
Towards automatic personalised content creation for racing games

Julian Togelius, Renzo De Nardi and Simon M. Lucas

Department of Computer Science

University of Essex, UK

{jtogel, rdenar, sml}@essex.ac.uk

Abstract— Evolutionary algorithms are commonly used to
create high-performing strategies or agents for computer games.
In this paper, we instead choose to evolve the racing tracks
in a car racing game. An evolvable track representation is
devised, and a multiobjective evolutionary algorithm maximises
the entertainment value of the track relative to a particular
human player. This requires a way to create accurate models of
players’ driving styles, as well as a tentative definition of when
a racing track is fun, both of which are provided. We believe
this approach opens up interesting new research questions and
is potentially applicable to commercial racing games.

Keywords: Car racing, player modelling, entertainment

metrics, content creation, evolution.

I. THREE APPROACHES TO COMPUTATIONAL

INTELLIGENCE IN GAMES

Much of the research done under the heading “com-

putational intelligence and games” aims to optimise game

playing strategies or game agent controllers. While these

endeavours are certainly worthwhile, there are several other

quite different approaches that could be at least as interesting,

from both an academic and a commercial point of view.

In this paper we discuss three approaches to computational

intelligence in games: optimisation, imitation and innovation.

We describe these approaches as they apply to games in

general and exemplify them as they apply to racing games

in particular. We then describe an experiment where these

approaches are used in a racing game to augment player

satisfaction. The taxonomy given below is of course neither

final nor exhaustive, but it is a start.

A. The optimisation approach

Most research into computational intelligence and games

takes the optimisation approach, which means that an optimi-

sation algorithm is used to tune values of some aspect of the

game. Examples abound of using evolutionary computation

to develop good game-playing strategies, in all sorts of games

from chess to poker to warcraft [1][2].

Several groups of researchers have taken this approach

towards racing games. Tanev [3] developed an anticipatory

control algorithm for an R/C racing simulator, and used

evolutionary computation to tune the parameters of this al-

gorithm for optimal lap time. Chaperot and Fyfe [4] evolved

neural network controllers for minimal lap time in a 3D

motocross game, and we previously ourselves investigated

which controller architectures are best suited for such optimi-

sation in a simple racing game [5]. Sometimes optimisation

is multiobjective, as in our previous work on optimising

controllers for performance on particular racing tracks versus

robustness in driving on new tracks [6]. And there are other

things than controllers that can be optimised in car racing,

as is demonstrated by the work of Wloch and Bentley, who

optimised the parameters for simulated Formula 1 cars in a

physically sophisticated racing game [7].

While games can be excellent test-beds for evolutionary

and other optimisation algorithms, it can be argued that

improving game-playing agents is in itself of little prac-

tical value. From the point of view of commercial game

developers, most game genres are not in a great need of

more effective computer-controlled agents or strategies, as

it is already easy to create competitors that beat all human

players (though there are exceptions to this, such as real-time

strategy games, where more effective AI is a hot research

topic [2]). The problem is rather that game agents don’t

behave interestingly enough.

From the points of view of evolutionary roboticists, neu-

roscientists and other cognitive scientists, optimal behaviour

is often uninteresting. Games can definitely be interesting as

environments in which to study the emergence of intelligence

or certain neural mechanisms, but this requires that both

fitness function and environment allows for behaviours of

the right complexity, and that the particular phenomena to be

studied are not “abstracted away” by the non-computational

intelligence parts of the game.

B. The innovation approach

The boundary between the optimisation approach and

the innovation approach is not clear-cut, but the innova-

tion approach is more focused on generating interesting, or

complex, as opposed to optimal behaviour. The innovation

approach sees games as environments for the development of

complex intelligence, rather than computational intelligence

techniques as means of achieving particular results as games.

(Though the two perspectives are of course not exclusive, and

many projects take both.) Typically this entails not knowing

exactly what one is looking for.

In this approach, it is desirable not to constrain the creativ-

ity of the evolutionary algorithm, and, if evolving controllers,

that the controller is situated within a closed sensorimotor

loop [8]. Therefore, the agents are usually fed relatively

unprocessed data (such as first-person visual or other sensor

data) instead of abstract and pre-categorized representations

of the environment (such as types and numbers of enemies

around, or parameters describing the racing track), and the

outputs of the controller are treated as primitive movement

commands rather than e.g. which plan to select.



In car racing we can see examples of the innovation

approach to computational intelligence in work done by

Floreano et al. [9] on evolving active vision, work which was

undertaken not to produce a controller which would follow

optimal race-lines but to see what sort of vision system would

emerge from the evolutionary process. We have previously

studied the effect of different fitness measures in competitive

co-evolution of two cars on the same tracks, finding that

qualitatively different behaviour can emerge depending on

whether controllers are rewarded for relative or absolute

progress [10].

C. The imitation approach

While evolutionary computation is predominant in the two

previous approaches, the imitation approach relies on various

forms of supervised learning. Typically, what is imitated is a

human player, but a game agent can of course plausibly try

to imitate another agent.

A major example of the imitation approach to computa-

tional intelligence in racing games is the XBox game Forza

Motorsport from Microsoft Game Studios. In this game,

the player can train a “drivatar” to play just like himself,

and then use this virtual copy of himself to get ranked on

tracks he doesn’t want to drive himself, or test his skill

against other players’ drivatars. Moving from racing games

to real car driving, Pomerleau’s work on teaching a real car

to drive on highways through supervised learning based on

human driving data is worth mentioning as an example of

the imitation approach [11]. The reason for using imitation

rather than optimisation in this case was probably not that

interesting driving was preferred to optimal driving, but

rather that evolution using real cars on real roads would be

costly.

Our own work on imitating the driving styles of real

human players

D. Combining imitation and innovation for content creation

All the above examples deal with designing or tuning

behaviours and other aspects of agents, i.e. vehicles. But

there are no obvious reasons why this should not be done

with other aspects of racing games. Indeed, very large parts

of the budget of a commercial game go into creating game

content, such as levels, tracks, and artwork, and there is no

reason why computational intelligence should not be brought

to bear on this domain.

In this paper, we propose a method for on-line personalised

automatic content creation, combining the imitation and

innovation approaches. The first step of this method is to

acquire a model of the human driver, which is accurate in

relevant respects. The controller representation and racing

game used for the modelling is the same as in our ear-

lier experiments using the optimisation approach. Next, we

evolve new racing tracks specifically tailored to the modelled

human, using the controller generated through modelling to

test the tracks. The tracks are “optimised” for entertainment

value.

Fig. 1. Close-up of the car, and a section of the test track. Lines protruding
from the car represent the positions and ranges of the wall sensors.

This paper is based on ideas and preliminary experiments

reported in our earlier workshop paper [12]. In this paper,

we extend the discussion, and report new and significantly

different methods for both player modelling and track evo-

lution.

II. RACING GAME, SENSORS, CONTROLLERS

Our experiments make use of a simple racing game,

which was developed in order to qualitatively reproduce

the experience of driving a toy radio-controlled car on a

tabletop track. The car actuators accept a discrete set of

nine movement commands, corresponding to the keyboard

arrow keys and combinations of them. A Newtonian physics

model is implemented, allowing for momentum, skidding,

and complex rebounds from collisions with walls or other

vehicles. Apart from walls, tracks also consist of a number of

waypoints, which the car must pass in order. In our previous

experiments the fitness of the controller was computed as

the number of waypoints passed in a certain period of time;

below we use the waypoints in a slightly more sophisticated

way.

The controllers are based on neural networks, and take

sensor information as inputs and produces movement com-

mands as outputs. As for the sensors, these consist of the

speed of the car, a waypoint sensor giving the angle between

the car’s heading and the direction to the current waypoint,

and a number of wall sensors. The wall sensors return

the approximate distance to the nearest wall in a certain

direction, or zero if no wall is within range. For the current

experiments we use ten wall sensors on the car, ranges

between 100 and 200 pixels and more sensors in the front

of the car than in the back. All sensors are normalised to

returning values between 0 and 1, and have a small amount

of noise added to them.

III. THE CASCADING ELITISM ALGORITHM

We use artificial evolution both for modelling players

and constructing new tracks, and in both cases we have to

deal with multiobjective fitness functions. While evolutionary

multiobjective optimisation is a rich and active research field,

what we need here is just a simple way of handling more

than one fitness function. We are not interested in pareto

fronts; what we are interested in is specifying which fitness

measures have higher priorities than others. A simple solution



to this is using an evolution strategy with multiple elites. In

the case of three fitness measures, it works as follows: out

of a population of 100, the best 50 genomes are selected

according to fitness measure f1. From these 50, the 30 best

according to fitness measure f2 are selected, and finally the

best 20 according to fitness measure f3 are selected. Then

these 20 individuals are copied four times each to replenish

the 80 genomes that were selected against, and finally the

newly copied genomes are mutated.

This algorithm, which we call Cascading Elitism, is in-

spired by an experiment by Jirenhed et al. [13].

1) On the effects of Cascading Elitism: At each generation

this algorithm selects the elite on the basis of what is a non-

linear combination of the fitness functions. If we consider the

extreme case of two independent fitnesses, each one of the

selection steps behaves like an independent elitist algorithm

in which part of the elite is randomly removed (by the

other selections). In another extreme case, that of inversely

dependent fitnesses, the second selection step would always

pick the worst part (the worst according to the first fitness

but the best according to the second) of the first elite. The

size of the first elite and the ratio between the two elites

therefore starts to be important.

In our situation, like in most interesting problems, the fit-

nesses are neither independent nor fully inversely dependent,

and a more in depth and systematic analysis is needed to

go beyond mere speculations. While reserving this to future

research, in our experiments the ratios 3/5 and 2/3 were

arrived at through manual tuning.

IV. PLAYER MODELLING

The first step in our method is to acquire a good model of

the human driver, that can then be used to test tracks during

evolution. Here, we first need to define what it means for

a player model to be good, and then decide what learning

algorithm and representation to use.

A. When is a player model adequate?

The only complete model of a human player is the human

player himself. This is both because human brains and

sensory systems are rather more complex than anything

machine learning can learn, and because of the limited

amount of training data available from the few laps around

a test track which is the most we can realistically expect a

player to put up with. Further, it is likely that a controller that

accurately reproduces the player’s behaviour in some respects

and circumstances work less well in others. Therefore we

need to decide what features we want from the player model,

and which features have higher priority than others.

As we want to use our model for evaluating fitness of

tracks in an evolutionary algorithm, and evolutionary algo-

rithms are known to exploit weaknesses in fitness function

design, the highest priority for our model is robustness. This

means that the controller does not act in ways that are grossly

inconsistent with the modelled human, especially that it does

not crash into walls when faced with a novel situation. The

second criterion is that the model has the same average speed

as the human on similar stretches of track, e.g. if the human

drives fast on straight segments but slows down well before

sharp turns, the controller should do the same. That the

controller has a similar driving style to the human, e.g. drives

in the middle of straight segments but close to the inner wall

in smooth curves (if the human does so), is also important

but has a lower priority.

B. Direct modelling

What we call direct modelling is what is arguably the most

straightforward way of acquiring a player model: use super-

vised learning to associate the state of the car with the actions

the human take given that car state. We let several human

players drive test tracks, and logged the speed and the outputs

of waypoint sensor and the wall sensors (as defined above)

together with the action taken by the human at each timestep.

Two methods of supervised learning were tried on this data

set: training a multilayer perceptron for use in the controller

with backpropagation, and using the unprocessed data for

controlling the car with nearest neighbour classification of

input data. Both methods resulted in worthless controllers

that rarely completed a whole lap. While the trained neural

networks were worthless in an uninteresting way, the nearest

neighbour-based controllers reproduced the modelled play-

ers’ driving style almost perfectly, until the slight random

perturbations in the game presented the controller with a

situation that differed enough from anything present in the

training data, and the car crashed. None of the controllers

were able to recover from crashes, as the human players had

not crashed during the data collection, and thus the situation

was not in the data set.

We believe this not to be a problem with the particu-

lar supervised learning algorithms we used but rather an

unavoidable problem with the direct modelling approach.

As no model is perfect, controllers developed with direct

modelling will tend to err, which diminish their performance

to lower than the modelled human. In general, it is very

unlikely that they will perform better than or as good as

the modelled human (though it is theoretically possible that

individual controllers could perform well), as any deviance

from correct modelling will tend toward random behaviour.

Such imperfect controllers will likely crash into walls, and

will not know how to recover, as the controllers can’t learn

from their mistakes.

This problem was recognized by the developers of Forza

Motorsport, who solved it by placing certain constraints on

the types of tracks that were allowed in the game, and

then recording the player’s racing line over each possible

track segment. Still, collisions with walls could not be

entirely avoided, so a hard-coded crash-recovery behaviour

was needed [14]. While this modelling method ostensibly

works, it places far too many constraints on the tracks to be

useful for our purposes.

C. Indirect modelling

Indirect modelling means measuring certain properties of

the player’s behaviour and somehow inferring a controller



that displays the same properties. This approach has been

taken by e.g. Yannakakis in a simplified version of the

Pacman game [15]. In our case, we start from a neural

network-based controller that has previously been evolved

for robust but not optimal performance over a wide variety

of tracks, as described in [6]. We then continue evolving

this controller with the fitness function being how well its

behaviour agrees with certain aspects of the human player’s

behaviour. This way we satisfy the top-priority robustness

criterion, but we still need to decide on what fitness function

to employ in order for the controller to satisfy the two other

criteria described above, situational performance and driving

style.

In our earlier paper [12], we measured the average driving

speed of the human player on three tracks designed to

represent different types of driving challenges, and then

evolved controllers to match that performance as closely

as possible on each of the three tracks. That method was

successful, but could be argued to fail to capture much of

the driving style of the player. Here we make an attempt to

model the driving in more detail while still using an indirect

approach.

First of all, we design a test track, featuring a number of

different types of racing challenges. The track, as pictured

in (fig 2), has two long straight sections where the player

can drive really fast (or choose not to), a long smooth curve,

and a sequence of nasty sharp turns. Along the track are 30

waypoints, and when a human player drives the track, the

way he passes each waypoint is recorded. What is recorded

is the speed of the car when the waypoint is passed, and

the orthogonal deviation from the straight path between the

waypoints, i.e. how far to the left or right of the waypoint the

car passed. This matrix of two times 30 values constitutes

the raw data for the player model.

The actual player model is constructed using the Cascad-

ing Elitism algorithm, starting from a general controller and

evolving it on the test track. Three fitness functions are used,

based on minimising the following differences between the

real player and the controller:

• f1: total progress (number of waypoints passed within

1500 timesteps),

• f2: speed at which each waypoint was passed,

• f3: orthogonal deviation was passed.

The first and most important fitness measure is thus

total progress difference, followed by speed and deviation

difference respectively.

D. Results

In our experiments, five different players’ driving was sam-

pled on the test track, and after 50 generations of the Cascad-

ing Elitism algorithm with a population of 100, controllers

whose driving bore an acceptable degree of resemblance

to the modelled humans had emerged. The total progress

varied considerably between the five players - between 1.31

and 2.59 laps in 1500 timesteps - and this difference was

faithfully replicated in the evolved controllers, which is to say

Fig. 2. The test track and the car.

0 10 20 30 40 50
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

F
it
n
e
s
s
 (

p
ro

g
e
s
s
, 
s
p
e
e
d
)

0 10 20 30 40 50
−11

−10.5

−10

−9.5

−9

−8.5

−8

−7.5

−7

−6.5

−6

Generations

F
it
n
e
s
s
 (

o
rt

h
o
g
o
n
a
l 
d
e
v
ia

ti
o
n
)

speed

progress

orthogonal deviation

Fig. 3. Evolving a controller to model a slow, careful driver. Since the initial
general controller is quite performing, the evolutionary algorithm quickly
adapts the driving style to obtain the required progress and speeds. At last
also the ortogonal deviation fitness improves. See IV-C for the description
of the fitnesses.

that some controllers drove much faster than others (see the

speed fitness in fig.3 and fig.4 ) . Progress was made on the

two other fitness measures as well, and though there was still

some numerical difference between the real and modelled

speed and orthogonal deviation at most waypoint passings,

the evolved controllers do reproduce qualitative aspects of

the modelled players’ driving. For example, the controller

modelled on the first author drives very close to the wall in

the long smooth curve, very fast on the straight paths, and

smashes into the wall at the beginning of the first sharp turn.

Conversely, the controller modelled on the anonymous and

very careful driver who scored the lowest total progress crept

along at a steady speed, always keeping to the center of the

track.



0 10 20 30 40 50

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

F
it
n
e
s
s
 (

p
ro

g
e
s
s
, 

s
p
e
e
d
)

0 10 20 30 40 50
−11

−10.5

−10

−9.5

−9

−8.5

−8

−7.5

−7

Generations

F
it
n
e
s
s
 (

o
rt

h
o
g
o
n
a
l 
d
e
v
ia

ti
o
n
)

speed

progress

orthogonal deviation

Fig. 4. Evolving a controller to model a good driver. The lack of progress on
minimising the progress difference is the result of the fact that the progress
of the modelled driver is very close to that of the generic controller used to
initialise the evolution. See IV-C for the description of the fitnesses.

V. TRACK EVOLUTION

Once a good model of the human player has been acquired,

we will use this model to evolve new, fun racing tracks for

the human player. In order to do this, we must know what

it is for a racing track to be fun, how we can measure this

property, and how the racing track should be represented

in order for good track designs to be in easy reach of the

evolutionary algorithm. We have not been able to find any

previous research on evolving tracks, or for that sake any sort

of computer game levels or environments. However, Ashlock

et al.’s paper on evolving path-finding problems is worthy to

mention as a an example of an approach that could possibly

be extended to certain types of computer games [16].

A. What makes racing fun?

It is not obvious what factors make a particular racing

track fun to drive, or how to measure any such factors. While

several researchers, notably Malone and Koster, have tried

to explain why some games are more fun than others in

the context of computer games in general, we are aware of

no research on the particular genre of racing games. The

following discussion is based on Malone, Koster and our

own observations.

Thomas Malone claims that the factors that make games

fun can be organized into three categories: challenge, fantasy,

and curiosity [17]. The first thing to point out about challenge

is that the existence of some sort of goal adds to the

entertainment value. Further, this goal should not be too hard

or too easy to attain, and the player should not be too certain

about what level of success he will achieve. Translated to

the context of racing game tracks, this ought to mean that

the track should not be too easy or too difficult to drive,

and that the track should encourage the player to try driving

strategies that might work, and might not. These factors can

be estimated by how close the mean speed of the player on

the track is to a pre-set target speed, and as how variable this

mean speed is between attempts or laps, respectively.

Games that include fantasy, according to Malone, “show

or evoke images of physical objects or social situations

not actually present”. The sensation of being somewhere

else, being someone else, doing something else. This is an

important aspect of many racing games, but probably not one

we can investigate in the graphically limited simulation we

are currently using.

Malone’s third factor is curiosity. He claims that fun

games have an “optimal level of informational complexity”

in that their environments are novel and surprising but not

completely incomprehensible. These are games that invite

exploration, and keeps the user playing just to see what

happens next. It is not entirely clear how this insight can be

transferred to the domain of racing games. It could be argued

that tracks should be varied, combining several different

types of challenges in the same track. It could also be argued

that getting to drive a new track drawn from a limitless

supply whenever you want, provokes enough curiosity, in

which case the very method we are proposing in this paper

is the answer to the curiosity challenge, as evolutionary

algorithms are very good at coming up with unexpected

solutions.

Raph Koster has a different take on fun, when he claims

that fun is learning, and games are more or less fun depend-

ing on how good or bad teachers they are [18]. He concurs

with Malone that the level of challenge in a game should be

appropriate, but further claims that the game should display

a good learning curve: new, more complex and rewarding

challenges should be introduced at the rate old challenges

are mastered. In the car racing domain this could mean that

a good track design is one which is initially hard to drive,

but which the player quickly learns to master.

An observation of our own, confirmed by the opinions of

an unstructured selection of non-experts, is that tracks are fun

where it is possible to drive very fast on straight sections, but

it is necessary to brake hard in preparation for sharp turns,

turns which preferably can be taken by skidding. In other

words, it’s fun to almost lose control. However, it is possible

that this is a matter of personality, and that different players

attach very different values to different fun factors. Some

people seem to like to be in control of things, and people

have very different attention spans, which should mean that

some people would want tracks that are easier to learn than

others. Identifying different player types and being able to

select a mix of fun factors optimal to these players would be

an interesting project, but we are not aware of any empirical

studies on that subject.

B. Fitness functions

Developing reliable quantitative measures of, and ways of

maximising, all the above properties would probably require

significant effort. For this paper we chose a set of features

which would be believed not to be too hard to measure, and

designed a fitness function based on these. The features we

want our track to have for the modelled player, in order of



decreasing priority, is the right amount of challenge, varying

amount of challenge, and the presence of sections of the track

in which it is possible to drive really fast. The corresponding

fitness functions are:

• f1: the negative difference between actual progress and

target progress (in this case defined as 30 waypoints in

700 timesteps),

• f2: variance in total progress over five trials of the same

controller on the same track,

• f3: maximum speed.

C. Track representation

In our earlier paper we evolved fixed-length sequences

of track segments. These segments could have various cur-

vatures and decrease or increase the breadth of the track.

While this representation had the advantage of very good

evolvability in that we could maximise both progress and

progress variance simultaneously, the evolved tracks did look

quite jagged, and were not closed; they ended in a different

point than they started, so the car had to be “teleported” back

to the beginning of the track. We therefore set out to create a

representation that, while retaining evolvability, allowed for

smoother, better-looking tracks where the start and end of

the track connect.

The representation we present here is based on b-splines,

or sequences of Bezier curves joined together. Each segment

is defined by two control points, and two adjacent segments

always share one control point. The remaining two control

points necessary to define a Bezier curve are computed in

order to ensure that the curves have the same first and

second derivatives at the point they join, thereby ensuring

smoothness. A track is defined by a b-spline containing 30

segments, and mutation is done by perturbing the positions

of their control points.

The collision detection in the car game works by sampling

pixels on a canvas, and this mechanism is taken advantage

of when the b-spline is transformed into a track. First thick

walls are drawn at some distance on each side of the b-

spline, this distance being either set to 30 pixels or subject

to evolution depending on how the experiment is set up. But

when a turn is too sharp for the current width of the track,

this will result in walls intruding on the track and sometimes

blocking the way. The next step in the construction of the

track is therefore “steamrolling” it, or traversing the b-spline

and painting a thick stroke of white in the middle of the

track. Finally, waypoints are added at approximately regular

distances along the length of the b-spline. The resulting track

(see fig.2can look very smooth, as evidenced by the test track

which was constructed simply by manually setting the control

points of a spline.

D. Initialisation and mutation

In order to investigate how best to leverage the representa-

tional power of the b-splines, we experimented with several

different ways of initialising the tracks at the beginning

of the evolutionary runs, and different implementations of

Fig. 5. Track evolved using the random walk initialisation and mutation.

the mutation operator. Three of these configurations are

described here.

1) Straightforward: The straightforward initial track

shape forming a rectangle with rounded corners. Each mu-

tation operation then perturbs one of the control points by

adding numbers drawn from a gaussian distribution with

standard deviation 20 pixels to both x and y axes.

2) Random walk: In the random walk experiments, mu-

tation proceeds like in the straightforward configuration, but

the initialisation is different. A rounded rectangle track is

first subject to random walk, whereby hundreds of mutations

are carried out on a single track, and only those mutations

that result in a track on which a generic controller is not

able to complete a full lap are retracted. The result of such a

random walk is a severely deformed but still drivable track.

A population is then initialised with this track and evolution

proceeds as usual from there.

3) Radial: The radial method of mutation starts from an

equally spaced radial disposition of the control points around

the center of the image; the distance of each point from

the center is generated randomly. Similarly at each mutation

operation the position of the selected control point is simply

changed randomly along the respective radial line from the

center. Constraining the control points in a radial disposition

is a simple method to exclude the possibility of producing

a b-spline containing loops, therefore producing tracks that

are always fully drivable.

E. Results

We evolved a number of tracks using the b-spline rep-

resentation, different initialisation and mutation methods,

and different controllers derived using the indirect player

modelling approach.

1) Straightforward: Overall, the tracks evolved with the

straightforward method looked smooth, and were just as easy

or hard to drive as they should be: the controller for which the



Fig. 6. A track evolved (using the radial method) to be fun for the first
author, who plays too many racing games anyway. It is not easy to drive,
which is just as it should be.

Fig. 7. A track evolved (using the radial method) to be fun for the second
author, who is a bit more careful in his driving. Note the absence of sharp
turns.

track was evolved typically made a total progress very close

to the target progress. However, the evolved tracks didn’t

differ from each other as much as we would have wanted.

The basic shape of a rounded rectangle shines through rather

more than it should.

2) Random walk: Tracks evolved with random walk ini-

tialisation look weird (see 5) and differ from each other in an

interesting way, and so fulfil at least one of our objectives.

However, their evolvability is a bit lacking, with the actual

progress of the controller often quite a bit different from the

target progress and maximum speed low.

3) Radial: With the radial method, the tracks evolve

rather quickly and look decidedly different (see fig.6 and

6 depending on what controller was used to evolve them,

and can thus be said to be personalised. However, there is

some lack of variety in the end results in that they all look

slightly like flowers, clear bias of the type of mutation used.

4) Comparison with segment-based tracks: It is interest-

ing to compare these tracks with some tracks evolved using

the segment-based representation from our previous paper.

Those tracks (see fig.8) do show both the creativity evolution

is capable of and a good ability to optimise the fitness values

we define. But they don’t look like anything you would want

to get out and drive on.

VI. DISCUSSION

We believe the ideas described in this paper hold great

promise, and that our player modelling method is good

enough to be usable, but that there is much that needs to

be done in order for track evolution to be incorporated in

an actual game. To start with, the track representation and

mutation methods need to be developed further, until we

arrive at something which is as evolvable and variable as the

segment-based representation but looks as good as (and is

closed like) the b-spline-based representation. Features such

as self-intersection also need to be allowed.

Further, the racing game we have used for this investiga-

tion is too simple in several ways, not least graphically but

also in its physics model being two-dimensional. A natural

next step would be to repeat the experiments performed here

in a graphically advanced simulation based on an suitable

physics engine, such as Ageia’s PhysX technology [19]. In

such a simulation, it would be possible to evolve not only the

track in itself, but also other aspects of the environment, such

as buildings in a city in which a race takes place. This could

be done by combining the idea of procedural content creation

[20][21] with evolutionary computation. Another exciting

prospect is evolving personalised competitors, building on

the results of our earlier investigations into co-evolution in

car racing [10].

In the section above on what makes racing fun, we

describe a number of potential measures of entertainment

value, most of which are not implemented in the experiments

described here. Defining quantitative versions of these mea-

sures would definitely be interesting, but we believe it is more

urgent to study the matter empirically. Malone’s and Koster’s

oft-cited hypotheses are just hypotheses, and as far as we

know there are no psychological studies that tell us what

entertainment metric would be most suitable for particular

games and types of player. Real research on real players is

needed. Such research could be in the vein of Yannakakis’

and Hallam’s studies on the Pac-Man game [22], where

human players’ reports on how much they enjoyed playing

the game under various configurations were correlated with

quantitative approximations of challenge and curiosity.

Finally we note that although we distinguished between

different approaches to computational intelligence and games

in the beginning to this paper, many experiments can be

viewed from several perspectives. The focus in this paper

on using evolutionary computation for practical purposes

in games is not at all incompatible with using games for



Fig. 8. Tracks evolved using the segment-based method. Track (a) is evolved for a weak player, and tracks (b) and (c) for a good player. Tracks (a) and
(b) are evolved using all three fitness functions defined above, while track (c) is evolved using only progress fitness.

studying under what conditions intelligence can evolve, a

perspective we have taken in some of our previous papers.

On the contrary.

VII. ACKNOWLEDGEMENTS

We are thankful to Owen Holland, Georgios Yannakakis,

Richard Newcombe and Hugo Marques for insightful discus-

sions.

REFERENCES

[1] G. Kendall and S. M. Lucas, Proceedings of the IEEE Symposium on

Computational Intelligence and Games. IEEE Press, 2005.

[2] P. Spronck, “Adaptive game ai,” Ph.D. dissertation, University of
Maastricht, 2005.

[3] I. Tanev, M. Joachimczak, H. Hemmi, and K. Shimohara, “Evolution
of the driving styles of anticipatory agent remotely operating a scaled
model of racing car,” in Proceedings of the 2005 IEEE Congress on

Evolutionary Computation (CEC-2005), 2005, pp. 1891–1898.

[4] B. Chaperot and C. Fyfe, “Improving artificial intelligence in a
motocross game,” in IEEE Symposium on Computational Intelligence

and Games, 2006.

[5] J. Togelius and S. M. Lucas, “Evolving controllers for simulated car
racing,” in Proceedings of the Congress on Evolutionary Computation,
2005.

[6] ——, “Evolving robust and specialized car racing skills,” in Proceed-

ings of the IEEE Congress on Evolutionary Computation, 2006.

[7] K. Wloch and P. J. Bentley, “Optimising the performance of a
formula one car using a genetic algorithm,” in Proceedings of Eighth

International Conference on Parallel Problem Solving From Nature,
2004, pp. 702–711.

[8] D. Cliff, “Computational neuroethology: a provisional manifesto,” in
Proceedings of the first international conference on simulation of

adaptive behavior on From animals to animats, 1991, pp. 29–39.

[9] D. Floreano, T. Kato, D. Marocco, and E. Sauser, “Coevolution of
active vision and feature selection,” Biological Cybernetics, vol. 90,
pp. 218–228, 2004.

[10] J. Togelius and S. M. Lucas, “Arms races and car races,” in Proceed-

ings of Parallel Problem Solving from Nature. Springer, 2006.
[11] D. A. Pomerleau, “Neural network vision for robot driving,” in The

Handbook of Brain Theory and Neural Networks, 1995.
[12] J. Togelius, R. De Nardi, and S. M. Lucas, “Making racing fun through

player modeling and track evolution,” in Proceedings of the SAB’06

Workshop on Adaptive Approaches for Optimizing Player Satisfaction

in Computer and Physical Games, 2006.
[13] D.-A. Jirenhed, G. Hesslow, and T. Ziemke, “Exploring internal

simulation of perception in mobile robots,” in Proceedings of the

Fourth European Workshop on Advanced Mobile Robots, 2001, pp.
107–113.

[14] R. Herbrich, “(personal communication),” 2006.
[15] G. N. Yannakakis and M. Maragoudakis, “Player modeling impact on

players entertainment in computer games,” in User Modeling, 2005,
pp. 74–78.

[16] D. Ashlock, T. Manikas, and K. Ashenayi, “Evolving a diverse
collection of robot path planning problems,” in Proceedings of the

Congress On Evolutionary Computation, 2006, pp. 6728–6735.
[17] T. W. Malone, “What makes things fun to learn? heuristics for

designing instructional computer games,” in Proceedings of the 3rd

ACM SIGSMALL symposium and the first SIGPC symposium on Small

systems, 1980, pp. 162–169.
[18] R. Koster, A theory of fun for game design. Paraglyph press, 2004.
[19] D. Gamez, R. Newcombe, O. Holland, and R. Knight, “Two simulation

tools for biologically inspired virtual robotics,” in Proceedings of the

IEEE 5th Chapter Conference on Advances in Cybernetic Systems,
2006, pp. 85–90.

[20] D. S. Ebert, F. K. Musgrave, D. Peachey, K. Perlin, and S. Worley,
Texturing and Modeling: A Procedural Approach. Morgan Kaufmann,
2002.

[21] S. Greuter, J. Parker, N. Stewart, and G. Leach, “Real-time procedural
generation of ‘pseudo infinite’ cities,” in Proceedings of the 1st inter-

national conference on Computer graphics and interactive techniques

in Australasia and South East Asia, 2003.
[22] G. N. Yannakakis and J. Hallam, “Towards capturing and enhancing

entertainment in computer games,” in Proceedings of the Hellenic

Conference on Artificial Intelligence, 2006, pp. 432–442.


