

Towards Autonomic Web Services:
Achieving Self-Healing Using Web Services

Sherif A. Gurguis
American University in Cairo

Computer Science Department
sgurguis@gmail.com

Amir Zeid
American University in Cairo

Computer Science Department
azeid@aucegypt.edu

ABSTRACT
Autonomic Computing was introduced to reduce the complexity
of managing computing systems; however, the heterogeneous
nature existing in most computing systems introduces some
difficulty to achieve this target. Moreover, the notion of service
as a computing component that seamlessly collaborates with
other services in a loosely-coupled manner to perform
complicated tasks was introduced by Service-Oriented
Architecture (SOA); and then, fertilized by Web Services that
added open standards to different roles and operations involved
in a community of services; however, in order to gain the
expected benefits of Web Services, the latter should be able to
survive in normal and abnormal conditions. Our research aims
at finding a hyper solution to that two-dimensional problem by
allowing both Autonomic Computing and Web Services
paradigms to lend each other their distinct features. First, Web
Services lend Autonomic Computing the concept of platform-
independency; second, Autonomic Computing lends Web
Services the attributes providing self-management. The focus of
this paper will be on how the self-healing autonomic attribute
can be implemented and applied using Web Services.

General Terms
Management, Performance, Design, Reliability.

Keywords
Autonomic Computing, Web Services, Autonomic Web
Services, Self-Healing Web Services, MAPE-cycle.

1. INTRODUCTION
IBM introduced the concept of Autonomic Computing by
defining four attributes to enable computing systems to be self-
managed with minimum human intervention [1]. The first
attribute is self-configuring that is concerned with enhancing
responsiveness by dynamically adapting to changing
environments. The second attribute is self-healing intends to

improve resiliency by avoiding disorders through discovery,
diagnosis, and reaction to unexpected working conditions. Self-
optimizing is the third attribute that aims at achieving better
operational efficiency by maximizing the utilization of available
resources. Finally, self-protecting deals with advancing
information and resources security by anticipating,
detecting, identifying, and protecting against different

attacks [2]. In the context of autonomic computing, each
computing component is divided into two integrated parts: a
managed element, which is the resource itself, and an
autonomic manager, which is responsible for providing
autonomic behavior to that component [3]. An autonomic
manager is implemented as a control cycle that is composed of
four integrated phases: (1) Monitor collects information from
the managed element, (2) Analyzer correlates reported events to
identify the current situation of the managed element; and then,
suggests some recovery actions in the case of failure, (3)
Planner specifies what actions to be taken in order to recover
from any malfunction while meeting business requirements and
(4) Executive dispatches recommended actions in the managed
elements [4]; the control cycle may be referred to as MAPE-
cycle. The four phases share the knowledge they need, such as
policies and logs in some repository. The vision of Autonomic
Computing that has been discussed is shown in figure 1:

Figure 1. Autonomic Computing Vision [4]

In SOA, the functional unit is the service that is exposed to
external users through publishing a set of defined interfaces.
Therefore, SOA can be thought about as a normal extension of
Object-Oriented Architecture, such that a service can be
considered an object but with a special interface [2]. However,
unlike Object-Oriented Architecture, SOA supports loosely-
coupled relationships; and therefore, SOA supports applications

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DEAS 2005, May 21, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-59593-039-6/05/0005...$5.00.

22

1

Autonomic
 Computing

Web

Services

that dynamically adapt to expected and unexpected changes.
Web Services are services that are shared across the Internet by
using open standards. For example, XML is used to support
common understanding among computers; and therefore, allows
seamless spanning across different domains. Web Services are
shared by publishing the their interfaces in public service
registries co that requesters of Web Services use service
registries to find out the available Web Services that meet their
needs; then, bind to their providers; and finally, invoke the
required functions over the Internet. As shown in figure 2, roles
and operations involved in the life-cycles of Web Services can
be described with a triangle with roles represented by vertices
and operations represented by sides.

Figure 2. WS Triangle: Roles and Operations

All the Web Services’ operations are based on exchanging
messages using Internet communication protocols, such as
HTTP. Moreover, XML is used for representing data that are
exchanged among services in each operation. IBM considers the
following standards the base technologies for developing Web
Services: (1) Simple Object Access Protocol (SOAP)
implements the bind and use operations by containing XML
messages in a standardized envelope (2) Web Services
Description Language (WSDL) implements the publish
operations by defining abstract interfaces and bindings and (3)
Universal description, Discovery and Integration (UDDI)
implements the find-operations by providing a public registry
that is accessed or queried for either searching or publishing [5].

2. RESEARCH TOPIC
Our research considers Autonomic Computing together with
Web Services for the following reasons: First, autonomic
computing provides the basics for achieving the notion of self-
management. However, most of the modern computing systems
are usually composed of solutions from different vendors.
Because of this heterogeneous nature, there would be some
difficulty to achieve the goals of autonomic computing.
Second, Web Services provide the basics for building
computing units that can be used dynamically by using open
standards; however, Web Services will not be able to survive in
unexpected operational environments if they rely on human
intervention. Therefore, the promises and needs of both
Autonomic Computing and Web Services have emphasized the
relationship between them; therefore, they can be blended in a
composite one, which is Autonomic Web Services.
According to our approach, Web Services could be divided into
two categories. First, Functional Web Services are those

services that provide computing functionalities over the
Internet. Second, Autonomic Web Services are those services
that encapsulate autonomic attributes to provide autonomic
behavior over the Internet. Consequently, a functional Web
Service can behave autonomically by discovering and using
autonomic Web Services over the Internet without
implementing autonomic attributes. This is illustrated in the
figure below:

Figure 3. The Concept of Autonomic Web Services

Each attribute of autonomic computing can be implemented as a
separate autonomic Web Service as follows: Self-Configuring
Web Service, Self-Healing Web Service, Self-Optimizing Web
Service, and Self-Protecting Web Service. In the heart of each
autonomic Web Service, a MAPE-cycle is implemented;
moreover, in order to allow each phase of the MAPE-cycle to be
discovered and used separately over the Internet, the cycle is
implemented as four integrated Web Services as follows:
Monitoring Web Service, Analyzing Web Service, Planning Web
Service and Executing Web Service. Through collaboration
among the MAPE-cycle Web Services, autonomic Web Services
perform their functions.

Figure 4. Web-based MAPE-Cycle

Platform
Independency

Autonomic
Behavior

Autonomic Web services

+

Web
Service

Requester

3. Bind

2. Find 1. Publish

4. Use
Web

Service
Provider

Web
Services
Registry

Monitoring
WS

Analyzing
WS

Executing
WS

Planning
WS

23

2

3. SELF-HEALING WEB SERVICE
This autonomic Web Service is responsible for providing the
self-healing autonomic attribute to enable functional Web
Services to discover, diagnose, and react to unexpected events
that would lead to malfunctions. To achieve this target, different
situations should be tracked and analyzed so that abnormal
conditions can be identified. Moreover, in the case of failure,
some actions should be initiated in order to recover from the
failure while meeting the system requirements.

3.1. Problem Determination
A Problem Determination Mechanism (PDM) is used to
automate analysis and correlation of logs data to help in solving
problems. A typical PDM should be able to discover the root
cause of problems; and then, recommends some actions that are
initiated to correct those problems. Therefore, A PDM should
adhere to the following steps while dealing with any problem:
(1) identifying, (2) classifying, (3) diagnosing, (4) requesting
some changes and (5) correcting [6]. However, the fact that each
computing application reports logs representing different events
and errors in its own way and format contributes to
complicating the task of correlating reported logs. Therefore, in
order to have a common PDM, logs should be standardized both
syntactically and semantically.

3.2. Common Base Event (CBE)
Common Base Event (CBE) inherits the power of XML to unify
both the syntax and semantic of the product-specific logs
through converting events into XML-based messages. The
following 3-tuple information is captured per each event: (1)
the reporting component, (2) the affected component, and (3)
the situation. Often, the reporting component is the component
being affected by the situation [7].
After analyzing logs from different products, CBE concluded
that different events that probably occur in computing systems
can be categorized into eleven predefined situations; and one
user-defined situation [7]. The set of predefined situations
includes: Start Stop, Connect, Request, Configure, Available,
Report, Create, Destroy, Feature, and Dependency situations.
For example, FeatureSituation denotes that some feature has
become either available or unavailable on some component.
Each of those situations has some parameters, such as
reasoningScope that denotes whether the impact of the situation
is internal to the affected component or it propagates to other
components [8].

3.3. MAPE Cycle
The MAPE-cycle of the self-healing Web Service uses a
Diagnosis Engine as its analyzing Web Service to recognize
patterns exiting in the logs in order to realize that a specific
problem has occurred [7]. The engine uses a Symptom
Database, which is an XML file containing symptoms and
recovery actions. By looking up the symptom database, one or
more directives can be found such that following those
directives should eventually lead to recovering from the current
situation.
Once the diagnosis engine has found some recovery actions, a
Rule Engine is used as the MAPE-cycle’s planning Web Service

to determine which actions can be taken according to the system
policies [7]. The rule engine uses a Policy Database, which
maintains high-level policies, to match the recommended
actions by the diagnosis engine against policies in order to
ensure that no action will have a negative impact on critical
processes.
A typical record in the Symptom Database looks like the
following:

Figure 5. Structure of the Symptom Database

The figure below shows the operation of the MAPE-cycle used
by the self-healing Web Service.

Figure 6. Functionality of Self-Healing MAPE-Cycle

3.4. Achieving Synchronization

Self-healing Web Service can achieve synchronization among
the Web Services of its MAPE-cycle by implementing a
Notification Web Service that adheres to the event-based
architecture. Each Web Service in the self-healing MAPE cycle
that is concerned with the occurrence of some events subscribes
with the notification Web Service to be notified every time
those events occur. Whenever an event of significance occur, it
is published so that interested Web services in the MAPE-cycle
are notified.
In the figure below, the monitoring Web Service publishes
events as they occur, the diagnosis engine publishes suggested
corrective actions, and the rule engine publishes the corrective
action to be taken. Moreover, the diagnosis engine subscribes to

<symptomId>
 <eventMessage>
 <explanation>
 <directives>
 .
 .
 <\directives>
 <\explanation>
 <\eventMessage>
<\symptomId >

If time=daytime then
DO NOT Restart
Service X

Rule
Engine

Approved Solution

Policy Database

Time= 11:46 am
Failed Connection
To ServiceX

Symptoms
Database

Diagnosis
Engine

CBE Logs

Suggested Solutions

Monitoring
WS

Executing
WS

Functional
WS X

Functional
WS X

8.Apply
Action

1

3 4

5

6 7

2

Solution 1: Restart
ServiceX.
Solution 2: Redirect
Requests to
ServiceY

Solution 2:
Redirect
Requests to
ServiceY

24

3

be notified about specific events, the rule engine subscribes to
be notified about suggested corrective actions, and the executing
Web Service subscribes to be notified about specific actions to
be applied.

Figure 7. Functionality of Notification Web Service
P =Publish – N = Notify

3.5. Using Self-Healing Web Service
Suppose that WS-X is a self-healing Web Service that has been
developed. WS-X should be published into an XML-based
registry by registering the interfaces of the MAPE-cycle Web
Services composing WS-X. In addition, suppose that WS-Y is a
functional Web Service that does not implement the self-healing
attribute. The developer of WS-Y considers the situation, in
which, the logs file reads abnormal measures such that WS-Y
locates a Web Service like WS-X to analyze the situation and
provide some recommendations. Once WS-X has been located,
WS-Y is bound to it and invokes the analyzing Web Service of
WS-X. WS-Y enables WS-X to access its logs file as well as its
policy database if there is any. WS-X uses this information to
provide an action, which is applied to WS-Y through the
executing Web Service of WS-X.

3.6. Developing and Testing Environment
IBM provides the Emerging Technologies Toolkit (ETTK) that
can be used in building a proof-of-concept prototype. The
toolkit contains a logs adapter called Generic Log Adapter for
Autonomic Computing (GLA) that translates legacy logs into
CBE format. Moreover, Log and Trace Analyzer (LTA) can be
used to implement the diagnosis engine as it provides the means
for performing a root-cause analysis by correlating events and
showing the interactions among the logs that contributed to the
problem. In addition to the autonomic computing tools, IBM
also provides the tools required for building Web Services. In
our research, we use WebSphere Application Developer
(WSAD) for developing Web Services and WebSphere
Application Server to deploy the developed Web Services so
that they can be exposed to public usage. Also, we use some
Web Services testing tools to simulate a real operational
environment by applying some stress on Web Services and to
measure some parameters of Web Services, such as response
time. In addition to developing the self-healing Web Service, a
simple functional Web Service is being developed to serve as a
case study for testing. That Web Service will be forced to
behave badly with the aid of the stress tools; and then,

inspecting how the self-healing Web Service would help that
Web Service to recover from such behavior. Therefore, we can
test the concept of Autonomic Web Services.

4. POSSIBLE APPLICATIONS:
EVOLVING LEGACY SYSTEMS
70-80% of the data used in business still reside on legacy
repositories, which means that almost the same percentage of
the business logic also resides on legacy systems [9]. Therefore,
redeveloping legacy applications is, obviously, not the good
choice in order to apply new technologies to your business.
Consequently, enabling potential legacy systems to adopt both
the Autonomic Computing and Web Services paradigms without
the need for redeveloping them is a critical consideration. A
legacy system can be wrapped by WS wrappers so that the
wrapped system will be enabled to be discovered and accessed
from any location connected to the Internet using Web
protocols. Moreover, legacy logs can be converted into CBE
logs by using a logs-adapter. Eventually wrapped legacy
systems can be enabled to behave autonomically by discovering
and using the autonomic Web Services over the Internet.

5. CONTRIBUTION
Autonomic computing attributes can be implemented as Web
Services in order to overcome the problem of heterogeneous
computing systems. By adhering to the Web Services triangle,
autonomic Web Services can be published into a public registry
of Web Services. Therefore, other Web Services or wrapped
legacy systems that lack embedded autonomic behaviors can
discover, bind-to, and use those autonomic Web Services in
order to borrow the autonomic behavior. Consequently, Web
Services will be able to survive in different working conditions
without depending on human intervention that hinders
achieving the expected benefits of Web Services.

6. RELATED WORK
Many research efforts contribute to the topic considered by our
research. In the context of achieving self-healing management
among heterogeneous applications, Gary Dudley et al proposed
a hyper solution that provides self-healing to an environment of
applications and network devices [10]. In the context of
evolving legacy systems using WS, Al Williams proposed an
approach that depends on adapting legacy messages into SOAP
messages [11]. Moreover, Shalil Majithia et al proposed a
framework for automating the process of collaboration among
services in an SOA environment [12].

7. FUTURE WORK
Only the self-healing autonomic attribute is being considered by
our research in this stage; implementing the proposed MAPE
cycle of the self-healing Web Service as well as the test
functional Web Service is currently conducted. Afterwards, the
remaining autonomic attributes will be considered for
implementation respectively to be provided in the same way as
self-healing attribute is.

8. REFERENCES

Monitoring
WS

Analyzing
WS

Executing
WS

Planning
WS

Notification
WS

P

P N

N

N

P

25

4

[1] Grid Technology Partners, "Autonomic Computing: Characteristics
 of self-management IT systems", 2003.
[2] A.G. Ganek and T.A. Corbi, "The dawning of the autonomic
 computing era", IBM Systems Journal, VOL 42, NO 1, 2003.
[3] IBM web site, http://www.ibm.com/developerworks/.

[4] Jeffery O.Kephart and David M.Chess, "The vision of autonomic
 computing", IEEE, January 2003.
[5] Chris Nelson and Willy Farrell, "Transforming legacy applications
 with Web Services", http://ibm.com/developerworks/, May 2002.
[6] IBM, "Understand problem determination for autonomic
 computing", http://ibm.com/developerworks/.
[7] IBM Autonomic Computing, "Automating problem
 determination: A first step toward self-healing computing systems",
 October 2003.
[8] David Bridgewater, "Standardize messages with the Common Base
 Event model", http:/ibm.com/developerworks/, Feb. 2004.
[9] "Legacy Transaction Integration in a Service-Oriented
 Architecture", Red Oak Software, November 2003.
[10] Gary Dudley et al, "Autonomic Self-Healing Systems in a Cross-
 Product IT Environment", proceedings of the international
 conference on autonomic computing (ICAC'04), IEEE, 2004.
[11] Al Williams, "Bridging Legacy Systems and the Web",
 http://www.newarchitectmag.com/documents/, July

 2002.

[12] Shalil Majithia et al, "A framework for Automated Service
 Composition in Service-Oriented Architectures", 2004.

26

5

