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Abstract

Recent advances in AutoML have led to automated tools that can compete with machine
learning experts on supervised learning tasks. However, current AutoML tools do not yet
support modern neural networks effectively. In this work, we present a first version of Auto-
Net, which provides automatically-tuned feed-forward neural networks without any human
intervention. We report results on datasets from the recent AutoML challenge showing
that ensembling Auto-Net with Auto-sklearn can perform better than either approach
alone and report the first results on winning competition datasets against human experts
with automatically-tuned neural networks.
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1. Introduction

Neural networks have improved the state of the art on a variety of benchmarks signifi-
cantly during the last years and opened many new promising research avenues (Krizhevsky
et al., 2012; Sutskever et al., 2014; Taigman et al., 2014; Mnih et al., 2015; Silver et al.,
2016). However, neural networks are not easy to use for non-experts since their performance
crucially depends on proper settings of a large set of hyperparameters. Here, we present
work towards effective off-the-shelf neural networks based on approaches from automated
machine learning (AutoML).

AutoML aims to provide effective off-the-shelf learning systems to free experts and non-
experts alike from the tedious and time-consuming tasks of selecting the right algorithm for a
dataset at hand, along with the right preprocessing method and the various hyperparameters
of all involved components. Thornton et al. (2013) phrased this AutoML problem as a
combined algorithm selection and hyperparameter optimization (CASH) problem, which
aims to identify the combination of algorithm components with the best (cross-)validation
performance.

The currently best-performing approaches treat this cross-validation performance as an
expensive blackbox function and use Bayesian optimization (Brochu et al., 2010; Shahriari
et al., 2016) to search for its optimizer. While Bayesian optimization typically uses Gaus-
sian processes (GPs; Rasmussen and Williams, 2006), these tend to have problems with
the special characteristics of the CASH problem (high dimensionality; both categorical and
continuous hyperparameters; many conditional hyperparameters, which are only relevant
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for some instantiations of other hyperparameters). Adapting GPs to handle these charac-
teristics is an active field of research (Swersky et al., 2013; Wang et al., 2016), but so far
Bayesian optimization methods using tree-based models (Hutter et al., 2011; Bergstra et al.,
2011) work best in the CASH setting (Thornton et al., 2013; Eggensperger et al., 2013).

Two prominent AutoML systems are Auto-WEKA (Thornton et al., 2013) and Auto-
sklearn (Feurer et al., 2015a). Both of these use the random-forest-based Bayesian opti-
mization method SMAC (Hutter et al., 2011) to tackle the CASH problem – to find the best
instantiation of classifiers in WEKA (Hall et al., 2009) and scikit-learn (Pedregosa et al.,
2011), respectively. Auto-sklearn employs two additional methods to boost performance.
Firstly, it uses meta-learning (Brazdil et al., 2008) based on experience on previous datasets
to start SMAC from good configurations (Feurer et al., 2015b). Secondly, since the eventual
goal is to make the best predictions, it is wasteful to try out dozens of machine learning
models and then only use the single best model; instead, Auto-sklearn saves all models eval-
uated by SMAC and constructs an ensemble of these with the ensemble selection technique
by Caruana et al. (2004). Even though both Auto-WEKA and Auto-sklearn include a wide
range of supervised learning methods, neither includes modern neural networks.

Here, we introduce a first version of Auto-Net to fill this gap, a system that automat-
ically configures neural networks with SMAC by following the same AutoML approach as
Auto-WEKA and Auto-sklearn. With an early version of Auto-Net, we achieved the best
performance on two datasets in the human expert track of the recent ChaLearn AutoML
Challenge (Guyon et al., 2015). To the best of our knowledge, this is the first time that a
fully-automatically-tuned neural network won a competition dataset against human experts.

We describe the configuration space and implementation of our neural network in Section
2, evaluate its performance in Section 3, and conclude in Section 4.

2. Auto-Net

We now introduce Auto-Net and describe its implementation. For this first version of Auto-
Net, we have chosen to implement Auto-Net within Auto-sklearn (Feurer et al., 2015a) by
adding a new classification (and regression) component; the reason for this choice was that it
allows us to leverage existing parts of the machine learning pipeline: feature preprocessing,
data preprocessing and ensemble construction. Here, we limit Auto-Net to fully-connected
feed-forward neural networks, since they apply to a wide range of different datasets; we
consider the extension to other types of neural networks, such as convolutional or recurrent
neural networks, as future work. To have access to modern neural network techniques we
use the Python deep learning library Lasagne (Dieleman et al., 2015), which is built around
Theano (Theano Development Team, 2016). However, we note that in general our approach
is independent of the neural network implementation.

Following Bergstra et al. (2011) and Domhan et al. (2015), we distinguish between
layer-independent network hyperparameters that control the architecture and training pro-
cedure and per-layer hyperparameters that are set for each layer. In total, we optimize
63 hyperparameters (see Table 1), using the same configuration space for all types of su-
pervised learning (binary, multiclass and multilabel classification, as well as regression).
Sparse datasets also share the same configuration space. (Since neural networks cannot
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handle datasets in sparse representation out of the box, we transform the data into a dense
representation on a per-batch basis prior to feeding it to the neural network.)

The per-layer hyperparameters of layer k are conditionally dependent on the number
of layers being at least k. For practical reasons, we constrain the number of layers to be
between one and six: firstly, we aim to keep the training time of a single configuration low1,
and secondly each layer adds eight per-layer hyperparameters to the configuration space,
such that allowing additional layers would further complicate the configuration process.

The most common way to optimize the internal weights of neural networks is via stochas-
tic gradient descent (SGD) using partial derivatives calculated with backpropagation. Stan-
dard SGD crucially depends on the correct setting of the learning rate hyperparameter. To
lessen this dependency, various algorithms (solvers) for stochastic gradient descent have been
proposed. We include the following well-known methods from the literature in the config-
uration space of Auto-Net: vanilla stochastic gradient descent (SGD), stochastic gradient
descent with momentum (Momentum), Adam (Kingma and Ba, 2014), Adadelta (Zeiler,
2012), Nesterov momentum (Nesterov, 1983) and Adagrad (Duchi et al., 2011). Addition-
ally, we used a variant of the vSGD optimizer from Schaul et al. (2014), dubbed “smorm”,
in which the estimate of the Hessian is replaced by an estimate of the squared gradient
(calculated as in the RMSprop procedure). Each of these methods comes with a learning
rate α and an own set of hyperparameters, for example Adam’s momentum vectors β1 and
β2. Each solver’s hyperparameter(s) are only active if the corresponding solver is chosen.

As it is common in the training of neural networks, we also decay the learning rate α
over time to prevent jumping around a local optimum and to obtain better convergence
(Goodfellow et al., 2016). We implemented different policies which multiply the initial
learning rate by a factor αdecay after each epoch t = 0 . . . T :

• Fixed: αdecay = 1

• Inv: αdecay = (1 + γt)(−k)

• Exp: αdecay = γt

• Step: αdecay = γbt/sc

Here, the hyperparameters k, s and γ are conditionally dependent on the choice of the
policy.

3. Experiments

We now empirically evaluate our methods. Since our implementation of Auto-Net is built
on top of Theano, we can run it on both CPUs and GPUs. As neural networks heavily
employ matrix operations, they run much faster on GPUs. Our CPU-based experiments
were run on a compute cluster, each node of which has two eight-core Intel Xeon E5-2650
v2 CPUs, running at 2.6GHz, and a shared memory of 64GB. Our GPU-based experiments
were run on a compute cluster, each node of which has four GeForce GTX TITAN X GPUs.

1. We aimed to be able to afford the evaluation of several dozens of configurations within a time budget of
two days.
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Name Range Default log scale Type Conditional

Network
hyperpa-
rameters

batch size [32, 4096] 32 X float -
number of updates [50, 2500] 200 X int -
number of layers [1, 6] 1 - int -
learning rate [10−6, 1.0] 10−2 X float -
L2 regularization [10−7, 10−2] 10−4 X float -
dropout output layer [0.0, 0.99] 0.5 X float -
solver type {SGD, Momentum, Adam, Adadelta, Adagrad, smorm, Nesterov } smorm3s - cat -
lr-policy {Fixed, Inv, Exp, Step} fixed - cat -

Conditioned
on solver
type

β1 [10−4, 10−1] 10−1 X float X
β2 [10−4, 10−1] 10−1 X float X
ρ [0.05, 0.99] 0.95 X float X
momentum [0.3, 0.999] 0.9 X float X

Conditioned
on lr-policy

γ [10−3, 10−1] 10−2 X float X
k [0.0, 1.0] 0.5 - float X
s [2, 20] 2 - int X

Per-layer
hyperparam-
eters

activation-type {Sigmoid, TanH, ScaledTanH, ELU, ReLU, Leaky, Linear} ReLU - cat X
number of units [64, 4096] 128 X int X
dropout in layer [0.0, 0.99] 0.5 - float X
weight initialization {Constant, Normal, Uniform, Glorot-Uniform, Glorot-Normal, He-Normal - cat X

He-Normal, He-Uniform, Orthogonal, Sparse}
std. normal init. [10−7, 0.1] 0.0005 - float X
leakiness [0.01, 0.99] 1

3 - float X
tanh scale in [0.5, 1.0] 2/3 - float X
tanh scale out [1.1, 3.0] 1.7159 X float X

Table 1: Hyperparameter configuration space of Auto-Net. The configuration space for the
preprocessing methods can be found in Feurer et al. (2015a).

3.1. Baseline evaluation of Auto-Net and Auto-sklearn

In our first experiment, we compare different instantiations of Auto-Net on the five datasets
of phase 0 of the AutoML challenge. First, we use the CPU-based and GPU-based versions
to study the difference of running NNs on different hardware. Second, we allow the combina-
tion of neural networks with the models from Auto-sklearn. Third, we also run Auto-sklearn
without neural networks as a baseline. On each dataset, we performed 10 one-day runs of
each method, allowing up to 100 minutes for the evaluation of a single configuration by
5-fold cross-validation on the training set. For each time step of each run, following Feurer
et al. (2015a) we constructed an ensemble from the models it had evaluated so far and plot
the test error of that ensemble over time. In practice, we would either use a separate process
to calculate the ensembles in parallel or compute them after the optimization process.

Figure 1 shows the results on two of the five datasets. First, we note that the GPU-based
version of Auto-Net was consistently about an order of magnitude faster than the CPU-
based version. Within the given fixed compute budget, the CPU-based version consistently
performed worst, whereas the GPU-based version performed best on the newsgroups dataset
(see Figure 1(a)), tied with Auto-sklearn on 3 of the other datasets, and performed worse
on one. Despite the fact that the CPU-based Auto-Net was very slow, in 3/5 cases the
combination of Auto-sklearn and CPU-based Auto-Net still improved over Auto-sklearn;
this can, for example, be observed for the dorothea dataset in Figure 1(b).

3.2. Results for AutoML competition datasets

Having developed Auto-Net during the AutoML challenge, we used a combination of Auto-
sklearn and GPU-based Auto-Net for the last two phases to win the respective human
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(a) newsgroups dataset
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Figure 1: Results for the 4 methods on 2 datasets from Tweakathon0 of the AutoML chal-
lenge. We show errors on the competition’s validation set (not the test set since
its true labels are not available), with our methods only having access to the
training set. To avoid clutter, we plot mean error ± 1/4 standard deviations over
the 10 runs of each method.

expert tracks. Auto-sklearn has been developed for much longer and is much more robust
than Auto-Net, so for 4/5 datasets in the 3rd phase and 3/5 datasets in the 4th phase
Auto-sklearn performed best by itself and we only submitted its results. Here, we discuss
the three datasets for which we used Auto-Net.

Figure 2 shows the official AutoML human expert track competition results for the three
datasets for which we used Auto-Net. The alexis dataset was part of the 3rd phase (“ad-
vanced phase”) of the challenge. For this, we ran Auto-Net on five GPUs in parallel (using
SMAC in shared-model mode) for 18 hours. Our submission included an automatically-
constructed ensemble of 39 models and clearly outperformed all human experts, reaching
an AUC score of 90%, while the best human competitor (Ideal Intel Analytics) only reached
80%. To our best knowledge, this is the first time an automatically-constructed neural net-
work won a competition dataset. The yolanda and tania dataset were part of the 4th
phase (“expert phase”) of the challenge. For yolanda, we ran Auto-Net for 48 hours on
eight GPUs and automatically constructed an ensemble of five neural networks, achieving
a close third place. For tania, we ran Auto-Net for 48 hours on eight GPUs along with
Auto-sklearn on 25 CPUs, and in the end our automated ensembling script constructed
an ensemble of eight 1-layer neural networks, two 2-layer neural networks, and one logistic
regression model trained with SGD. This ensemble won the first place on the tania dataset.

For the tania dataset, we also repeated the experiments from Section 3.1. Figure 3
shows that for this dataset Auto-Net performed clearly better than Auto-sklearn, even
when only running on CPUs. The GPU-based variant of Auto-Net performed best.
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(a) alexis dataset (b) yolanda dataset (c) tania dataset

Figure 2: Official AutoML human expert track competition results for the three datasets
for which we used Auto-Net. We only show the top 10 entries.
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Figure 3: Performance on the tania dataset over time. We show cross-validation perfor-
mance on the training set since the true labels for the competition’s validation or
test set are not available. To avoid clutter, we plot mean error ± 1/4 standard
deviations over the 10 runs of each method.

4. Conclusion

We presented Auto-Net, which provides automatically-tuned feed-forward neural networks
without any human intervention. Even though neural networks show superior performace on
some datasets, for traditional data sets with manually-defined features they do not always
perform best. However, we showed that, even in cases where other methods perform better,
combining Auto-Net with Auto-sklearn to an ensemble often leads to an equal or better
performance than either approach alone. Finally, we reported results on three datasets
from the AutoML challenge’s human expert track, for which Auto-Net won one third place
and two first places.

In future work, we aim to extend Auto-Net to more general neural network architectures,
including convolutional and recurrent neural networks.
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