed
and maintained independently from the original application
source code. These are described using LARA apects, which
can developed independently from the application and reused
for different applications, thus improving productivity. There
are four types of aspects: system aspects capture transfor-
mations and optimisation strategies that affect the whole
application, such as hardware/software partitioning and run-
time reconfiguration; architectural aspects focus on low-level
design optimisations to improve timing, resource usage or
exploit specialised architectural features; exploration aspects
deal with strategies to generate multiple designs to find an
optimal implementation based on user-specified constraints;
and development aspects that relate to concerns that have an
impact on the design process, such as debugging, kernel simu-
lation and improving compilation speed. LARA manipulates
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FIGURE 20. FAST-LARA design flow [138].

and transforms the FAST description based on these aspects,
and generates configurations (the ‘‘synthesisable DFG repre-
sentation’’ in FIGURE 1) that can be implemented on FPGAs
using the MaxCompiler [12].

V. SPECIFICATION OF AUTOMATIC CODE DEPLOYMENT

TOOLS

Manual HLS tools will eventually evolve into toolchains sup-
porting the Automatic Code Deployment (ACD), however,
as observed in the previous sections, this goal is still some
way off as generation of efficient HLS-compatible code from
CPU-friendly code still requires substantial manual interven-
tion. The primary reason for this is the huge gap between the
sequential, shared-memory execution paradigm of CPUs and
the parallel, distributed-memory paradigm of FPGAs.
In this section, we first elaborate the minimal requirements

to build an ACD toolchain and discuss how far the available
tools are from this suggested model. We then identify a
number of measures that can possibly facilitate this transition.
This is followed by a survey of research to either automate
some stages of HLS or introduce algorithms for systemati-
cally producing HLS-friendly high-level code with improved
performance once implemented in FPGA.

A. AUTOMATIC CODE DEPLOYMENT IN DETAIL

To automate the process of HLL code implementation on
FPGA-based heterogeneous platforms, the following major
tasks are required:

• Automatic identification of compute-intensive hotspot
functions

• Automatic code refactoring to make non-synthesisable
code synthesisable

• Automatic transformation of the source code to optimise
hardware accelerator performance. This may involve

FIGURE 21. Design flow of the ACD toolchain.

automatic insertion of vendor and platform-specific
annotations for parallelism and improved performance

To perform these tasks, we imagine a future ACD toolchain
as illustrated in FIGURE 21. This would leverage exist-
ing open source and commercial tools in different stages
of its flow. The blue blocks in the design flow indicate
where the most research and development effort would be
required, and the dotted lines indicate the optional flow in the
toolchain.

1) STATIC AND DYNAMIC ANALYSIS

To identify functions (or code blocks) for offloading to
FPGAs, it is necessary to first profile the application
using appropriate datasets to analyse the application not
only in terms of execution time but also other impor-
tant metrics including memory bandwidth and power con-
sumption per function. To identify data access patterns,
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data dependencies and memory bandwidths required by the
functions, the extracted information would be represented in
various forms including:

• the Function Call Graph (FCG);
• the data dependency graphs at both inter- and
intra-functional levels; and

• the CDFGs at both inter- and intra-functional levels.

2) HOTSPOT SELECTION

The ACD toolchain would interpret static and dynamic anal-
ysis results to identify the possible parallelism opportunities,
data structures stored in memories, data dependencies and
memory bandwidths required by the functions. This would
involve consideration of aspects including:

• data types
• data dependencies
• data access patterns
• structure of data stored in the memory
• memory bandwidths required by code segments
It would help the toolchain to automatically select hotspots

for hardware offloading. To reduce the time required to
find an optimised solution, mathematical models might be
developed for rapid pre-synthesis hardware performance
estimates.

3) CODE RE-STRUCTURING AND ANNOTATION INSERTION

The ACD toolchain would perform source-to-source trans-
formation on the identified hotspots and insert appropriate
vendor and platform-specific annotations to generate opti-
mised and synthesisable HLS code. This might involve tasks
including:

• selecting HLS-friendly algorithms for some functions;
• inlining functions;
• partitioning functions into smaller sub-functions; and
• refactoring the code to expose parallelism or to reduce
the communication overhead between parts of the appli-
cation running on different computing platforms.

To accomplish this task, the tool would need to draw on
detailed information obtained from the profiling step, and to
address a number of challenges including:

• non-synthesisable data types
• recursive function calls
• OS and domain-specific function calls
• pointers with multiple levels of indirection
• multi-threading
• dynamic memory allocation and dynamic data types
• I/O interfacing
The tool would also need to annotate the code with direc-

tives and pragmas to guide subsequent stages in the toolchain
including to specify optimisation steps, partitioning, and
communication between the parts of the heterogeneous
system.

B. SURVEY OF ATTEMPTS TO AUTOMATE FPGA-HLS

Although it may be some years before the vision of a com-
plete ACD toolchain is realised, the literature does contain

a considerable amount of research devoted to automating
some of the challenging, tedious and time consuming steps of
the code deployment process. The remainder of this section
provides a survey of this work.

1) ACD FOR FORTRAN APPLICATIONS

Very recent work in [6], [7] tries to develop a compiler that
can automatically transform legacy scientific applications
written in FORTRAN into OpenCL programs with optimised
kernels that can be deployed on FPGAs as hardware accelera-
tors.What makes this toolflow special is that with no pragmas
or human intervention, the source-to-source compiler can
automatically refactor sequential and single-threaded FOR-
TRAN 77 code a into a highly optimised OpenCL program
with parallelised kernels ready for FPGA implementation.

While the presented work is able to successfully refactor
the program such that all its functions can be offloaded onto
the FPGAwith minimised CPU-FPGA data bandwidth, it can
be used only for a very limited number of software applica-
tions developed in FORTRAN.

2) LOOP PIPELINING

Loop pipelining is extensively employed as a HLS optimi-
sation since it can improve the performance of the FPGA
hardware by taking advantage of the intrinsic parallelism
between successive loop iterations.

In [143], a technique is introduced that makes it possible
to apply loop pipelining to loops accommodating variables
with uncertain values at compile time. A series of exten-
sions to this work [144]–[146] considers cases in which
the HLS tool identifies loops with uncertain or nonuniform
memory dependencies. For these a side-controller is gen-
erated using parametric polyhedral analysis to dynamically
change the loop iteration speed at runtime such that these
dependencies are not violated. As a result, the synthesised
pipeline can be statically scheduled like any conventional
pipeline.

In an attempt to improve the performance of HLS-based
designs, [147], [148] introduce a combined dynamic and
static technique to optimise irregular loop nests (such as
loops with dynamic-bound inner loops, access to less-regular
data structures and data-dependent workload, irregular
memory access patterns and irregular data dependencies)
through adaptive loop pipelining. Using runtime optimisa-
tion, the synthesised pipeline is equipped with extra hardware
for dynamic scheduling to adapt to the program’s irregu-
lar data-dependent behaviour. The paper [149] presents a
methodology to automatically generate dynamically sched-
uled circuits from C code. It adopts several ideas from
the asynchronous domain, but produces reasonably syn-
chronous designs comparable to standard HLS techniques.
The authors of the paper claim to achieve large performance
improvements with the investment of more resources in com-
parison with static scheduling done in Vivado HLS.

One of the main challenges in synthesising high-
performance loop pipelines via HLS is to implement parallel
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accesses to the memory in nested loops. To provide parallel
data access for the candidate nested loops, an efficient and
low overhead algorithm is presented in [150] that partitions
the memory via caching the reusable data into on-chip reg-
isters. The SPINE compiler [151] automatically generates
FPGA accelerators based on the algorithmic species the-
ory [152]. This approach separates the loop-nest structure
from the operations to be executed, and then post-processes
the synthesised loop-nest (available in HDL), automatically
applying hardware specific optimisations for efficient FPGA
implementation of these loop-nests. A similar approach is
also proposed in [153].

3) AUTOMATED DESIGN SPACE EXPLORATION

FPGA accelerator designs make extensive use of design
options specified at the architecture level of abstraction as
pragmas. These include pragmas to guide loop unrolling, loop
pipelining and array partitioning. However, since pragmas
affect the design’s performance and cost in complex ways,
exhaustively exploring all possible alternatives is very time
consuming. For real-world designs, with time-to-market pres-
sure, this kind of optimisation is likely to be infeasible.
Lin-Analyzer [154] is an accurate FPGA accelerator per-

formance analyser developed to address the design space
exploration challenge at a high-level of abstraction using
pragmas for loop unrolling, pipelining and array partitioning.
Lin-Analyzer is a pre-HLS tool: it does not need to gener-
ate RTL, and hence performs its analysis/exploration very
rapidly without invoking HLS tools. Instead, it gathers infor-
mation about operation dependencies from dynamic profiling
to accurately predict the performance of the final hardware
function.
COMBA is another pre-HLS design space explorer [155],

which covers seven pragmas: loop unrolling, loop pipelining,
array partitioning, function pipelining, dataflow, loop flat-
tening and function inlining. Without invoking an HLS tool,
COMBA’s estimate of C/C++ applications performance is
claimed to be very accurate (average error ≈ 1%) and quick
(a few minutes for real-life applications).
The XPPE [11] is a recent machine-learning-based design

space explorer that estimates the performance for FPGA-
HLS. A correlation between estimated and actual speed-up of
more than 0.97 is claimed. XPPE is a 3-layer fully connected
neural network with 900 hidden neurons that estimates the
speedup of an application once implemented on an FPGA
usingHLS. The neural network receives the resources utilised
on the target FPGA (reported by the HLS tool), factory-made
resources on the target FPGA and domain-based application
characteristics (such as Machine Learning, Image/Video Pro-
cessing, Cryptography andMathematical) as input to estimate
the speedup for the target FPGA compared to a CPU imple-
mentation.
Researchers in [156] introduce FLASH, a post-HLS

scheduling-based simulator for FPGA accelerators, that
is designed to bridge the accuracy/speed gap between
HLS-based simulation and time-consuming RTL-based sim-

ulation of the design, especially for system designers from
a non-FPGA background. Upon receiving the HLS output,
FLASH extracts the application’s scheduling information
and forms a cycle-accurate simulation flow with no alloca-
tion/binding information, while maintaining the C semantics.
This results in a much faster simulation compared to the RTL
counterpart.

Researchers in [157] present HLScope+ (an improved ver-
sion of HLScope [158]), a performance estimator/debugger,
based on a source-to-source transformation for FPGA-HLS.
It takes advantage of a high-level DRAM access model for
a typical FPGA architecture and a HLS-specific automatic
code instrumentation technique targeting high-level cycle
estimation via software simulation. Typical HLS tools only
provide a high-level report of the synthesised design that is
not very useful for identifying regions in the HDL where
performance needs to be improved. HLScope+ fills that
gap by providing module execution times according to a
simulation-based analysis, without the need for RTL. This
augments the reports generated by Vivado HLS to help the
developer to more efficiently explore the design. This anal-
yser also reports on the sources of a wide range of differ-
ent stalls using its stall analysis network that monitors the
on-board execution of dataflow modules.

The FlexCL [159] is a quick and accurate performance and
power estimator for OpenCL kernels offloaded onto FPGAs
via HLS. It estimates performance by running a model for
global memory access alongside computationmodels for pro-
cessing components. It estimates the static power consump-
tion of the FPGA device and global memory. For dynamic
power, FlexCL breaks the kernel execution into hierarchical
phases and applies a CDFGmodel to every level in the hierar-
chy. It uses this to estimate the signal switching probabilities
at each phase level and then sums them up to obtain the overall
average dynamic power.

An analytic design exploration approach for FPGA-HLS
is introduced in [160] which represents the design space
as a lattice [161]. It provides a guided directive (pragma)
selection and directive value-assignment methodology for
very large design spaces by locally searching in the
n-dimensional lattice space. This results in close approx-
imations of the Pareto-optimal FPGA realisations, while
requiring less workload and synthesis runs compared to con-
ventional FPGA-HLS approaches.

Design space explorers that only insert unroll and pipeline
pragmas do not achieve high quality results for applications
with variable loop bounds in their innermost loops. The
work presented in [162] is an FPGA-HLS optimiser and
design space explorer that addresses this shortcoming using a
series of code transformations based on partial unrolling and
pipelining. It also uses a resource/cycle estimation model for
variable loops by interpolating a small number of synthesis
reports from Xilinx Vivado HLS resulting from dynamic
software profiling with real workloads.

A high-level but accurate analytic hardware resource esti-
mator for FPGA HLS accelerators is presented in [163].
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The estimator uses models for FPGA hardware resources
(such as DSPs, BRAMs, LUTs and Flip-flops) to explore the
trade-off between HLS optimisation directives and the area
occupied on the target FPGA with no need to generate the
HDL. MPSeeker [164] and the framework presented in [165]
are other examples of HDL-independent fast design space
explorers, which accurately estimate resource utilisation and
performance of the functions offloaded onto the FPGA via
HLS.
The Supporting uTilities for Heterogeneous EMbed-

ded (STHEM) image processing platform [10] automates
iterative, and otherwise tedious and time consuming FPGA
HLS steps such as performance evaluation, design space
exploration and vendor-specific HLS tool configuration. The
goal is to allow the system designer to concentrate on just
the main application development steps. STHEM consists
of vendor tools, including Xilinx SDSoC 2017.4 and HIP-
PEROS [166], and utilities including: an analysis utility,
which provides the designer the means to improve the per-
formance of the software and HLS code (automatic visual
static analysis based on the code’s CFG, runtime, visual
power/energy profiling using power measurement utility, and
automatic design space explorer through different parts of
the HLS design flow); a power measurement utility, which
is a piece of hardware designed to simultaneously measure
the current for a number of modules and to sample the pro-
gram counters of the cores available on the SDSoC board
under test; a dynamic partial reconfiguration utility, which
helps the system developer to come up with a reconfig-
urable design; and HiFlipVX, an image processing library
providing basic image processing functions for streaming
applications.
A very recent project [167] seeks to address the major

concerns of HLS developers when evaluating HLS designs,
inaccurate timing and resource utilisation summaries pro-
vided by the HLS tools, by introducing Pyramid, a machine
learning framework, that is claimed to evaluate the perfor-
mance and FPGA resource utilisation of an HLS design more
precisely.
Giorgi et al. [168] modify the conventional HLS tool flow

by introducing a new modelling step prior to the design
space exploration stage. This pre-exploration modelling,
which takes advantage of HP-Labs COTSon full-system sim-
ulator [169], can narrow down the design candidates for
FPGA-HLS implementation before they are sent for design
space exploration, resulting in considerable reduction in the
architecture selection process time.
A considerable number of works, such as those reported

in [158], [170]–[174], introduce automated high-level per-
formance in-circuit debugging tools in hardware and/or soft-
ware, mostly via source-to-source compilation, for designs
developed via the FPGA-HLS process.

4) AUTOMATIC PARTITIONING

In [175], a programming framework for legacy C applications
is presented that exploits a gcc-plugin to automatically extract

candidate code segments from the C code for implementation
as hardware functions on the FPGA, and then to synthesise
the selected C regions to the final RTL code as accelerators
that can be invoked by the software part of the application.

Through a series of experiments the authors of [8] develop
a model that can estimate the potential candidates for hard-
ware offloading using a number of software performance
measures such as predictable branches, L1 cache miss, num-
ber of instruction dispatched, main and second execution unit
instructions, and Load/Store instructions (provided by the
CPU’s performance monitoring unit) along with L2 cache
data hits and requests (accessed via the L2 cache controller).
Via a series of thorough studies it is found that, in most
cases, making an accurate pre-synthesis estimate of the FPGA
accelerators performance is not possible just by using soft-
ware metrics unless the prediction model can also benefit
from scheduling and resource allocation information gener-
ated by the HLS tool, as well as information about the system
memory architecture and the program’s CDFG (produced via
instrumented profiling the program on the CPU using real
benchmarks).

5) DATA TRANSFER AND MEMORY INTERFACE ANALYSIS

In HLS, for cases where explicit data communication to and
from the FPGA is preferable (in contrast to exploiting the
sharedmemory), the amount of data to be exchanged between
the FPGA and the rest of the computing system must be
available at design time. Providing this information is very
troublesome, if not impossible, especially when pointers and
dynamic data structures are used in the HLL application.
In [9] a semi-automatic methodology is presented that anal-
yses the source code (or its IR) to identify the size of data
structures referred to by pointers during execution of the C
application. This static tool first analyses the source program
to calculate the maximum possible size of each data structure
passed by a pointer parameter. It is claimed to achieve near
perfect correctness (real size never exceeds the maximum)
and accuracy (real size is very close to the maximum).

An ‘‘automatic data placement framework’’ for heteroge-
neous SoC platforms, supporting FPGAs and CPUs, is pro-
posed in [176]. The framework can be integrated into the
Xilinx Vivado HLS. By solving an integer linear program-
ming (ILP) formulation, the framework finds the optimum
allocation for array objects, proving that data placement
approaches conventionally employed for software-controlled
on-chip memories in CPU/GPU do not provide optimal solu-
tions. The ILP calculations take into account factors such as
how FPGA computation is performed and what the memory
access patterns are.

In [177], a prediction model for optimum partitioning of
any given workload between a CPU and FPGA is presented.
This model, which incorporates the communication overhead
(CPU time plus data transfer latency), provides the system
developer an understanding of the workload size for which
using the FPGA can be beneficial.
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6) AUTOMATIC CODE REFACTORING

The designer of a HLS system may find that some parts
of the code are not synthesisable due to data dependen-
cies (for example between successive iterations of a loop).
Alternatively, code segments may be synthesisable, but when
offloaded the overall performance of the final realisation
on FPGA and CPU still does not meet the application’s
requirements.
‘‘Code refactoring’’ or ‘‘code restructuring’’ can be a solu-

tion for transforming such code segments into HLS-friendly
code. While the concept of code refactoring/restructuring
can be considered to mean any possible change to code,
it is mainly practised for rewriting the program based on:
arithmetic or algebraic identities (such as associativity and
distributively); reshaping memory access patterns (for exam-
ple to reduce memory bandwidth); eliminating unsupported
pointer-based memory accesses; control flow optimisations
(e.g. partial loop unrolling); inlining functions; and substi-
tuting synthesisable algorithms for required functionalities
(for example by using equivalent hardware-friendly function
libraries or IPs).
A very recent work reported in [178] develops machine

learning models, trained using high-level source code, to pre-
dict possible routing congestion in the hardware implementa-
tion via FPGA-HLS, without analysing post-implementation
details after Place and Route. This approach then backtracks
the predicted congestion measures to the HLS IR so they can
be used to spot the congestion causes in the source code.
While using HLS has lowered the design effort for

programming FPGAs, many HLL coding techniques and fea-
tures conventionally exploited by software developers can-
not be used by system designers for FPGA-HLS. On the
other hand, effective hardware realisation on FPGA plat-
forms may need extensive use of hardware specific struc-
tures including FIFOs, CAMs and shift registers. hlslib
[179], a collection of open source software tools, plug-in
hardware modules and sample programs has been developed
to improve the efficiency of HLS-based FPGA. While at
the moment only designs targeting Xilinx FPGA platforms
can benefit from hlslib’s full features, a number of Intel
FPGA OpenCL elements are also covered by the library. For
example, using the hlslib::DataPack class defined in
hlslib/xilinx/DataPack.h the designer can easily
define wide data paths and make use of SIMD parallelisation
to implement vector operation in the HLS code. Other fea-
tures provided by hlslib are common compile-time functions
used in hardware development such as log2, a streaming
implementation of accumulation, and hlslib::Stream

class, an alternative to Xilinx’s native hls::Stream, that
provides a richer interface for HLS streams.
While using libraries of high performance application-

specific IPs is a common practice among RTL designers
developing high-end FPGA realisations, high-level languages
may potentially provide limited space for HLS implementa-
tion of unconventional computations. Uguen et.al. in [180]
try to shrink this gap by developing a plugin for the
source-to-source compiler GeCoS [181] to transform selected

floating-point operations (such as summation, accumulation
and sum-of-products) into sequences of simpler operators
using non-standard arithmetic formats, via IR manipulation
instructed by compiler directives. The workflow receives
required domain-specific information such as the variables
ranges and the application’s acceptable accuracy, and in
turn, by exploiting new application-specific intermediate for-
mats, an alternative HLS-friendly HLL code is generated that
trades computation accuracy with latency and implementa-
tion area by relaxing some tight IEEE-754 and C11 standards
restrictions.

The increasing tendency to implement machine learning
algorithms on FPGAs has been the main motivation behind
developing hls4ml [182], a deep neural network translation
library that automatically compiles a machine learning model
into HLS-friendly code. hls4ml supports common machine
learning models and architectures and provides opportunity
for designers to reconfigure the architectures to explore
different trade-offs between latency, initiation interval, and
resource utilisation, based on the application’s requirements.
hls4ml is able to port fully connected networks trained from
open-source software packages Keras and PyTorch to a Xil-
inx FPGA, supporting a wide variety of activation functions
such as ReLu, tanh, sigmoid and softmax, targeting. By using
automated hls4ml, prototyping a neural network to the target
FPGA can be done much faster than by directly designing the
network architecture for that FPGA via either HDL or HLS.

The source-to-source optimiser toolset introduced in [183]
automatically rewrites the HLL program to improve the
application latency, while maintaining accuracy and resource
usage within in acceptable ranges. This tool, which suits
numerically intensive applications, automatically identifies
opportunities for ‘‘expression balancing’’ (rearranging oper-
ators into a balanced tree to exploit parallelism and construct
more efficient pipelines). It applies the transformations to
the program in different ways to construct a variety of func-
tionally equivalent program candidates and then develops a
4-dimensional Pareto frontier that the system developer can
use to find the trade-off between execution time, accuracy,
FPGA’s LUTs and DSP usage, that most suits most the appli-
cation’s requirements, when realising the design via Xilinx
Vivado HLS.

A framework called AFFIX is presented in [184] that auto-
matically generates FPGA accelerators for a diverse range
of computer vision algorithms based on OpenVX kernels.
Previous similar research projects just covered a small subset
of OpenVX functions and were able to convert only sim-
ple vision-based algorithms through a non-automated flow
to non-optimised FPGA accelerators. It takes as its input
the vision algorithm developed as a DAG by the system
designer. It then converts OpenCV functions used in the
algorithm into optimised OpenCV blocks that can be effi-
ciently synthesised onto the FPGA. The tool develops an
OpenCV version of the OpenVX library with reconfigurable
kernels that can co-run on the CPU and the FPGA, while the
kernels and are able to be exploited even outside the AFFIX
framework.
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VI. CONCLUSION

The motivation for this article was a vision of a software
tool that could automatically deploy sections of code, orig-
inally written for a conventional CPU, to FPGA accelerators
to achieve an implementation advantage, whether that be
latency, throughput, energy or some other optimisation goal.
How close are existing tools to this delivering this vision, and
where are the capability gaps?
To survey and evaluate existing tools we provided a clas-

sification of design flows in FIGURE 1. This classification
has neatly expressed the relationships between many dif-
ferent hardware synthesis tools surveyed under three broad
approaches: manual re-coding, behavioural synthesis, and
dataflow synthesis, as well as variations of these.
Sections III and IV surveyed many commercial and

research tools for code deployment, organised according to
the framework in FIGURE 1. Wherever possible we have
identified the pedigree of these tools and their relationship
to other tools in the survey. For the more widely used or sur-
veyed tools we have provided an overview of salient features
and capabilities.

None of the existing tools are able to fulfil the vision of
fully automatic deployment of general C/C++ code to a
heterogeneous system of FPGAs and CPUs. Capability gaps
include the generation of synthesisable HLS code from HLL
code that uses pointers to pointers or functions, recursive
functions, or dynamic memory allocations. Other challenges
include efficient partitioning of the code, optimisation of
generated hardware, and design space exploration. All of
these are the subject of active research efforts as surveyed in
Section V-B.

This work has also identified a trend that is somewhat
orthogonal to the idea of automatic code deployment. There
is currently significant work in approaches to express the
application in a high level language that is more amenable for
execution on diverse platforms. Examples include the grow-
ing proliferation of domain-specific languages or dataflow
representations.
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