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Abstract— This paper presents an approach towards au-
tonomous aerial power line inspection. In particular, the
presented work focuses on real-time autonomous detection,
localization and tracking of electric towers. A strategy which
combines classic computer vision and machine learning tech-
niques is proposed. A generalized detection and localization
approach is presented, where a two-class multilayer perceptron
(MLP) was trained for Tower-Background classification. This
MLP is applied over sliding windows for each camera frame
until a tower is detected. The detection of a tower triggers
the tracker. A hierarchical tracking methodology, especially
designed for tracking towers in real-time, is presented. This
methodology is based on the Hierarchical Multi-Parametric and
Multi-Resolution Inverse Compositional Algorithm [1], and is
proposed to be used for tracking and maintaining the tower in
the field of view (FOV). The proposed strategy, which is the
combination of the tower detector and the tracker, is evaluated
on videos from several real manned helicopter inspections.
Overall, the results show that the proposed strategy performs
very well at detecting and tracking various types of electric
towers in diverse environmental settings.

I. INTRODUCTION

Electricity companies have several regulatory as well as

financial reasons for performing regular inspections of the

power line infrastructure [2], [3]. The faults and defects in

the power line equipment are a big cause of unplanned power

outages, as well as present a public safety risk [2], [3].

Consequently, these companies spend a significant budget

on the power line inspections, and continuously pursue new

approaches to reduce the inspection costs.

These issues have led to several collaborative efforts

between industry and academia to research other approaches,

with focus on automating the inspection task. From the field

of mobile robotics, two approaches have primarily emerged

[4], [5]: Unmanned Aerial Vehicles (UAVs) [6], [7], [8], [9],

and the robots capable of climbing and rolling on the wires

(ROW) [10], [11], [12]. Some authors have also proposed

hybrid climbing-flying robots [13].

Both types of robotic platforms offer promising solutions.

However, UAVs have one major advantage over ROWs [4],

[5]: they offer a general solution to inspection, that is, unlike

ROW robots, it is not necessary to adapt the robot design

to different types of towers and power line infrastructure.

UAVs offer a very attractive solution for automating the

task of power line inspection. Having said this, to provide
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a completely autonomous UAV-based inspection, several

challenges need to be addressed.

In a recent paper, Pagnano et al [5] highlighted some of

the most important general challenges for UAV-based power

line inspection:

• Visual servoing (extended by information from other

sensors) for power line tracking and autonomous navi-

gation;

• Obstacle detection and avoidance (a UAV should not

crash into the power line equipment);

• Robust control (for high stability and positioning for

close-up and comprehensive inspections).

In resolving these general challenges, computer vision

plays a major role. Different aspects of UAV-based power

line inspection can benefit greatly from appropriate vision

algorithms.

This paper is a contribution towards autonomous aerial

inspection of the power line infrastructure. More specifically,

the problem of autonomous detection and tracking of electric

towers is addressed based on classic computer vision and

machine learning techniques.

Several researchers have applied computer vision tech-

niques for tower detection and segmentation in aerial images

[14], [15], [16], [17], [18]. Since towers are usually linear

structures, most approaches are based on detecting lines in

an image. The detected lines are post-processed by applying

user-defined heuristics, in order to keep only the lines be-

longing to the tower. Various image segmentation methods

are then applied to extract the tower from the image - e.g.

direct template match is used in [15], watershed segmentation

in [16], graph-cut in [17]. Golightly and Jones [14], instead

of using lines, used corner features to detect a tower in the

image.

The problem of detection and tracking of towers during

aerial inspections has been addressed previously for remotely

piloted helicopter missions [15], [14]. Whitworth et al [15]

apply a template-based approach for tower detection and

tracking. The template matching approach was designed for

detecting and segmenting simple “T-shaped” towers from

the video sequences. The same approach is then recursively

applied for tracking as well. Golightly and Jones [14] use

a corner detector to detect and track the tower-tops where

the detected corners exemplify a tower-top in an image. The

results were reported only for a single type of tower.

A major restriction of these approaches, for detection as

well as tracking, is that they have been reported on just

one type of tower, and authors make several assumptions

regarding the shape and appearance of the tower. Moreover,



the robustness of the proposed approaches have not been

tested on diverse backgrounds, as would be expected from

inspections. Thus, current approaches to tower detection and

tracking cannot be generalized. Fig. 1 shows some examples

of different types of electric towers and heterogeneity in

background, as observed in real aerial inspections.

In this paper, a general approach to tower detection is

presented. A multilayer perceptron (MLP) neural network

was trained for Tower-Background classification. The de-

tector was trained on the cropped images of four types

of towers and background regions. HOG (Histogram of

Oriented Gradients) features [19] are extracted from these

images and used as input for training the MLP. To detect

the tower in an image, the sliding window approach (as in

[20], [21]) is used where the trained MLP is applied to image

regions. A successful detection of tower in an image triggers

the tower tracking routine.

In this paper, the Hierarchical Multi-Parametric and Multi-

Resolution Inverse Compositional Algorithm (HMPMR-

ICIA) [1], a tracking-by-registration strategy, is explored for

tower tracking. The intensity information of all the pixels

of the electric tower (or part of the tower) are used to

estimate the motion of the tower in the image plane. Direct

methods permit to obtain robust estimations and also have the

advantage of being more generally applicable to a wide range

of scenes (selection and extraction of specific features are not

required). The latter advantage is of great importance for the

application concerned in this paper where tracking towers

with different kind of sizes and shapes is required, as well as

obtaining robust estimations under the difficult conditions of

the task (constant vibrations of the UAV, high-speed flights,

and the limited computational capacity on-board). This is

why the HMPMR-ICIA algorithm is used.

Therefore, the main contribution of this work is a general

vision-based strategy for tower detection and tracking. Un-

like other works related to the use of computer vision for

power line inspection, the proposed strategy does not make

any assumption on the shape of the tower to be detected and

tracked. Additionally, most of the approaches found in the

literature do not take tracking into account. To the authors’

knowledge, this is the first work where a robust machine

learning-based tower detection approach is combined with a

tracking-by-registration approach to solve the tower detection

and tracking problem for autonomous power line inspection.

The rest of the paper is structured as follows: Section II

presents the problem statement; Section III describes the

proposed strategy for tower detection and tracking; in Sec-

tion IV, the proposed strategy is evaluated using image data

from two real manned helicopter inspections; and Section V

concludes the paper.

II. PROBLEM STATEMENT

Electric towers are complex structures with several critical

components that are prone to damage and deterioration.

Therefore, a comprehensive visual inspection of the towers is

an extremely important part of the power line inspection. A

UAV platform with on-board visual sensing and processing

Fig. 1. Power line inspection. The inspection of power line infrastructures
is a very challenging task, for computer vision algorithms, due to the large
variety of backgrounds and types of tower.

equipment can greatly facilitate the autonomous inspection

task.

As elaborated in the previous section, computer vision

techniques are widely applied for processing the aerial

images for tower detection and tracking. Further image

processing algorithms can then be applied for detecting the

power line components on the tower (joints, conductors,

insulators, etc.) and for analyzing the faults that can appear

on them. Nevertheless, the application of computer vision

for power line inspection is a very challenging task.

One of the problems that computer vision has to deal

with, is the wide variety of backgrounds in which the images

are taken. Backgrounds can be very heterogeneous in color,

texture, and also in the elements that can appear in the scene,

like houses, roads, crops, etc. (see Fig. 1), which can make

the inspection task difficult. Illumination changes are yet

another factor that adversely impact the performance of the

algorithms. Due to this, it is very difficult to make general

assumptions about the color of the tower or the background

for processing the image.

Other important challenge for computer vision techniques

is the wide variety of shapes and sizes that electric towers can

have, e.g., electric towers used for medium-voltage power

lines (see bottom-right image in Fig. 1) have heights about

10m, and are mainly composed of a vertical pole with the

insulators placed on the top of the tower. On the other hand,

electric towers used for very high-voltage power lines (see

top-images in Fig. 1) can reach up to 55m, and have a more

complex structure.

Another important factor is the quality of images. It

depends considerably on the kind of inspection. In intensive

aerial inspections, the flights are conducted at very low

speed and stop at every tower, pointing the camera at the

components to be inspected. In such inspections the image

resolution is high, and therefore, small-sized faults in the

components can be better detected and analyzed. In non-



intensive inspections, the flight is conducted at high speed,

making a continuous flight without stopping at each tower.

In this case, the images are of poorer quality, and only some

faults in the structure of the electric towers can be detected.

These problems appear with manned helicopter as well as

UAV-based inspections.

In order to have an operating UAV-based platform com-

pletely autonomous, it is important to have a tracking ap-

proach working on-line for image acquisition and processing.

This will help the UAV to navigate in order to maintain

the tower and its components inside the filed of view of

the camera as soon as the tower is detected. Furthermore,

the detection techniques are usually computationally more

expensive than tracking methods. Therefore, for designing

a real-time online solution, it would be useful to avoid

tower detection in every single frame, and instead apply

tracking. The tracking algorithm will also have to deal with

several problems like abrupt movements of the camera,

scale changes of the electric tower and its components.

Additionally, there is a clear interdependency between the

tracker and the detector, since the detector output provides

the region for the tracker to track.

Currently there is no global system for automating the

power line inspection process that can be generalized for all

the tower types (medium, high, very-high voltage, etc) and

in all the possible scenarios. Although simultaneous tower

detection and tracking has been previously addressed in [15],

[14], their experimental scenario was limited to a single type

of tower in a simpler environmental setting.

Considering all the mentioned restrictions, this paper is

conceived as an effort to detect and track electric towers

in a large variety of scenarios which can appear in images

acquired by real non-intensive inspections. The main motiva-

tion of the approach presented here is to help the automation

of the power line inspection process.

III. TOWER DETECTION AND TRACKING

STRATEGY

In this paper, a tower detection and tracking strategy

is explored with the aim of automating the power line

inspection problem using Unmanned Aerial Vehicles (UAVs).

The objective of the system is first to determine the position

of the tower in the image plane using a machine learning

approach, and then estimating the position of the tower in the

following frames using a tracking-by-registration approach.

A. Strategy Overview

Fig. 2 presents the flowchart of the tower detection and

tracking strategy. As can be seen in this figure, at the core

of the system are the tower detection and the tower tracking

stages. The algorithm starts with status TD = 0, (tower

detection flag) i.e. electric tower is not detected. The tower

detection stage, described in Section III-B, is then used to

find an electric tower in the current frame (e.g. in I(0), where

the subindex represents the number of the frame). Detection

criteria, described in Section III-D, are then applied in order

to define if the found region contains a tower. If those criteria
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Fig. 2. System architecture. The proposed strategy for power line inspection
is based on the interaction between a detection and a tracking stage. Tracking
and detection criteria contra interaction between both stages, based on the
TD flag (Tower Detection flag).

are met, TD = 1, and the found region is post-processed

in order to obtain a more compact region. This updated

region will be the template image T(0) (sub-index refers

to the image number) used by the tracking-by-registration

algorithm (described in Section III-C). Then, the tracking

algorithm is initialized. Different components of the tracking-

by-registration strategy, such as the pyramidal structure, the

Hessian matrix, etc., are created and calculated. As can be

seen in Fig. 2, the tracking initialization stage is carried out

every time the template image is updated.

When a new frame is analyzed, if TD = 1, then the

tracking algorithm is used to estimate the transformation that

describes the motion of the electric tower from the frame

where T0 was selected, to the current frame.

Then, as can be seen in Fig. 2, the result of the tracking

algorithm is checked by different criteria which analyze

either the performance of the tracking algorithm or the

position of the tower in the image plane (e.g. if the tower is

too close to the camera, the algorithm triggers TD = 0, in

order to search the next electric tower).

These tracking criteria are used to switch between the

detection and tracking stages. If some of those criteria are

not satisfied, tower detection flag is switch to TD = 0, and

the detection stage will operate until a new electric tower is

found. Conversely, if the criteria are satisfied, the position of

the tower in the current frame is known.

Most of the time, the tracking stage operates in isolation

because this is the most robust and computationally efficient

approach to determine the position of the tower in the dif-

ferent frames of an image sequence. Nevertheless, the tower
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Fig. 3. Tower detection stage. Given an input image, a preprocessing step is applied to detect vertical lines. Once the lines are computed, a search area
for the sliding window is defined. The sliding window approach is used to scan the search area. A trained tower detection classifier is applied in each
window (SW) for Tower-Background classification.

detection stage acts as a backup to detect the position of the

tower whenever the tracking stage needs to be reinitialized.

B. Tower Detection Stage

This stage is in charge of detecting and localizing electric

towers in an image. As can be seen in Fig. 2, if some criteria

are satisfied, the output of the detection stage is used to

initialize the tracking algorithm.

Fig. 3 describes the workflow of the tower detection stage.

This stage is composed of two algorithms, one based on

detecting vertical lines (Fig. 3(a)) and a second one based

on tower-background classification (Fig. 3(b)). The general

idea of the strategy is to use a sliding window approach

to scan the image and to apply the trained tower detection

classifier in each window. Nonetheless, in order to speed

up the process and to improve the precision of the tower

detection algorithm, the sliding window approach is applied

only in the regions that contain vertical lines which are

defined in a pre-processing stage described in Fig. 3(a).

In the pre-processing algorithm (see Fig. 3(a)), the vertical

Sobel mask is applied over the input image (converted to

grayscale) in order to extract vertical edges. Then, the verti-

cal sobel image is thresholded in order to reduce noise. This

threshold has been found experimentally (sThr = 40/255)

finding a compromise between noise reduction and vertical

edge detection. The Hough transform is then applied over

the thresholded image to detect vertical lines. It is applied

only in the range of −5◦ to 5◦, in order to reduce processing

time. Then, a threshold in the hough space (hThr = 200) is

applied in order to keep the lines that have a length bigger

than a defined value. The length is controlled by the number

of votes of each line in the Hough space which have been

defined experimentally. Therefore, those lines with a number

of votes > hThr are considered as possible lines belonging

to towers. Finally, the position of the lines found in the image

plane is used to define the search area for the sliding window

algorithm, as can be seen in Fig. 3(a). The size of the search

area is based on the size of the windows used by the sliding

window algorithm.

In order to detect the electric tower, a sliding window

approach is used to scan the search area defined in the pre-

processing stage. As shown in Fig. 3(b), a small window,

SW, of a predefined size is slid over the image. In our

strategy two window sizes are used (SW1:160×290 pixels,

and SW2:130 × 260 pixels). The size of these windows is

derived from the average size of the tower images used for

training the classifier.

Each window SW, provided by the sliding window al-

gorithm, is resized to 64 × 128 pixels, and then from this

image HOG (Histogram of Oriented Gradients) features [19]

are extracted. The resulting HOG feature vector (of size

3780) is passed as input to a two-class MLP classifier trained

for tower detection. The window SW will be classified as

Tower, if the activation values of the output layer neurons, a1
and a2, are a1 ≥ 0.98 & a2 ≤ 0.001; or as Background,

otherwise.

The position in the image of all the windows SW that

have been classified as Tower are then saved (see Fig. 3(b),

red boxes, image on the right). Finally, when the sliding

algorithm has finished scanning the entire image, the result

from the detection stage is obtained as the bounding box

that covers all windows SW that were saved. This region of

interest, shown in Fig. 3(b) (green box, image on the right), is

post-processed in order to obtain a more compact region. The

updated region ROI(F ), is obtained by extracting vertical

lines inside the region found by the detection stage. Thus,



ROI(F ) corresponds to the rectangle that inscribes the

vertical lines of the tower. ROI(F ) will be used as the image

template, T(F ), for the tracking stage.

C. Tower Tracking

The selected strategy for tracking electric towers is the

HMPMR-ICIA (Hierarchical Multi-Parametric and Multi-

Resolution Inverse Compositional Algorithm) proposed in

[1]. This is a tracking-by-registration algorithm based on

direct methods, which have shown to have fast and robust

performance for tracking objects with cameras on-board

aerial vehicles.

In this paper we explore the use of this technique for

tracking electric towers. The advantages of using direct

methods is that they make an optimal use of the available

information in the image (using the intensity values of all the

pixels of a defined region in order to estimate the motion),

therefore, direct methods permit to obtain robust estimations

and also they have the advantage of being more generally

applicable to a wide range of scenes. The latter advantage

is of great importance for the application concerned in this

paper in which tracking towers with different kind of sizes

and shapes is required.

The goal of the tracking algorithm is to find the 2D

position of the tower in each frame (F) of an image sequence

(i.e. I(F)). The following reasonable assumptions were made

in the proposed strategy: the 2D position is found assuming

that an initial position of the tower in the previous frame is

known, the 3D motion of the tower projected in the image

plane can be modeled by a 2D transformation, and assuming

the direct methods constraints [22] (small frame-to-frame

motion, brightness constancy constraint, etc).

An example of the general idea of the tracking-by-

registration algorithm for tower tracking can be seen in Fig.

4. A reference image (T(0)) is defined in the first frame

(Fig. 4 Frame 0, upper left image). This reference image

corresponds to a sub-image or ROI(0) (Region of Interest),

called image template, that contains a tower. This ROI(0) is

found by the detection stage, as explained in Section III-B

When a new frame is analyzed e.g. I(1) (Fig. 4, Frame 1,

upper right image), the motion W(1) between I(0) and I(1)
(Fig. 4, Frame 1, green solid arrow) is found by an image

registration technique, assuming that an initial estimation of

the motion Winit is known (Fig. 4, Frame 1, yellow/dashed

arrow). Thus iteratively estimating the incremental motion

model ∆W. When an initial estimation is not known, it can

be assumed as the identity matrix when the frame-to-frame

motion is small. Therefore, the motion W(1) is estimated by

the image registration technique, and as a consequence of

this, ROI(1) is found, i.e. the position of the tower in the

current frame (e.g. I(1)).

The estimated motion W(1) (Figure 4, Frame 1,

green/solid arrow) is propagated to the next frame, as an ini-

tial estimation of the motion Winit = W(1) (yellow/dashed

arrow, Frame 2, bottom left image). The process is repeated

with each frame of the sequence and therefore, the tower is

tracked throughout the sequence.

Template T(0)

W =Winit (0)
W

Initial position of is knownT(0)

W(1)

ROI(0)

ROI(0)

ROI(1)

Frame 1 I(1)
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Fig. 4. An example of tracking-by-registration strategy. The ROI that
contains a tower is defined in the first frame ROI(0). It is found by a
tower detection algorithm. When a new frame is analyzed, e.g. I(1) (upper
right image), the motion W(1) between I(0) and I(1) (green/solid arrow) is
found by an image registration technique, assuming that an initial estimation
of the motion Winit is known (yellow/dashed arrow).

1) Motion Model: The transformation or motion model

W that maps the pixels x = (x, y, 1)T from T(0) to pixels

x′ = (x′, y′, 1)T in frame I(F ) is defined as follows:

x′ = W x = W(x;p)

W =





1 + p1 p2 p3
p4 1 + p5 p6
p7 p8 1





(1)

where this motion model W is parameterized by the vector

of parameters p = (p1, ...pn)
T in such a way that W is

the identity matrix when the parameters are equal to zero.

Depending on the values of p, W can model different

2D transformations, e.g. if p1, p2, p4, p5, p7 and p8 are

equal to zero, then the translation motion model is estimated

(parameterized by p3 and p6).

2) Tracking-by-Registration: As mentioned in Section III-

C, at the core of the tracking-by-registration strategy is an

image registration technique. In this paper, an image regis-

tration algorithm based on direct methods is used. The image

registration algorithm used to estimate the parameters of

W(F ) is the ICIA algorithm [23] extended with a HMPMR

strategy [1] in order to deal with the small motion constraint

of direct methods and with the efficiency problem of these

methods.

The HMPMR-ICIA algorithm makes use of two hierar-

chical structures: the Multi-Resolution (MR) and the Multi-

Parametric (MP) ones. The general idea behind this strategy

is that by estimating only a small number of parameters

at the lowest resolution levels and smoothly increasing the

complexity of the motion model through the MR pyramid,

it is possible to obtain a more robust and a faster estimation



of motion models under large frame-to-frame motions than

the one obtained when only a MR approach is used.

The two hierarchical structures of the HMPMR strategy

are created as follows. The MR structure is created by

repeatedly downsampling the images by a factor of 2 [24]

in order to create the different pyramid levels (pL). In

the MP structure, the number of parameters increases with

the resolution of the image. The MP structure is defined

according to the motion model selected at the lowest level

of the pyramid (the highest resolution level) W0
(F ) (where

the superscript represents the level of the pyramid and the

subscript the frame). In this level, W0
(F ) must be chosen

as the best transformation that represents the motion of the

object in the image plane. Additionally, in order to ensure

the detection of large frame-to-frame motions, the translation

motion model must be chosen for the highest level of the

pyramid (the level that has the lowest resolution image)

W
jmax

(F ) (where jmax = pL−1). Finally, the criterion to define

the parameters in the intermediate levels is to select them in

such a way that a smooth transition of the parameters from

the highest to the lowest level of the pyramid is obtained, as

described in [1].

The HMPMR-ICIA minimizes (using a gradient descent

approach), in each level j (where, j = {pL − 1, pL −
2, . . . , 0}), the Sum of Squared Differences (SSD) between

the image template T
j

(0) and the current image I
j

(F ):

∑

x

[T j

(0)(W
j

(F )(x; ∆pj))− Ij(F )(W
j

(F )(x;p
j))]2 (2)

Where T j

(0) is the template image found by the tower

detection algorithm (see Section III-B), scaled according to

each multi-resolution level j; Ij(F ) is the scaled current image

at level j; x = (x, y)T represents the pixel coordinates;

and W
j

(F )(x;p) is the motion model that will be estimated

in each level j, where pj = (p1, p2.., pi)
T is the vector of

parameters that describes the transformation in each level.

As mentioned in Section III-A, some information required

by the HMPMR-ICIA algorithm is calculated only once in

the initialization stage and every time the template image

is updated. Some of these parameters are the number of

levels of the hierarchical structure, the MP structure, the MR

structure of T, the Hessian matrix, amongst others [1].

The HMPMR-ICIA algorithm iteratively updates the pa-

rameters of the motion model, in each level of the pyramid,

until stopping criteria are reached denoting the best local

alignment solution. Therefore, at the lowest level of the

pyramid (i.e highest resolution image), the most complex

motion model is estimated. This motion model is the best

approximation of the motion of the object in the image plane.

With this information, it is possible to determine the position

of T(0) in the current image I(F ).

An important part of the HMPMR structure is the prop-

agation of parameters inside the MR structure and among

frames. The parameters that are estimated in each level are

used as an initial estimation of the motion for the following

levels. Additionally, in level 0, another kind of propagation

occurs from the lowest level of the pyramid of the previous

frame I(F−1), to the highest level of the pyramid (j = jmax)

of the new frame I(F ). This propagation is the basis of the

tracking-by-registration strategy depicted in Fig. 4.

D. Switching Criteria

As can be seen in Fig. 2, in order to switch between

the detection and tracking stages, performance assessment

criteria were applied to monitor the behavior of these stages.

The following criteria were used:

• Vertical lines length > lThr: if the length of the lines

is larger than a threshold. This condition permits to

determine if there are vertical lines present in an image.

• Vertical lines slope: if the slope of the vertical lines lie

within a pre-defined range.

• cx and cy , the coordinates of the center of the image

ROI(F ): if cx is not close to zero, or if cy is not close

to the image height.

• MAEj > maeThr : in the tracking stage, if the mean

absolute error (MAE) at each pyramid level is greater

than a threshold. Where MAEjmax is defined as:

MAEj =

∑

x
|T j

(0)(x)− Ij(F )(W
j(x;p))|

nj
(3)

where nj is the total number of pixels.

• ∆pos < pThr: the difference between the current and

the previous position of ROI in the image plane is

below a given threshold.

• % of pixels > ppThr: the percentage of pixels that are

used in the minimization process is greater than a given

threshold. This condition is particularly useful when the

electric tower is leaving the FOV of the camera or when

it is occluded.

The result of the tower detection stage is controlled by

analyzing the existence of lines inside the found ROI. If

the lines inside the ROI comply the vertical lines length

criterion and the angle criterion, then the tower detection

flag is switched to TD = 1.

On the other hand, the result of the tower tracking stage

is controlled by analyzing all the different criteria explained

above. The main idea is to analyze the existence of lines

inside the found ROI, to analyze the motion and position

of the ROI, and to analyze some parameters of the tracking

algorithm, such as the MAE and the number of pixels used

to estimate the motion. If all the above mentioned criteria

are not satisfied, then TD = 0, i.e. the tracking algorithm

is unable to determine the position of the tower with a

high degree of confidence, and therefore it needs to be

reinitialized.

All these criteria have been found experimentally, and are

defined in Section IV-A.3.

IV. RESULTS

In this section, the performance of the proposed tower

detection and tracking strategy is evaluated. Different tests

have been conducted using videos from real inspections with

different kinds of towers and backgrounds. Qualitative and

quantitative results are presented.



(a) Tower examples used for training.

(b) Background examples used for training.

Fig. 5. Examples of cropped images of: (a) 4 cropped tower images and (b)
5 background images. These and similar images are used for training and
evaluation of the MLPs for tower detection and tower-type classification.

A. Experimental Setup

1) Data Collection: Currently there are no publicly avail-

able datasets of power line inspection, and proprietary aerial

inspection data was made available by an electric power

company. The data consists of 11 videos captured during

multiple non-intensive manned aerial inspections (helicopter

was flying at ≈ 30 km/h). Six of these videos primarily

contain inspections of towers supporting high voltage lines,

such as the first and second image shown in Fig. 5(a). The

other 5 videos contain inspections of towers for medium

voltage lines (e.g. the third and fourth image shown in Fig.

5(a)).

From these videos, a dataset of cropped images was

created in order to train the neural network used in the tower

detection stage. These cropped images were either labeled

as Background or as Tower. In total, 3200 image regions

from 11 videos (1600 regions containing tower and 1600

containing background) were manually labelled (see Fig. 5

for sample images).

Additionally, two of the available videos were selected

in order to test and evaluate the performance of the tower

detection and tracking strategy. These videos contain three

different types of electric towers: one that supports high

voltage lines (first image in Fig. 5(a)); and two that supports

medium voltage lines (third and fourth images in Fig. 5(a)).

2) Training and Evaluation Methodology of the MLP

Classifier: The tower detection stage is based on an MLP

classifier. In order to train and evaluate the MLP, 3200 im-

ages were divided into training (1200 images per class), cross

validation (200 images per class), and test sets (200 images

per class). It should be noted that the images belonging to

the Tower class come from 4 types of towers. Therefore,

300 images of each type are used for training, 50 each for

validation and 50 each for testing.

3) Strategy Setup: The tracking algorithm (HMPMR-

ICIA) has been configured with 3 pyramid levels. The

MP structure was configured as 4-2-2, where each number

represents the number of parameters estimated in each level.

In the lower resolution levels, the translation motion model

is estimated (2 parameters), and in the highest resolution

level, the similarity transformation [25] (translation, rotation,

and scale) is estimated (4 parameters). This motion model

has been selected taking into account that during a visual

inspection, the UAV will fly next to the power line and

the dominant motion of the tower is mainly described by

the changes in position, in scale (the tower approaches the

camera), and sometimes small rotations.

For minimizing the cost function (2), the following criteria

were considered: in each level, the number of iterations is

fixed at 100 iterations per level; and two termination criteria

are applied: when the increment of the parameters is below

a threshold (10−5), or if the mean error does not decrease

after a defined number of iterations (10 iterations).

On the other hand, when direct methods are used, all

the pixels of the template image are used to estimate the

motion of the object. For this reason, the template image

used for tracking electric towers will correspond to an area

defined around the vertical lines of the tower. With this

criterion, the amount of background information used for

motion estimation is reduced. This is especially useful for

towers of high voltage lines. In the results presented in this

paper, due to the low quality of the available images, vertical

lines are not always well detected, e.g. in high voltage towers

one line is sometimes detected instead of two main lines. For

this reason, in the test, the type of tower is used as an input

parameter, so that the proper size of the template image can

be defined, in case not all the lines are well detected.

In the conducted experiments, the values of the different

switching criteria, explained in Section III-D, were set to

the following values: lThrL = 150; vertical line slope

range < 10◦ and > 150◦; cx > 20 and cy < image

width; MAE0 > 25 and MAE1 > 20,MAE2 > 20;

∆ROIx,∆ROIy < 20 (upper left coordinates of the image

ROI) and ∆ROIw,∆ROIh < 35 (width and height of

image ROI); and ppThresh = 70.

B. Evaluation of the Detection Stage

Table I shows the confusion matrix obtained when testing

the MLP. A total test error of 3.25% is achieved. The false

positive rate obtained is 2.5%, which means that only 5

images of the 200 background cropped images were mis-

classified as tower. This result is very encouraging, especially

taking into account the large variety of backgrounds which

appear in the images (Figure 5(b)). On the other hand,

a false negative rate of 4% was obtained. This indicates

that only 8 images of the 200 cropped images containing

got misclassified as background. This result is also very

promising, taking into account the variety of tower shapes

and sizes in the dataset.



TABLE I

CONFUSION MATRIX OBTAINED WITH THE TEST SET

❤
❤
❤
❤
❤
❤

❤
❤

❤
❤
❤❤

Predicted class

Actual class
Tower Background

Tower (%) 96 2.5

Background (%) 4 97.5

The proposed tower detection stage, described in Section

III-B, has been evaluated using 110 new images (not cropped

like the ones used in the MLP evaluation). In these images,

60 contained an electric tower (15 per each type of tower),

and 50 contained only background. Table II(a) shows the

results obtained when the tower detection stage, described

in Fig. 3 was tested, using both the pre-processing and

the detection algorithm. Additionally, the results applying

only the detection algorithm (using only the sliding window

approach), without pre-processing step are shown in Table

II(b).

From these results, it can be observed that by applying

a pre-processing step, based on line detection, all the false

positives, that were obtained when the detection stage was

applied without pre-processing algorithm, were removed.

Therefore, the strategy proposed in this paper for tower

detection, obtained a 0% false positive rate in the 110

image test set. That is, in all the images that contain only

background, no tower were detected. On the other hand,

the false negative rate was 10%, which indicates that only

7 of the 60 images that contain only electric towers, were

misclassified or not detected.

TABLE II

CONFUSION MATRIX OBTAINED FOR THE TOWER DETECTION STAGE

(a) Result of the Detection Stage with preprocessing
❤
❤
❤
❤
❤
❤

❤
❤

❤
❤
❤❤

Predicted class

Actual class
Tower Background

Tower (%) 90 0

Background (%) 10 100

(b) Result of the detection Stage without preprocessing
❤
❤
❤
❤

❤
❤

❤
❤

❤
❤
❤❤

Predicted class

Actual class
Tower Background

Tower (%) 91.67 26

Background (%) 8.33 74

C. Evaluation of the Tower Detection and Tracking Strategy

The proposed strategy for tower detection and tracking has

been evaluated using two image sequences from real power

line inspections conducted with a manned helicopter. The

sequences contain different kinds of towers and background,

fast motions (scale and perspective changes), part of the

tower outside the FOV of the camera, and strong motion

blur, among other features, which make these sequences

challenging from the detection and tracking point of view.

In both tests, the analysis of the results is based on a visual

examination of the results (analyzing the ROI found by the

algorithms); and also based on a comparison between the

results obtained when only the detection stage is applied and

the results obtained when the complete strategy was applied.

The idea of the comparison is to highlight the advantages of

combining the detection and the tracking approaches.

1) High Voltage Tower: The image sequence used in this

test contains the inspection of 11 high voltage towers (7177
frames). Some of the main features of the images in this

sequence are their low image quality, the different types of

background (which make it difficult, even for a human, to

see the tower), motion blur, and that part of the tower is out

of sight (during the transition from tower to tower and when

the tower is closer to the camera).

In Fig. 6, a collection of images illustrating the perfor-

mance of the proposed tower detection and tracking strategy,

is presented. The red/dark box indicates the results.

Frame 228 Frame 1711

Frame 3231 Frame 3628

Frame 4249 Frame 4637

Frame 5010 Frame 7047

Fig. 6. Sample results of applying the complete detection and tracking
strategy in an image sequence with high voltage towers. The red/dark box
indicates the results.

As was mentioned in Section III-A, when the complete

strategy is used the tower detection stage starts operating

until a tower is found in an image. Then, the tracking stage

gets in charge of tracking the region found by the detection

stage. Due to the kind of motions present in this sequence

(the bottom part of the tower is the first one that appears, as

shown in Fig. 6, Frames 3231 and 3628), the template image

used by the tracking algorithm was updated every 20 frames

in the first 100 frames of the sequence (lines are detected

inside the ROI and are used to update the size of the template
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Fig. 7. Comparison of the application of the complete strategy with the application of only the detection stage. The x coordinates of the centers of the
ROI found using only the detection stage (green/light line) and using the complete strategy (red/dark line) are plotted. Shadowed areas (below the blue/dark
line) represent the frames that contain towers, and the cyan/light line shows the status of the tower detection flag TD (for visualization purpose, TD= 600).

image). This permitted the tower to appear in the FOV of the

camera before tracking for large intervals (e.g Fig. 6, Frame

228). After 100 frames, the template image was updated only

when the switching criteria defined in Section III-D were not

satisfied.

Fig 7 shows a comparison of the application of the

complete strategy (tracking+detection, red/dark line) with

the application of only the detection stage (green/light line),

where the detection stage was applied in each frame of

the image sequence. Thumbnail images show some of the

results of the comparison (only detection, green/light box;

and complete strategy, red/dark box). The green/light line

shown in the figure corresponds to the x coordinate of the

center of the ROI found by the detection algorithm. The

red/dark line represents the x coordinate of the center of

the ROI found by the complete strategy (detection+tracking).

In this plot, the shadowed areas (below the blue/dark line)

represent the frames of the image sequence that contain

towers or part of towers (this has been found manually); and

the cyan/light line shows the status of the tower detection

flag TD (for visualization purposes, the value of this flag

was modified to TD= 600).

When only the detection stage was tested, it was observed

that, although in some frames (e.g. between 1500 and 2000)

the tower detection had some trouble detecting towers (which

can be due to the kind of background present in those

frames), it detected each of the 11 towers that appeared in the

sequence at least once. However, the position of the towers

was found in more frames when the complete strategy was

used (red/dark line).

Additionally, in Fig. 7 it can be observed that when the

complete strategy was tested (red/dark line) the tracking

stage estimated the position of the tower most of the time,

and the intervention of the detection stage was required only

in a few cases, e.g. in Frame 1000 the algorithm switched

from the tracking stage (TD= 600) to the detection stage

(TD= 0), see cyan/light line, and therefore the tracking

algorithm was reinitialized. The detection and tracking cri-

teria switched between the detection and tracking stages

satisfactorily.

In the figure, it can be seen that a false positive found by

the detection stage around Frame 5600 makes the tracking

algorithm track an area that did not contain any tower.

Nonetheless, one of the tracking criteria switched TD= 0,

and therefore the detection stage was in charge of reinitial-

izing the tracking task (this was successfully achieved after

a few frames).

Finally, Fig. 8 compares the increments in the position of

the x and y coordinates of the center of the ROI found when

only the detection stage was used (green/light line) with the

ones found when the complete strategy was used (red/dark

line). In this figure, it can be seen that by integrating the

detection and tracking stages, the position of the tower is

found smoothly frame-by-frame, which was not the case

when the detection stage operated in isolation (the green/light

lines show strong frame-to-frame motion).
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Fig. 8. Comparison of the frame-to-frame motion. The increments in the
position of the x and y coordinates of the center of the ROI found when only
the detection stage was used (green/light line) are compared with the ones
found when the complete strategy was applied (red/dark line). Smoother
frame-to-frame motions are found with the complete strategy.



2) Medium Voltage Tower: A second image sequence

is used to test the proposed tower detection and tracking

strategy. The image sequence contains 4 towers of two

different types of medium voltage towers (1639 frames).

This sequence represents a more challenging scenario for

the tower detection and tracking strategy, not only because of

the kind of tower (simple structure), but also because of the

kind of motion present in the sequence. Poor image quality,

strong camera motions, abrupt changes in the appearance of

the tower (the helicopter moves around the tower), strong

motion blur, and part of the tower being outside the FOV,

are some of the features found in this sequence.

Fig. 9 presents a collection of images illustrating the

performance of the proposed tower detection and tracking

strategy. In this figure, two types of towers can be seen (e.g.

Frame 135 and Frame 1143). Due to the strong motion blur

and appearance changes of this sequence, the template image

used by the tracking algorithm was updated every 10 frames

(lines are detected inside the ROI and are used to update the

size of the template image).

Frame 135 Frame 494

Frame 836 Frame 1143

Frame 1384 Frame 1534

Fig. 9. Sample results of applying the complete detection and tracking
strategy in an image sequence with medium voltage towers.

Fig 10 shows the comparison of the application of the

complete strategy (red/dark line) with the application of

only the detection stage (green/light line). Thumbnail images

show some of the results of the comparison (only detec-

tion, green/light box; and complete strategy, red/dark box).

Comparing both algorithms, it can be seen that when only

the detection stage was used, there were several frames in

which the tower was not detected (e.g. Frame 305, thumbnail

image). However, because of the integration of the tracking

and the detection stages, the tower was tracked in almost

all the frames of the sequence, overcoming the difficult
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Fig. 11. Comparison of the frame-to-frame motion of the detection and
the detection+tracking algorithms for medium voltage tower sequence.

visual conditions of this sequence, such as strong motion

blur (e.g. Frames 305 and 805, in the thumbnail images)

and changes in appearance (e.g. Frame 145 and Frame 305

correspond to the same tower). Additionally, it is important to

highlight the performance of the detection stage in this image

sequence, where no false positives were found in images only

containing background information.

Finally, Fig. 11 compares the increments in the position

of the x and y coordinates of the center of the ROI found

when only the detection stage was used (green/light line)

with the ones found when the complete strategy was used

(red/dark line). The integration of the tower detection and

tower tracking stages permit to obtain an estimation of the

motion of the tower in the image plane that is smoother than

the one obtained when the detection stage was working in

isolation.

D. Discussion

Different tests were conducted in order to analyze the

performance of the tower detection and tracking strategy

that is proposed in this paper for power line inspection with

cameras on-board UAVs. The performance of the proposed

strategy has been tested in very challenging scenarios that

contain different kinds of towers and background, poor image

quality, strong motion blur, among other features.

Due to the kind of images used in the test, some as-

sumption had to be done depending on the kind of motions

present in the videos. However, it is important to mention

that when the system is on-board a UAV with a predefined

flight strategy, these assumptions are not required.

During the test, the tower detection stage has shown to

be robust when detecting and localizing different kinds of

towers in cluttered backgrounds; and have also shown to

be robust when classifying background information. The

algorithm only estimated a false positive in one frame (the

sequence with high voltage towers).

On the other hand, the tower tracking strategy has proved

to be robust under adverse conditions, including fast image

motion, appearance changes and only partial presence of the

towers in the image.

Table III summarizes the results obtained in both se-

quences. In the high voltage sequence (HV), of 4993 frames
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Fig. 10. Comparison of the application of the complete strategy with the application of only the detection stage in the image sequence with medium
voltage towers.

that contain towers (this is an approximated value esti-

mated analyzing the image sequences), the complete strategy

(detection+tracking) detected towers in 4323 frames. Con-

versely, when only the detection stage was used, the position

of the towers was found in 4148 frames. On the other hand,

in the medium voltage sequence (MV), of 1522 frames that

contain towers, the tower detection and tracking strategy

detected towers in 1334 frames, whereas the detection stage

detected towers in 794 frames. From this table, it can be

seen that in both tested sequences the complete strategy has

a better performance when estimating the position of the

tower than when only the detection stage was used.

TABLE III

TRACKING STAGE AND DETECTION STAGE COMPARISON

Image # Tower Complete Detection
Sequence Frames present strategy only

HV 7177 4993 4323 4148

MV 1639 1522 1334 794

As can be seen Table III, neither the detection stage

nor the complete strategy detected the tower in all the

frames that contained towers. This is mainly because in some

of the frames the position and size of the tower do not

satisfy the detection and tracking criteria used to monitor the

performance of the algorithms. Therefore, in those frames

the algorithm considers that there is not tower. This is

mainly because the information present in those frames is

not relevant for visual inspection purposes.

Fig. 12 shows some of the images with some false posi-

tive detection and some tracking errors. Frames 826, 1184,

4663, and 5681 correspond to some false positive detections

(green/light box). As can be seen in some of those images,

the tracking algorithm estimated the correct position of the

tower (red/dark box). Most of the false positive detections

occurred in the medium voltage sequence. This is mainly

because of the structure of the towers and the poor quality

of the images, that make it difficult to identify a tower (an

example of this can be seen in Frame 1191).

Frame 1184 Frame 5681

Frame 826 Frame 4663

Frame 5709 Frame 1191

Fig. 12. False positive detections and tracking errors.

On the other hand, Frames 1191 and 5709 show two ex-

amples of the few errors obtained when the complete strategy

was tested. In Frame 5709, the wrong ROI detected by the

detection stage in Frame 5681 made the tracking algorithm

track a ROI that does not contain a tower. Additionally,

because the ROI contains a line, it took some frames to the

tracking algorithm to trigger the detection stage. Conversely,

a possible cause of the error of Frame 1191 is the poor

quality of the image and strong motion blur, which made

the tracking algorithm estimate the position of the tower

wrongly.

Nevertheless, it is important to notice that in spite of

the errors shown in Fig. 12, in general the proposed tower

detection and tracking strategy has been shown to be of a



standard that is appropriate to track electric towers under

very challenging circumstances.

V. CONCLUSIONS AND FUTURE WORK

Electric towers are a key component of the power line

infrastructure, all the more so because they consist of a

large set of items extremely critical for safe and consistent

power supply. This paper presents a strategy for detecting

and tracking the electric towers during non-intensive aerial

inspections. An approach combining machine learning meth-

ods, for autonomous tower detection, and computer vision

techniques, for subsequent tracking of towers, was presented.

A two-class MLP (multilayer perceptron) was trained

for Tower-Background classification and was applied as

a sliding window detector. In an independent evaluation

of the detector, highly encouraging results were obtained.

The application of a pre-processing step showed a marked

improvement in the performance of the tower detection stage.

The output of the detector triggers the tracker. The tower

tracking strategy is based on a hierarchical tracking-by-

registration strategy, which uses the Hierarchical Multi-

Parametric and Multi-Resolution Inverse Compositional Al-

gorithm [1].

The evaluation results show that the integration of the

detection and tracking stages, the proposal of this paper, led

to a very robust strategy for detecting, localizing and tracking

the towers in very challenging conditions.1

The proposed strategy is of special significance for UAV-

based inspections. Successful detection and tracking of the

towers can be used for steering an on-board camera to keep

and maintain the tower in the FOV, and a confident local-

ization of the tower can be used for “closing the navigation

loop”. Therefore, an immediate continuation of the presented

work will be to apply and test the proposed approach on a

UAV platform.
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