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Abstract

Purpose Large area traffic monitoring with high spatial and
temporal resolution is a challenge that cannot be served by
today available static infrastructure. Therefore, we present an
automatic near real-time traffic monitoring approach using
data of an airborne digital camera system with a frame rate of
up to 3 fps.
Methods By performing direct georeferencing on the
obtained aerial images with the use of GPS/IMU data we
are able to conduct near real-time traffic data extraction.
The traffic processor consists mainly of three steps which
are road extraction supported by a priori knowledge of road
axes obtained from a road database, vehicle detection by
edge extraction, and vehicle tracking based on normalized
cross correlation.
Results Traffic data is obtained with a correctness of up to
79% at a completeness of 68%.
Conclusions With this system we are able to perform area-
wide traffic monitoring with high actuality independent
from any stationed infrastructure which makes the system
well suited for deployments on demand in case of disasters
and mass events.

Keywords Traffic monitoring . Vehicle detection . Tracking

1 Introduction

A society that relies on individual mobility day to day
requires sufficient methods for traffic monitoring and
guidance. Especially daily commuters want to know travel
times for their way to work. Moreover, relief forces are
interested in precise travel times for their routing in case of
emergencies, mass events, and disasters. However, precise
travel time prediction on road networks is one of the most
important concerns and challenges in modern transportation
and traffic sciences. In order to determine traffic flow on
different road types automatically, several approaches are
possible. In general, traffic monitoring is mainly based on
data from conventional stationary ground measurement
systems such as inductive loops, radar sensors or terrestrial
cameras. All ground measurement systems embedded in
road infrastructure deliver precise traffic data punctually
with high temporal resolution, but their spatial distribution
is still limited to selected motorways and main roads. The
low spatial resolution of these systems makes area-wide
traffic monitoring difficult. New approaches collect data by
means of mobile measurement units which flow with the
traffic. The so called floating car data (FCD, [4, 17])
obtained from taxicabs can deliver useful traffic informa-
tion within cities, but they are only available in few big
cities today. Furthermore, the traffic information available
from this source depends on the routes taxicabs drive, but
taxi drivers tend to avoid busy roads during rush hours.
Hence, only few or no data will be available on roads
burdened with commuter traffic. In order to contribute to
area-wide traffic monitoring by remote sensing, several
projects, based on airborne optical and SAR sensors as well
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as SAR satellite sensors are currently running at DLR or
have already been concluded. In Reinartz et al. [16] the
general suitability of image time series from airborne
cameras for traffic monitoring was shown. Tests with
several camera systems and various airborne platforms, as
well as the development of an airborne traffic monitoring
system and thematic image processing software for traffic
parameters were performed within the projects “LUMOS”
and “Eye in the Sky” [3, 8].

One of the actual projects is called “ARGOS” (AiRborne
wide area hiGh altitude mOnitoring System). It aims on
traffic monitoring in case of mass events and disasters. It is
intended to support security authorities and organisations as
well as rescue forces during these occasions. Collected
traffic data will be provided to the relief forces via a traffic
portal called “DELPHI” (e.g. [1]). Within the ARGOS
project we are currently developing a system that will be
able to deliver area-wide traffic data in near real-time by
using airborne remote sensing technologies. It is mainly
based on our newly developed 3 head digital frame sensor
system, namely the “3K camera”. This sensor is capable of
wide-angle imagery at a high repetition rate (up to 3 fps).
The big advantage of the remote sensing techniques
presented here is that the measurements can be applied
nearly everywhere (exception: tunnel segments) and there
are no dependencies on any third party infrastructure.
Restrictions due to clouds and fog are overcome by using
airborne SAR data, which will be implemented in the
ARGOS project in future. First results on traffic monitoring
based on remote sensing SAR systems have been already
shown in e.g. Bethke et al. [2], or Suchandt et al. [19].

Up to now, there was also a restriction that optical data were
not used during nights, but in our approach we show the capa-
bility of optical camera data to monitor traffic during nights.

Airborne imagery provides a high spatial resolution
combined with acceptable temporal resolution depending
on the flight repetition rate. However, automatic traffic
monitoring from airborne optical imagery requires complex
image analysis methods and traffic models. Moreover,
estimates for travel times through the area of aerial
surveillance can directly be determined from extracted
traffic parameters [11]. Although this prototype airborne
traffic monitoring system is still deployed on demand
during disasters and mass events, future continuous
missions for traffic monitoring in congested urban areas
may be possible based on future carriers like unmanned
aerial vehicles (UAVs) or high altitude long endurance
(HALE) aircrafts.

The publication is arranged as follows: Section 2 gives
an overview of the sensor system and the obtained testing
data, while Section 3 describes the developed algorithms
for traffic monitoring in detail. In Section 4 the results from
testing the algorithms are presented. Section 5 demonstrates

the night shot capabilities of the system and Section 6 gives
conclusions in brief.

2 System and database

The near real-time monitoring system consists of two parts.
One part is installed onboard the aircraft, consisting of the
3K camera system, a real-time GPS/IMU unit, one PC for
each single camera processing image data, one PC for
traffic monitoring tasks, a downlink-antenna with a band
width of 30 Mbit/s automatically tracking the ground
station, and a PC for steering the antenna. The ground
station mainly consists of a parabolic receiving antenna,
which is automatically aligned with the antenna at the
aircraft, and a PC system for visualization of the down-
linked images and traffic data. Given an internet access at
the place of the ground station, the obtained traffic data will
be directly transferred to the DELPHI traffic portal.

2.1 The 3K-camera

The 3K-camera system (3K: “3Kopf”=3 head) consists of
three non-metric off-the-shelf cameras (Canon EOS 1DsMark
II, 16 Mpix). The cameras are arranged in a fixture unit with
one camera looking in nadir direction and two in oblique
sideward direction (Fig. 1), which leads to an increased FOV
of max 110°/31° in across track/flight direction. The camera
system is coupled to a GPS/IMU navigation system, which
enables the direct georeferencing of the 3K optical images.
Boresight angle calibration of the system is done on-the-fly
without ground control points based on automatically
matched three-ray tie points in combination with GPS/IMU
data [12].

Figure 2 illustrates the image acquisition geometry of the
DLR 3K-camera system. Based on the use of 50 mm Canon
lenses, the relation between airplane flight height, ground

Fig. 1 DLR 3K-camera system consisting of three Canon EOS 1Ds
Mark II, integrated in a ZEISS aerial camera mount, and an IMU (red box)
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coverage, and pixel size is shown, e.g. the ground sampling
distance (GSD) at a flight height of 1,000 m is 15 cm in
nadir (20 cm in side-look) and the image array covers up
2.8 km in width.

2.2 The onboard system

For processing images acquired by the 3K-camera system
in real time we are currently developing a distributed image
processing system consisting of five PCs that will be on
board of the plane. Each of the three cameras is connected
via firewire to one PC. These PCs will be responsible for
image acquisition, for orthorectification of images in real
time (direct georeferencing) and for street segmentation.
The fourth PC will perform vehicle detection and vehicle
tracking. The fifth PC mosaikes images and sends them
down via an S-Band microwave link. Thus, many image
processing modules run concurrently on several PCs.
Within the project ARGOS a new middleware called
DANAOS1 (Distributed middlewAre for a Near reAl-time
mOnitoring System) has been recently developed at DLR.
In order to organize the real time modules this middleware
is running on each PC. DANAOS handles inter-process
communication over the network, provides name services,
and synchronizes access to shared memory. The middle-
ware also supports the integration of different time depend-
ing processes, which are distributed on a computer network.
For direct georeferencing and traffic monitoring several
image processing algorithms have been developed and have
to be controlled in their time dependencies. This will be the
main tasks of the middleware. For increased performance a
shared memory access is implemented in DANAOS. This
means, that modules are supported to exchange large data,
especially image data without copying it explicitly. There-
by, the middleware administrates all shared memory access.
For safety computation it monitors the running modules and
is able to restart them.

2.3 Direct georeferencing

Direct georeferencing is performed by orthorectifying images
using graphic processing units (GPUs) of the PCs. Orthor-
ectification of images is the main process for all further
processing steps like road segmentation and car tracking. Only
if the subsequent images fit geometrically into the right
coordinate system, the overlay with road databases can be
achieved. Also it is necessary for integrating the image data
into Geographic Information Systems (GIS). Onboard the
GPS/IMU data are available in real time with 128 Hz, which
are necessary for the orthorectification process. In order to
rectify images Digital Surface Models (DSMs) are loaded
from a database prior to flight. For holding the appropriate
DSM available in memory, a Kalman-Filter is applied
estimating the most probable area and triggering the DSM
loading process. Then, the DSM covering this area is
triangulated as fast as possible and loaded into the GPU.
Beyond attitude and position, further parameters of interior
and exterior orientation are required for orthorectification: The
focal length, and the distortion parameters, as well as the
distance from principle point to projection centre have been
determined during a laboratory calibration. Up to now, we
remove the radial distortion of images from the original image
analytically, but we will accelerate the computation by adding
an appropriate 3d-mesh to the triangulated DSM. The exterior
parameters are estimated prior to traffic monitoring flight
campaigns. This is done on-the-fly without ground control
points based on automatically matched three-ray tie points in
combination with GPS/IMU data [12].

2.4 Test site and 3K imagery

The processing chain was tested on data obtained at the
motorways A95 and A96 near Munich, A 4 near Dresden,
and the “Mittlere Ring” in Munich. The “Mittlere Ring” is a
circular main road and serves as the backbone for the city
traffic in Munich. It and the adjacent Motorways A95 and
A96 are used to full capacity regularly on weekdays during
rush hour, and are quite populated all day long. Therefore,
these roads are good candidates to find a broad spectrum of
traffic situations ranging from free flowing traffic to traffic
jam. Hence, they are good targets for aerial images obtained
for testing traffic monitoring applications. However, data
were taken on 30 April 2007 at noon, which was not during
rush hour at all. Data acquisition was performed on two
flight strips, one flying ENE, covering the A96 and the
western part of the “Mittlere Ring”, the other one flying
WSW. Thereby, the southern part of the “Mittlere Ring”
and the motorway A95 were imaged. The flight height was
1,000 m above ground for both strips which leads to a GSD
of 15 cm in the nadir camera and up to 20 cm in the side-
look cameras. After that, the flight track was repeated at a1 DANAOS was king of ARGOS in the fifteenth century before Chr.

Fig. 2 Illustration of the image acquisition geometry. The tilt angle of
the sideward looking cameras is approx. 35°
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flight level of 2,000 m above ground. The data obtained at
the motorway in Dresden was recorded during a flight
campaign on 4 August 2008 at a flight level of 1,500 m.
This campaign was performed in order to validate traffic
data extracted from SAR satellite “TerraSAR-X” images,
which were recorded at the same time and place.

For further traffic analysis, 3K images were orthorectified
using onboard GPS/IMU measurements with an absolute
position error of 3 m in nadir images and around one pixel
relative. The relative georeferencing error between successive
images mainly influences the accuracy of the derived vehicle
velocities. Based on simulations and real data, the accuracy of
the measured velocity was around 5 km/h depending on the
flight height [9].

2.5 Road database

Data from a road database will be used as a priori information
for the automatic detection of road area and vehicles. One of
these road databases has been produced by the NAVTEQ
Company. The roads are given by polygons which consist of
piecewise linear “edges,” grouped as “lines” if the attributes of
connected edges are identical. Up to 204 attributes are
assigned to each polygon, including the driving direction on
motorways, which is important for automated tracking.
Recent validations of position accuracy of NAVTEQ road
lines resulted in 5 m accuracies for motorways.

3 Processing chain

On the data obtained as described before, the processing
chain for traffic monitoring was tested. This experimental
processing chain, consisting of several modules can be
roughly divided into three major steps. These are road
extraction, car detection, and car tracking (see also Fig. 4).

3.1 Road extraction

For an effective real time traffic analysis, the road surface
needs to be clearly determined. The road extraction starts
by forming a buffer zone around the roads surfaces using a
road database as described above as a basis for the buffer
formation process. In the next step, two different methods
for further feature analysis can be applied. Both modules
automatically delineate the roadsides by two linear features.
One module works as follows: Within the marked buffer
zone, edge detection and feature extraction techniques are
used. The edge detection is based on an edge detector
proposed by Phillipe Paillau for noisy SAR images [15].
Derived from Deriche filter [6] and proposed for noisy SAR
images, we found this edge detector after ISEF filtering
[18] efficient for our purpose of finding edges along the

roadsides and suppressing any other kind of surplus edges
and noise present. With this method, mainly the edge
between the tarry road area and the vegetation is found. The
alternative module searches for the roadside markings by
extracting lines on a dynamic threshold image. In this
module, only the longest lines are kept representing the
drawn through roadside marking lines. As a side effect, the
dashed midline markings are detected in this module, too.
These markings often cause confusion in the car detection,
since they resemble white cars. However, these false alarms
can be deleted from car detection, since the module for
roadside marking detection finds the dashed midline
markings and stores them in a separate class.

In a next step, the roadside identification module, again
with the help of the road database tries to correct possible
errors (gaps and bumps) that might have crept in during the
feature extraction phase. Furthermore, it smoothes the
sometimes curly road boundary detections from feature
extraction (see Fig. 3). Gaps due to occlusion of the road
surface by crossing bridges are closed, if gapping is not too
large. This has the advantage that the course of the road is
not lost, although the road itself is not seen at this place.
However, it could lead to false alarms in the car detection.
If cars are crossing the bridge, they might be assigned
belonging to the occluded road below the bridge spuriously
in car detection. However, we try to sort them out by
alignment, since they are elongated perpendicular to the
course on the occluded road.

3.2 Vehicle detection

With the information of the roadside obtained in the pro-
cessing step described before, it is possible to restrict vehicle
detections and tracking only to the well determined road areas.
This increases performance and enhances the accuracy of
vehicle detection. Based on this, we developed an algorithm
for the detection of vehicles which is described in the
following.

A Canny edge algorithm [5] is applied and a histogram
on the edge steepness is calculated. Then, a k-means
algorithm is used to split edge steepness statistics into three
parts which represent three main classes. These three
classes are namely edges belonging to vehicles, edges
belonging to roads, and edges within road and vehicle
edges, and therefore not yet classifiable.

Edges in the class with lowest steepness are ignored,
while edges in the highest steepness class are directly
assumed to be due to vehicles. For the histogram part with
medium steepness a hysteresis threshold is applied exam-
ining neighbourhood in order to assign edges in this class
either to the vehicle or the road class. In the next step, the
edges belonging to the roadside markings still contaminat-
ing the vehicle class are eliminated from the histogram.
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As the roads are well determined by the road extraction,
these roadside lines can be found easily. Thus, the
algorithm erases all pixels with high edge steepness laying
on a roadside position. These pixels are considered mostly
belonging to the roadside markings. Thereby, the algorithm
avoids erasing vehicles on the roadside by observing the
width of the shape. Since vehicles are usually broader than
roadside lines, this works well. Midline markings, which
were detected by the roadside identification module based

on the dynamical threshold image, are erased, too. Then,
potential vehicle pixels are grouped by selecting neigh-
boured pixels. Each region is considered to be composed of
potential vehicle pixels connected to each other. With the
regions obtained a list of potential vehicles is produced.
In order to mainly extract real vehicles from the poten-
tial vehicle list, a closing and filling of the regions is
performed. Using closed shapes, the properties of vehicle
shapes can be described by their direction, area, the length
and width. Furthermore, it can be checked if their align-
ments follow the road direction, and its position on the road
can be considered as well. Based on these observable
parameters, we created a geometric vehicle model. The
vehicles are assumed to have approximately rectangular
shapes with a specific length and width oriented in the road
direction. Since they are expected to be rectangular, their
pixel area should be approximately equal to the product of
measured length and width and vehicles must be located on
the roads. In case of several detections with very low
distances the algorithm assumes a detection of two shapes
for the same vehicle. Then, it merges the two detections
into one vehicle by calculating averages of the positions.
Finally, based on this vehicle model, a quality factor for
each potential vehicle is found and the best vehicles are
chosen. For traffic monitoring, the camera system is in a
recording mode, that we call “burst mode”. In this mode,
the camera takes a series of four or five exposures with a
frame rate of 3 fps, and then it pauses for several seconds.
During this pause, the plane moves significantly over
ground. Then, with an overlap of about 10% to 20% to

Image 1 

Road Extraction 

Vehicle Detection 

Vehicle Tracking 

Image 2 

Road 

Database 

…

Fig. 4 Scheme of the implemented processing chain for a knowledge
based road extraction, vehicle detection, and vehicle tracking on an
image sequence. Mind that road extraction and vehicle detection is
only performed on the first image of each exposure burst

Fig. 3 Examples for road extraction (clipping from nadir images).
Upper panel shows line detections at a flight height of 1,000 m,
middle panel shows the resulting road area after smoothing/gap filling

(A 96 near exit Munich-Blumenau, GSD of 15 cm). Lower panel

shows the resulting road extraction on an image obtained at a flight
height of 1,500 m (motorway A 4 near Dresden, GSD of 21 cm)
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the first exposure “burst”, the second exposure sequence is
started. Continuing this periodical shift between exposure
sequences and brakes, we are able to perform an area-
wide traffic monitoring without producing an overwhelm-
ing amount of data. Our strategy for traffic monitoring from
this exposures obtained in “burst mode” is to perform a car
detection only in the first image of an image sequence and
then to track the detected cars over the next images (Fig. 4).

3.3 Vehicle tracking

Vehicle tracking is based on matching by normalized cross
correlation (e.g. [13]). Tracking is performed on each
consecutive image pair within an exposure burst. With the
vehicle detection done on the first image of the burst,
vehicle tracking starts with the image pair consisting of the
first and second image of an image sequence. For each
vehicle detected in the first image, a circular template
image of a certain radius (e.g. r=3 m for cars) is generated
at the position of the vehicle detection in the first image.
The vehicle position is transferred into the second image.
There, a rectangular search window is opened aligned into
driving direction starting at the vehicle position obtained
from the detection in the first window. Thereby, driving
direction is obtained from the road database.

The length of the search window depends on the
maximum expected velocity for the road and the time
difference between the two images. Then, the normalized
cross correlation between the template image and second
image is calculated while the template image is shifted all
along the search window. The calculated correlation value
gives a score for a possible hit. This value obtained lies
between 0.0 and 1.0. We store the maximum score and
the corresponding position in the second image. Further-
more we require the score to exceed a certain value for
keeping it as a hit. We reached maximum correctness with
an acceptable completeness in tracking by setting this
score threshold to a value of 0.9. A vehicle detection that
does not reach this threshold during correlation at any
position in the search window is not tracked anymore.
The program for tracking can be restarted with the second
and the third image (and with further consecutive pairs of
the exposure burst in succession) in order to track the
vehicles through a whole image sequence. For vehicles
that disappear at image borders or below bridges during
an exposure of the sequence (but have been detected or
tracked in the image before) the tracking algorithm does
not dump a match. This means that disappeared vehicles
are normally not confused with other vehicles or objects,
because of the high matching threshold of 0.9. Vehicles
occluded by bridges or other objects may be detected
again after reappearance by a new vehicle detection
performed on a further exposure sequence. However, they

appear as new detections and loose their identification
relation, but this is irrelevant on our application. Due to
illumination invariance vehicles normally can be tracked if
they shift from fully illuminated regions into shadow
regions. In order to increase correctness, cross correlation
is performed as matching in RGB color space. Here, the
average score obtained from cross correlation in each of
the three channels is calculated and stored. This helps
since vehicles are varicoloured objects. For vehicle track-
ing on motorways, rotations of the template vehicle image
are neglected. This is valid, since the lane change angles
on typical velocities obtained on motorway is quite low
due to physical reasons, and hence the change in course in
between two exposures (at a frame rate of 3 fps) can be
neglected. However, for city regions, rotation of the
template during correlation can be switched on, but this
will rise in calculation time linear with the number of
rotation steps during correlation. We accelerate normalized
cross correlation by an estimation of the normalization,
since calculating the full norm at each position in the
search window costs quite a lot of calculation time.
Assuming that the illumination situation does not change
a lot between two images, an upper limit of the correla-
tion score is estimated for each correlation position in the
search window.

Only if this upper limit exceeds the score threshold the
exact normalized cross correlation is calculated at that
position. For the estimate of the score only the first channel
of the RGB-image is used. These arrangements decrease
calculation time by a factor of at least four.

Since vehicle tracking based on normalized cross
correlation in RGB color space itself works fine at high
resolutions, it is sensitive to false vehicle detections.
Although several false vehicle detections can be eliminated
during tracking as outliers in direction or velocity space,
other false alarms still remain in tracking. Especially
objects from the dashed lane markings that were detected
as vehicles erroneously, may still remain in tracking. This is
due to the fact, that the object shape of the dashed markings
reappears periodically within a search window and the fact
that all of these markings have almost exactly the same
shape and intensity. Hence, the focus for improving our
traffic monitoring algorithms will be placed in future on
improving the vehicle detection module.

4 Results

We tested our processing chain based on the data take from
30 April 2007 as described in Section 2. For that, the
completeness and correctness of vehicle detection and
tracking are determined on data of several resolutions,
obtained from different flight levels.

16 Eur. Transp. Res. Rev. (2009) 1:11–21



4.1 Road detection

Road detection was performed using two different modules.
It turned out, that detecting roadside markings for deter-
mining the road area is a good strategy on images taken at a
lower flight height of 1,000 to 1,500 m resulting in a
resolution of 15 to 21 cm GSD. Nevertheless, at higher
flight levels (for instance at 2,000 m) road extraction works
well with the module searching the edge between blacktop
and vegetation. Figure 3 shows typical results of road
extraction using roadside markings. Top image shows the
line extraction, whereas in the image in the middle the
finally extracted roadsides after smoothing and closing gaps
are shown. Bottom image shows road extraction on a nadir
image taken from a flight height of 1,500 m.

4.2 Vehicle detection

In order to quantify the vehicle detection efficiency, test
data were processed and the results of the automatic vehicle
detection were compared to manual car detection. Table 1
shows the results of the comparison between automatic and
manual car detection. On a flight height of 1,000 m (15 cm
GSD), vehicle detection performs well on motorways with
a correctness of around 80% and a completeness of 68%. In

a complex scene like the city ring road we can proof that
car detection delivers respectable results with a complete-
ness of 65% and a correctness of 75%. However, at a flight
height of 2,000 m (GSD=30 cm) performance drops down
to 56% in completeness but correctness is still high with
76%. The testing data obtained at a flight height of 1,500 m
had another illumination situation, since data were taken in
the evening. This could explain the slightly reduced
correctness with respect to the results obtained at other
flight heights although the completeness of vehicle detec-
tion is quite high.

In Hinz [10] vehicle detection from aerial images at
similar resolution (15 cm GSD) is based on matching of
geometric 3D-wireframe vehicle models to the image.
These models consider the viewing angle, shadow, color
constancy, edge magnitude, and edge direction. A high
correctness of 87% at a completeness of 60% was achieved.
In case of 15 cm GSD, our completeness is slightly
increased in comparison to the results of Hinz [10], whereas
the correctness of our vehicle detection is marginal lower.
Compared to the results of Moon et al. [14], who tested a
rectangular (vehicle shaped) edge filter on aerial images of
parking lots (correctness of 86%, completeness 82%) our
methods have a deficit in completeness. The project
ARGOS rather focus on building up a run-time optimized

Table 1 Results on testing vehicle detection on data obtained at several test sites (from different flight heights)

Site Correct False Missed Correctness (%) Completeness (%)

Motorway (1,000 m) 85 22 41 79 68
Motorway (1,500 m) 67 32 19 68 78
Motorway (2,000 m) 95 30 76 76 56
City (1,000 m) 47 16 25 75 65

Counts of correct vehicle detections, false alarms and missed detections, as well as correctness and completeness in percentage are given

Fig. 5 Examples for vehicle detection on motorways (upper image,
A96 exit Munich–Blumenau, clipped nadir exposure) and in the city
(lower image, Munich “Mittlerer Ring”, clipped side-look-left

exposure). Rectangles mark automatic vehicle detections, triangles

point into direction of travel
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complete system for online near real-time traffic monitoring
than to develop new methods for highly increased detection
performance. Nevertheless, we end up with sufficient
detection and completeness rates. Figure 5 shows examples
of vehicle detection performed on images obtained at a
flight height of 1000 m. Upper image was taken on
highway A96 near exit Munich–Blumenau, lower image
shows part of the circular road “Mittlerer Ring” in Munich
city. Only few false alarms were detected.

4.3 Vehicle tracking

Vehicle tracking was tested on the same data takes obtained
at a flight height of 1,000 m (15 cm GSD), 1,500 m (21 cm
GSD), and at a flight height of 2,000 m (30 cm GSD).
Figure 6 shows a typical result on tracking vehicles from
the first image of an image sequence into the second
exposure of the sequence.

On images with a resolution of 15 cm GSD, vehicle
tracking on motorways performs perfectly well, with a
correctness of better than 95% and a completeness of
almost 100% on each image pair. On images obtained from
higher flight levels (≥30 cm GSD) tracking still works fine
with a completeness of 90% while having a correctness of
75%. We attribute the good tracking performance on low
flight heights to the fact that with a resolution of 15 cm
GSD vehicle details like sunroof, windscreen and backlight,
and body type go into the correlation which simplifies the
search for the correct match. However, these details are not
anymore seen at higher flight levels.

4.4 Performance

Traffic monitoring requires actual traffic parameters. Thus,
we are planning to execute the extraction of traffic param-
eters on the 3×16 Mpix RGB-images in near real-time with
high performance. Till now, tests on road and vehicle
detection as well as vehicle tracking were performed on
actual standard hardware consisting of a dual-core PC with a
CPU frequency of 1.86 GHz and 2 GB RAM. The first
generation of research programs for road extraction, vehicle
detection, and vehicle tracking was developed within DLR
in-house image processing software XDibias (X-Window
DIgital Bavarian Image Analysis System), based on C code.
With this XDibias based prototype of the processing chain,
computing times of about 2 min for images covering an
area of 1 km2 were achieved for a whole traffic extraction.
In order to guarantee high actuality of traffic information
and to enable near-real time traffic data extraction, the
research modules were accelerated using the Machine
Vision Library “HALCON” [7]. This library provides fast
implementations of image processing operators due to the
use of extended processor instruction sets like MMX and
SSE(2), as well as due to parallel processing on multi-core
CPUs. By replacing the operators used in the first
generation of the traffic processor with the fast HALCON
operators, we are now able to extract traffic data from
images covering an area of 1 km2 within less than 1 min.

Road extraction on a typical motorway takes less than 10 s
for one nadir and two side-look exposures in total. Vehicle
detection on these three images needs 20 s of calculation time

Fig. 6 Car tracking by normalized cross correlation of a group of
three cars detected in the first image of a sequence (left) to the second
image (right, timebase between exposures 0.7 s). Clipped images were

taken from the scene shown before at the motorway A 4 near Dresden
(with a GSD of 21 cm)

Table 2 Gray values of vehicle head- and taillights and maximum total blurring

Strip Δt (s) Apert. Vehicle headlights R/G/B Vehicle taillight Max. blurringa (m)

A-1 1/1,024 F1.8 ∅ 50/–/– Max R=109 <5 0.06+0.04
A-2 1/512 F1.8 ∅ 102/80/61 Max R=192 Max R=48 0.13+0.08
B-1 1/512 F1.8 ∅ 59/46/35 Max R=67 <5 0.13+0.08
B-2 1/800 F1.4 ∅ 82/–/– Max R=182 <5 0.08+0.05
B-3 1/800 F1.8 ∅ 46/–/– Max R=82 <5 0.08+0.05

aBlurring caused by airplane movement (65 m/s) and vehicle movement (max. 150 km/h)
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on the present system. In comparison, car tracking is quite
fast, consuming only 15 s for a tracking of 3×15 cars over an
image sequence consisting of 3×4 images. Moreover, the pure
calculation time for cross correlation is 30 ms per vehicle for a
tracking through the whole sequence. In total, it costs less than
60 s to analyse the traffic within one image sequence.
However, the onboard computer system for traffic monitoring
will possess a multi-core CPU with at least four cores. By
sufficient parallelization of the processes that will be managed
by the middleware DANAOS, we expect to be able reducing
the processing time by a factor of 2. That means, assuming a
break of 7 s between each image “burst” (which would result
in a overlap of 10% between two image “bursts” at a flight
speed of 60 m/s and a flight height of 1,000 m), we will have a
time overhead in the processing chain for traffic monitoring of
a factor of 4. However, the prototype of our processing chain
is built up still modular, which means that each module in the
chain reads an image from hard disk into memory, performs
an operation, and at the end writes a new image to hard disk.
We estimate to halve the overhead by reducing hard disk read/
write. Nevertheless we are already able to perform automatic
traffic data extraction on a large amount of data in near real-
time. Therefore, the system already provides area wide traffic
data with a high actuality, with capacities of increasing
performance in near future.

5 Night shot capability

During a test flight on 6 May 2008 from 9:40 PM until
10:28 PM near the city Rosenheim and the motorway
junction “Inntaldreieck” we were able to show the
capabilities of the 3K camera system for traffic monitoring
applications at night. Two strips which cover a part of the
city (strip A) of Rosenheim and the motorway (strip B)
were acquired repeatedly with different camera configura-
tions. Flight height was 2,000 m above ground, flight speed
was 65 m/s. For this test flight, the sensor was set into a
special configuration called along-track modus. In order to

increase the chance for recording car headlights the camera
platform was rotated with an angle of 90° azimuthally.
Hence, one of the former side-looking cameras was aligned
in flight direction, the other side-looking camera was now
looking in backward direction. With an off nadir angle of
35° and a flight direction along the motorways we expected
the forward camera being able to detect headlights of
forthcoming vehicles, and the backward camera to record
the headlights of cars travelling in flight direction. In this
configuration, a nadir image covers an area of 1.4×1.0 km;
the ground pixel size is around 29 cm.

Figure 7 shows two orthorectified images (A-1 and A-2)
from the city of Rosenheim taken with different camera
configuration. As the exposure time in A-2 with 1/512 s is
double than in A-1, more lights from the city of Rosenheim
are visible, but also the motion blurring is more visible.

With respect to traffic monitoring applications, the
visibility of vehicle head- and taillights in the images is of
great interest. An object is defined as visible with an
absolute gray value more than five, as the image noise is
around two to three gray values. In Table 2, the visibility of

Fig. 8 RGB composition of image sequences from flight strip A-2
used for traffic monitoring

Fig. 7 Comparison of orthorec-
tified night images from flight
strips A-1 (left) with flight strip
A-2 (right). Left image has an
exposure time of 1/1,024 s, the
exposure time of right image is
1/512 s at same aperture F 1.8
and ISO 1600
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head- and taillights in the different data sets is listed.
Taillights are only in strip A-2 visible with a maximal value
of 48 in R band, headlights were visible in all strips. The
average R values range from 46 in strip B-3 to 102 in strip
A-2, the B and G values are in general lower. The total
blurring consists for moving objects of the blurring caused
by the airplane and of the moving objects. For a moving
object with a ground speed of 150 km/h in opposite
direction to the airplane movement, the total blurring is
around 0.21 m in strip A-2 and B-1.

We propose RGB compositions of image sequences to
visualize moving objects in the images. For this, the red
channels of the orthorectified images from the sequence are
overlayed and composed to a RGB image again. Figure 8
shows an example RGB composition of the motorway
south of Rosenheim. A moving vehicle appears in the RGB
composition as an array of a blue, a green, and a red point
where the color blue/green/red corresponds to the first/
second/third image in the sequence. Static objects like street
lamps or illuminated traffic signs appear white.

Based on this point pattern, automatic vehicle detection
could be applied and the moving direction of the vehicles
and the speed could be derived. Since algorithms for
automatic traffic extraction from night exposures have not
yet been developed, manually measured vehicle directions
and vehicle speeds are visualized in Fig. 8. Vehicle
velocities were calculated by measuring manually the
distance and using the time span between the acquisition
times which can be derived with high accuracy from the
GPS/IMU data.

The accuracy of speed determination is influenced not
only by the accuracy of georeferencing but also from
blurring effects caused by the exposure time, as the distance
measurement is not so precise. In the examples in Fig. 8 it
could be seen, that vehicles are detected by head- and
taillights from the front as well as from the side, i.e. traffic
in different directions can be detected. Information about
completeness and correctness of vehicle visibility are not
available as no ground truth data were acquired. Further-
more, no algorithms for automatic traffic data extraction on
night shots are available at this time and have to be
developed in future. Hence, we could show that using this
optical sensor system for traffic monitoring under night
conditions is basically possible, which might be an
interesting field for future research and development.

6 Conclusions

Despite the large amount of incoming data from the wide
angle camera system, we are able to perform traffic data
extraction with high actuality in near real-time. This means
that the processing chain is capable to perform a complete

traffic data extraction on an area of 1 km2 within few 10 s.
Thereby, high accuracies for velocities (5 km/h), good
correctness in vehicle detection (79%) and in vehicle tracking
(90% of detected vehicles) is reached. Furthermore, the
system performs image orthorectification in real-time using
GPU computing power. Although algorithms for automatic
traffic monitoring at night have not yet been developed the
capability of the system to provide traffic information at
night has been demonstrated successfully during a test flight.

Hence, the investigations show the high potential using
aerial wide angle image time series for traffic monitoring
and similar applications, like the estimation of travel times
or the derivation of other relevant traffic parameters. In
future, the data processing speed will be further improved
by converting the modules of the processing chain into
tasks that share memory access to image data stored in the
RAM instead of reading and writing them on hard disk, as
done by our prototype. We further plan to evaluate the
performance of the system in case of difficult scenes such
as large cities with high buildings occluding parts of the
roads and under various weather conditions (e.g. snow, wet
roads) during three campaigns in 2009. Moreover it is
planned to use an additional radar sensor providing traffic
data in case of bad visibility conditions (e.g. clouds, fog)
where remote sensing traffic monitoring based on optical
sensors fails.

The whole system is thought to be a technology test bed for
future traffic monitoring applications and it is in operation at a
DLR research aircraft. This limits the operations at the
moment only to campaigns on demand, like mass events or
in case of disasters. However, this prototype of a traffic
monitoring system or a successor version of this system could
be mounted to any other carrier such as UAV or HALE in
future. This would enable continuous and area-wide traffic
monitoring in metropolitan areas at high actuality without the
use of stationary infrastructure.
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