
 Open access Proceedings Article DOI:10.1109/SCT.1995.514854

Towards average-case complexity analysis of NP optimization problems
— Source link

Rainer Schuler, Osamu Watanabe

Institutions: University of Ulm

Published on: 19 Jun 1995 - Structure in Complexity Theory Annual Conference

Topics: Hardness of approximation, Average-case complexity, FP and Decision problem

Related papers:

 Average case complete problems

 On the theory of average case complexity

 Average case completeness

 Sets Computable in Polynomial Time on Average

 A personal view of average-case complexity

Share this paper:

View more about this paper here: https://typeset.io/papers/towards-average-case-complexity-analysis-of-np-optimization-
3hypmkrwfm

https://typeset.io/
https://www.doi.org/10.1109/SCT.1995.514854
https://typeset.io/papers/towards-average-case-complexity-analysis-of-np-optimization-3hypmkrwfm
https://typeset.io/authors/rainer-schuler-oil2hdo7ye
https://typeset.io/authors/osamu-watanabe-47j3ewg68m
https://typeset.io/institutions/university-of-ulm-1kv8z0wp
https://typeset.io/conferences/structure-in-complexity-theory-annual-conference-nlktgrg6
https://typeset.io/topics/hardness-of-approximation-d3g5g0fd
https://typeset.io/topics/average-case-complexity-fiuypc2c
https://typeset.io/topics/fp-d0og4sk8
https://typeset.io/topics/decision-problem-1lmzk2ay
https://typeset.io/papers/average-case-complete-problems-sjuu87l7ce
https://typeset.io/papers/on-the-theory-of-average-case-complexity-2v0r8oghdp
https://typeset.io/papers/average-case-completeness-1szvkufon7
https://typeset.io/papers/sets-computable-in-polynomial-time-on-average-4ttghy3i8s
https://typeset.io/papers/a-personal-view-of-average-case-complexity-3k9efjg4wm
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/towards-average-case-complexity-analysis-of-np-optimization-3hypmkrwfm
https://twitter.com/intent/tweet?text=Towards%20average-case%20complexity%20analysis%20of%20NP%20optimization%20problems&url=https://typeset.io/papers/towards-average-case-complexity-analysis-of-np-optimization-3hypmkrwfm
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/towards-average-case-complexity-analysis-of-np-optimization-3hypmkrwfm
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/towards-average-case-complexity-analysis-of-np-optimization-3hypmkrwfm
https://typeset.io/papers/towards-average-case-complexity-analysis-of-np-optimization-3hypmkrwfm

Towards Average�Case Complexity Analysis of

NP Optimization Problems�

Rainer SCHULER

Abteilung Theoretische Informatik

Universit�at Ulm

Oberer Eselsberg

D ����� Ulm� Germany

schuler�informatik	uni
ulm	de

Osamu WATANABE

Department of Computer Science

Tokyo Institute of Technology

Meguro
ku Ookayama �
��
�

Tokyo ��� JAPAN

watanabe�cs	titech	ac	jp

ABSTRACT

For the worst�case complexity measure� if P � NP� then P � OptP� i�e�� all NP

optimization problems are polynomial�time solvable� On the other hand� it is not

clear whether a similar relation holds when considering average�case complexity� We

investigate the relationship between the complexity of NP decision problems and that

of NP optimization problems under polynomial�time computable distributions� and

study what makes them �seemingly� di�erent� It is shown that the di�erence between

PNPtt �samplable and PNP�samplable distributions is crucial�

�� Introduction

Recently� �average
case complexity� has received considerable attention by researchers

in several �elds of computer science	 Even a problem is not �or may not be� solvable

e�ciently in the worst
case� it may be solvable e�ciently on average	 Indeed� several

results have been obtained that show even simple algorithms work well on average �see�

e	g	� �Joh����	 On the other hand� most of those results are about concrete problems� and

not so much has been done for more general study of average
case complexity� though

there are many interesting open questions in this area	 In this paper� we consider one

of such open questions� and improve our knowledge towards this question	

We consider the following question� Suppose every NP problem is polynomial time

�The part of this work has been done while the second author was visiting Universit�at Ulm and

supported in part by the guest scienti�c program of Universit�at Ulm� The second author is supported in

part by Grant in Aid for Scienti�c Research of the Ministry of Education� Science and Culture of Japan

under Grant�in�Aid for Research �C� 	

�	�	� ������

�

solvable on average	 Does this mean that every NP optimization problem is also po

lynomial time solvable on average� Here �NP problem� is a decision problem for an

NP set	 On the other hand� �NP optimization problem� is a problem of �nding opti

mal solutions for a problem with a polynomial
time computable cost function	 Krentel

�Kre��� de�ned the class OptP for the class of NP optimization problems	 Thus� the

question is whether P � NP on average implies P � OptP on average	 �Since OptP is

the class of functions� �P � OptP� should be written as �PF � OptP�	 In this paper�

however� we will use P to denote both language and function classes	�

For discussing average
case complexity� one should be careful about input distri

butions and distribution classes	 It may not be so realistic to discuss polynomial
time

computability considering any input distribution	 Levin �Lev���� who established a fra

mework for average
case complexity theory� proposed to consider only �polynomial
time

computable distribution �in short� P
computable distribution�� as input distributions	

Later more generalized notion� i	e	� �polynomial
time samplable distribution �in short�

P
samplable distribution��� has been proposed �BCGL���	 We essentially follow Levin�s

framework� and regard P
computable distributions �or P
samplable distributions� as

realistic input distributions	 Thus� by �P � NP on average� we mean that for every NP

problem and every P
computable distribution� the problem is solvable in polynomial

time on average when an input instance is given under the distribution	 �In this intro

duction� we will use� e	g	� �P �ave NP �under P
comp	 dist	�� to mean �P � NP on

average for any P
computable distribution	��

For the worst
case complexity measure� we have P � NP �� P � OptP	 This

is from the following reason� Every NP optimization problem A is polynomial
time

solvable by some algorithm Q by using some NP set X as an oracle	 But since P �

NP� we can replace oracle X with some polynomial
time machine M for X	 Thus� QM

solves X in polynomial
time	 This simple argument does not work� however� in the

average
case complexity	 Even if X is solvable by M in polynomial
time on average

under any P
computable distribution� this does not mean that QM runs in polynomial

time on average under every P
computable distribution	 This is because queries to

X may occur under a very strange distribution� for which no algorithm solves X in

polynomial
time on average	 Thus� it is not clear that the relation P �ave NP �under

P
comp	 dist	� �� P �ave OptP �under P
comp	 dist	� holds� or� it may not hold at

all	 In this paper� we study what makes this relation di�cult	

We consider two approaches	 First� we investigate how much we need to enlarge

a distribution class D� so that the following implication holds� P �ave NP �under D�

dist	� �� P �ave OptP �under P
comp	 dist	�	 Secondly� we consider for which class D�

�

can we prove the following implication� P �ave NP �under P
comp	 dist	� �� P �ave

NP �under D� dist	�	 Obviously� if D� � D�� then we have an a�rmative answer to our

question	 While we have been unable to achieve this� we can prove the following results	

��� If P �ave NP under every PNP
samplable distribution� then P �ave OptP under

every P
computable distribution	 Furthermore� the converse relation holds	 That

is� the assumption is indeed necessary for showing P �ave OptP �under P
comp	

dist	�	

��� If P �ave NP under every P
computable distribution� then P �ave NP under every

PNP
tt
samplable distribution	

Thus� we now know that the di�erence between PNP
tt
samplable and PNP
samplable

distributions is crucial for our question	 Motivated by this� we also study how strong

PNP
tt
samplable distributions are� and obtain the following result	

��� Every �P
computable distribution can be approximated within constant factor by

some PNP
tt
samplable distribution	

Thus� from this and the above result ���� we can show that �P
computable distribu

tions are not stronger than P
computable distributions for discussing the average
case

polynomial
time computability of NP	

Impagliazzo and Levin �IL��� made an important observation on di�erent classes

of distributions	 They showed that if P �ave NP �under P
comp	 dist	�� then it indeed

holds that P �ave NP �under P
samplable dist	�	 For obtaining the above results ���

and ���� we extend their technique and prove that if P �ave NP �under P
comp	 dist	��

then P �ave NP even for any �average� P
samplable distribution	 For showing ���� we

use another property of hash functions	

�� Preliminaries

In this paper� we follow the standard de�nitions and notations in computational com

plexity theory �see� e	g	� �BDG��� BDG����	

Throughout this paper� we �x our alphabet to � � f�� �g� and by a string we mean

an element of ��	 For any string x� let jxj denote the length of x	 For any n � � and

any set L of strings� let L�n and L�n be the set of strings in L of length � n and of

length n respectively	 We use jjL jj to denote the cardinality of L	 Let N denote the

set of nonnegative integers	 Usually� we assume the binary encoding of N on ��� but

sometimes numbers are encoded in a tally form� i	e	� as a string in ��	 For any n � N�

let n denote �n	

�

We use a standard one
to
one pairing function from ����� to �� that is computable

and invertible in polynomial
time	 For inputs x and y� we denote the output of the

pairing function by hx� yi� this notation is extended to denote any n tuple	 We also use

a polynomial
time computable pairing function� say� hn� x� yin such that for every n � �

and for all �x� y� in some �nite set Dn� hn� x� yin is of the same length� which is uniquely

determined by n	 �We assume that hn� x� yin is unde�ned for �x� y� �� Dn	� It is not so

hard to de�ne such pairing functions by using standard padding technique	 We often

omit specifying Dn when it is clear from the context	

For any random event �� let Pr�f ��� g be the probability ��� holds	 For example�

for any randomized machine M � PrMf g is the probability that holds when M

executes following its internal coin tosses� Prx�Uf �x� g is the probability that holds

when x is chosen from U randomly	 The latter one is also written as Prf �x� jx � U g	

For our computation model� we use randomized �oracle� Turing machines	 We say

that a machine M accepts a language L if for all x � ���

x � L �� PrMfM accepts x g � ���� and

x �� L �� PrMfM accepts x g � ����

Similarly� for any �multi
valued� function f � we say that f is computed by M if for

every x� the probability that M�x� computes f�x� is greater than ���	 Note that for

any decision problem and any single
valued function evaluation problem� we can easily

reduce the error probability by executing a machine several times and then taking their

majority	 Also even for evaluating a multi
valued function� if it is easy to verify the

correctness of a given answer� then we can easily reduce the error probability	

Throughout this paper� we use this randomized polynomial
time computability in

stead of the deterministic one	 Thus� by �f is polynomial
time computable�� we pre

cisely mean that f is polynomial
time computable by some randomized machine	 Note

that for a randomized machine M and any input x� the running time of M on x may

di�er depending on the random sequence that M uses	 The running time of M on x

�written as timeM �x�� is formally de�ned as an expected running time of M on x over

all random sequences of M 	

Optimization problems we consider are speci�ed by polynomial
time computable

functions	 For a polynomial
time computable function cost � �� � �� � N� and a

polynomial p� the NP optimization problem speci�ed by cost and p is to compute the

following function opt
val�

opt
val�x� � y � ��p�jxj� such that cost�x� y� � opt�x��

�

where opt �x� � maxfcost �x� y�� j y� � ��p�jxj�g	 Notice that opt
val is multi
valued in

general	 OptP is the class of functions like opt
val	 �In order to keep similarity with

�NP search problem�� we modi�ed the original de�nition of OptP �Kre���� where OptP

is de�ned as the class of functions like opt 	 It is� however� easy to show that the above

class OptP is a generalization of the original class� and they are essentially the same for

discussing polynomial
time computability	�

For a given NP set L� an NP search problem for L is to search� for a given instance

x in L� some witness for x � L	 More formally� for a polynomial
time computable

predicate R on ������ and a polynomial p� the NP search problem speci�ed by R and

p is to compute a value of the following function search �

search �x� � y � ��p�jxj� such that R�x� y� holds�

Notice again that search may be multi
valued in general	 Let SearchP denote the class

of functions like search 	

Preliminaries for Average
Case Complexity Theory

A probability function � on U is a total function from U to ��� �� such that
P

x�U ��x�

� �	 We use � to denote the uniform probability function on �r� where r will be

speci�ed in each context	

Throughout this paper� only length
wise input distributions are considered	 That

is� for each n � �� we consider probability function �n on �n �hence�
P

x��n �n�x� � ���

and discuss average
case complexity assuming that each instance x � �n appears with

probability �n�x�	 Thus� formally speaking� an input distribution �or� distribution in

short� is speci�ed as a family f�ngn�� of such length
wise probability functions �n	 In

this paper� however� we denote an input distribution by a single function such as �� and

for each x � �n� we use ��x� to denote �n�x�	

De�nition ���� �PC
computable distribution� PC
tt
computable distribution�

For any complexity class C and any input distribution �� � is a PC�computable distri�

bution if its cumulative distribution �� is computed by some polynomial
time bounded

randomized oracle Turing machine M relative to some oracle set X � C	 The notion of

�PC
tt
computable distribution� is de�ned similarly by considering oracle Turing machines

that ask queries only nonadaptively	

Remark� We are using the randomized polynomial
time computability for the

�polynomial
time computability� notion	 Furthermore� we are using length
wise proba

bility� and the cumulative distribution �� of � is de�ned by ���x� �
P

x�	x���n �x��x ��x
���

where � is the standard lexicographic order on ��	 Thus� the above de�nition is not

equivalent to the original one in �Lev���	 Nevertheless� the following argument does not

change even if the above notion is de�ned by using the deterministic polynomial
time

computability	 In this case� it is easy to show that our de�nition is equivalent to the

original one as long as the probability for each length is polynomial
time computable	

De�nition ���� �PC
samplable distribution� PC
tt
samplable distribution�

For any complexity class C and any input distribution �� � is a PC�samplable distribution

if there exist a polynomial
time bounded randomized oracle Turing machine G� which

is called a generator� and some set X � C such that for each x �let n � jxj��

��x� � PrGfGX�n� yields x g�

The notion of �PC
tt
samplable distribution� is de�ned similarly by considering oracle

Turing machines that ask queries only nonadaptively	

We de�ne distribution classes	 For any complexity class C� let PC
comp denote

the classes of distributions that are PC
computable	 Let PC
samp �resp	� PC
tt
samp�

denote the class of PC
samplable �resp	� PC
tt
samplable� distributions	 Though we de�ned

notions in a general way� we will mainly consider distribution classes P
comp� P
samp�

PNP
tt
samp� and PNP
samp	

Note that by these de�nitions� the values of probability functions are always �binary�

rational numbers	 Thus� these de�nitions are weaker than the original ones �Lev���

BCGL��� that allow real numbers for probability	 Nevertheless� it is shown �Gur���

Lemma �	�� that we lose no generality by this restriction for discussing polynomial
time

computability	

Levin �Lev��� gave a general and robust de�nition to the notion of �polynomial
time

solvable on average�	 Levin�s de�nition uses distributions on ��� on the other hand� we

are using length
wise input distributions in order to make our discussion more intuitive	

Thus� we modify Levin�s de�nition to a length
wise version� which is more intuitive but

less robust	 The following de�nition for �polynomial on �
average� was suggested by

Gurevich �Gur���	

De�nition ���� �Polynomial on �
average�

A function f is polynomial on ��average if there exist constants c� d � � such that for

all n � ��

X
x��n

f�x���d

n
��x� � c�

�

For showing �polynomial on �
average�� the following simple characterizations are

useful	

Proposition ���� Let f be any function from �� toN� and � be any input distribution	

Then f is polynomial on �
average if there exist polynomials p and q and a constant

d � � that satisfy the following for all n � ��

X
x��n

f�x���d

q�n�
��x� � p�n��

Remark� The proposition is provable by using an argument similar to the proof of

�Gur��� Lemma �	�	

Proposition ���� Let f and t be any functions from �� to N and fromN to N respec

tively� and let � be any input distribution	 For any k � �� assume that f is polynomial

in t�n�k on �
average� that is� for some constants c� d � � and for all n � �� we have

X
x��n

f�x���d

t�n�k
��x� � c�

Then for any set X � �� such that ��X 	 �n� � ��t�n� for all n � �� f is polynomial

on �
average on X� or more speci�cally� for all n � � and X � � �n such that ��X �� �

��t�n�� we have

X
x�X �

f�x�����dk�
 ��x� � c! ��

Proof� We split the sum depending on the value of f�x�����dk�	

��� Let S be the set of all x � X � with f�x�����dk� � t�n�	 Then

X
x�S

f�x�����dk�
 ��x� �
X
x�S

t�n�
 ��x� � t�n�

X
x�S

��x� � t�n�

�

t�n�
� ��

��� Let T be the set of all x � X � with f�x�����dk� � t�n�� i	e f�x�����d� � t�n�k	 Then

X
x�T

f�x�����dk�
 ��x� �
X
x�T

t�n�k
 f�x�����dk�

t�n�k
��x�

�
X
x�T

f�x�����d�
 f�x�����dk�

t�n�k
��x� �

X
x�T

f�x���d

t�n�k
��x� � c�

tu

We say that a machine M runs in polynomial�time on ��average if its �expected�

running time timeM is polynomial on �
average	 It is shown �Gur��� Proposition �	��

that the above de�nition is equivalent to Levin�s original one for distributions satisfying a

"

certain natural condition	 Furthermore� all the arguments in this paper can be modi�ed

for Levin�s de�nition	 Thus� we will lose no generality by using this de�nition	

For our notion of �average polynomial
time�� we will use the above de�nition in this

paper	 Nevertheless� we should also note that there are weaker �but still natural and

robust� ways to de�ne this notion	 The following is one such example� which has been

used in the study of cryptographic one
way functions	

De�nition ���� �Almost polynomial under ��

A function f is almost polynomial under � if there exist integer k such that for all c � �

and for almost all n � ��

�fx � �n j f�x� � nk g � ��
�

nc
�

The reducibility notion often helps us to discuss the implication of complexity as

sumptions such as P � NP	 Here we use the following reducibility from �BCGL���	

De�nition ��	� �Random reduction�

Let �L�� ��� and �L�� ��� be respectively a pair of a language and a probability function	

A random reduction �or� more speci�cally� �P
T�reduction� from �L�� ��� to �L�� ��� is a

randomized oracle Turing machine Q with the following properties�

�a� Q is polynomial
time bounded	

�b� For every x � ���

x � L� �� PrQfQL� accepts x g � ���� and

x �� L� �� PrQfQL� rejects x g � ����

�c� There exists a polynomial p such that for any n � � and for every y � �� that is

queried by QL� on some x � �n� we have

���y� �
�

p�n�

X
x��n

AskQ�x� y�L��
 ���x��

where AskQ�x� y�L�� is the probability PrMf QL��x� queries y g	

Remark� Here we modi�ed the original de�nition for our length
wise probability

functions	 Some of the above conditions are slightly more restrictive than the original

ones	

A �P
T
reduction Q that asks queries only nonadaptively is called a �P

tt�reduction	 A

�P
T
reduction is extensively used from a �multi
valued� function to a set	 It is easy to

show that the following relation holds �BCGL���	

�

Proposition ��
� Let �L�� ��� and �L�� ��� be respectively a pair of a language and a

probability function	 If �L�� ��� is �P
T
reducible to �L�� ���� and L� is polynomial
time

solvable on ��
average� then L� is polynomial
time solvable on ��
average	

Remark� This can be extended for a reduction from �f�� ��� to �L�� ���� for a �possibly

multi
valued� function f�	

�� Known Results and Some Simple Observations

For simplifying our statements� we will use the following complexity class introduced in

�SY���	

De�nition ���� �Class PD�

For any distribution classD� PD is the class of languages L such that for any distribution

� � D� L is accepted by some randomized Turing machine whose running time is

polynomial on �
average	

Remark� We will also use this notation for discussing the complexity of computing

functions	 That is� a function f is in PD if for any distribution � � D� f is computable

by some randomized Turing transducer whose running time is polynomial on �
average	

For example� PP
comp is the class of languages that are polynomial
time solvable on

average under any polynomial
time computable distributions	 Hence� the relation NP

� PP
comp is equivalent to the following statement� for all P
computable distribution �

and all L in NP� L is polynomial
time decidable on �
average	 Thus� by this notation�

we can state our principal question as follows� Is it true that NP � PP
comp �� OptP �

PP
comp� Also two questions we asked in the introduction are stated as follows	

Q�� For which distribution class D� do we have the following implication��

NP � PD �� OptP � PP
comp�

Q�� For which distribution class D� do we have the following implication��

NP � PP
comp �� NP � PD�

Here let us review previous results	

Proposition ���� �BCGL���

��� NP � PP
samp �� #P
� � PP
samp �where #P

� � PNP
tt �	

��� NP � PP
samp �� SearchP � PP
samp	

Remark� The �rst fact� which is almost immediate from Proposition �	�� is not

explicitly stated in �BCGL���� but the idea has been used to show the second fact	

�

Proposition ���� �IL��� NP � PP
comp �� NP � PP
samp	

By using these propositions� it is not so hard to show that if NP � PP
comp� then

every NP optimization problem has an average
polynomial
time approximation scheme	

Consider any NP optimization problem $� and let cost and p be a cost function

and a polynomial specifying $	 For any probability function �� we say that $ has a

��average�polynomial�time approximation scheme if for each 	� �
 	
 �� there exists

a randomized Turing machine M with the following properties�

�a� The running time of M is polynomial on �
average	

�b� For any x � ��� with probability greater than ���� M�x� yields an 	�approximation

y� that is� y satis�es
opt �x� � cost�x� y�

opt �x�
� 	�

�Recall that we assumed that cost�x� y� � � and that we are considering maximiza

tion problems	�

Theorem ���� If NP � PP
comp� then every NP optimization problem has a �
average

polynomial
time approximation scheme for every P
computable distribution �	

Proof� �The same idea has been used for proving �CG��� Lemma ��	�

Let $ be any NP optimization problem that is speci�ed by cost and p	 Also let � be

any P
computable distribution	

Consider any constant 	� �
 	
 �� and let it be �xed	 We show some machine

exists that satis�es the above conditions �a� and �b� for 		 Formally� the problem is to

compute a �multi
valued� function ap
val whose value on x takes every 	
approximation

of x	 We reduce this approximation problem to some NP search problem	 Let opt �x�

� maxfcost�x� y�� j y� � ��p�jxj�g	 We may assume that for every x � ��� � � opt�x� �

�q�jxj� for some polynomial q	 Also let r be a polynomial such that b��� 	�r�n��q�n�c � �

for any n	 Now we consider the problem of computing the following function�

For each hn� x� kin� where x � �n and � � k � r�n��

search �hn� x� kin� � y such that b�� � 	�k�q�n�c � cost �x� y� � d�� � 	�k���q�n�e�

Clearly� if there is no solution for hn� x� k� �in� then any solution for hn� x� kin is an

	
approximation	 Thus� the problem of computing ap
val�x� is solvable by computing

search for all hn� x� kin� � � k � r�n�	 That is� ap
val is polynomial
time reducible to

search 	 Now it su�ces to show some �� in P
comp such that �ap
val� �� is �P
T
reducible

�in fact� �P
tt
reducible� to �search� �

��	 This can be done by simply de�ning ���hn� x� kin�

� ��x��r�jxj�	 tu

��

�� The First Question

Here we discuss our �rst question	 Namely� we would like to obtain some su�cient

condition �in terms of the relation NP � PD� for all NP optimization problems to be

polynomial
time solvable on average under any P
computable distribution	 For example�

it has been shown �SY��� that PE
comp is exactly the same as P� where E
comp is the

class of exponential
time computable distributions	 Hence� NP � PE
comp implies that P

� NP even in the worst
case� thus clearly� all NP optimization problems are polynomial

time solvable �even in the worst
case�	 Here we will show that a much weaker condition

NP � PPNP
samp is su�cient� and furthermore it is indeed necessary	

Before proving this result� let us �rst show that we lose no generality if we discuss

our problem by using %P
� class	

Theorem ���� For any distribution class D de�ned in Section �� we have %P
� � PD

� OptP � PD	

Proof� ��� Let L be any set in %P
� 	 By using the proof technique for �Kre��� Theorem

�	��� we can de�ne some function opt
val in OptP such that x � L if and only if the last

bit of opt
val�x� is �	 Thus� for any distribution � � D� if opt
val is polynomial
time

computable on �
average� so is L	

���� Let opt
val be any function in OptP	 We assume that for some polynomial r�

jopt
val�x�j � r�jxj� for all x � ��	 It is easy to show that the following set L is in %P
� �

L � f hn� x� i� din � x � �n� � � i � r�n�� d � f�� �g� and

the ith bit of the lexicographically smallest opt
val�x� is d g�

Clearly� for any x � ��� some value of opt
val�x� �in fact� the lexicographically smallest

value of opt
val�x�� is polynomial
time computable by asking at most q�jxj� queries to

L	 Then it is easy to show that �opt
val� �� is �P
T
reducible �in fact� �P

tt
reducible� to

�L���� for some �� � PD	 Then the proof follows from Proposition �	�	 tu

Now we are ready to prove our �rst main result	 That is� NP � PPNP
samp is su�cient

and indeed necessary for showing%P
� � PP
comp �i	e	� OptP� PP
comp�	 First we show the

su�ciency	 In fact� we can prove that NP � PPNP
samp is su�cient for %P
� � PPNP
samp	

Theorem ���� If NP � PPNP
samp� then %P
� � PPNP
samp	

Proof� Let L� be any set in %P
� and �� be any PNP
samplable distribution	 Then we

have a polynomial
time bounded deterministic Turing machine Q and an NP set L� such

that QL� accepts L�	 Also there exist a polynomial
time bounded randomized Turing

��

machine G and an NP set X witnessing �� is PNP
samplable	 We may assume� for some

polynomial q� and all x � �n� that QL��x� asks exactly q��n� distinct queries� and that

it always asks queries of the form hn� x� yin for some y	

Now for any hn� x� yin that is queried by QL��x�� de�ne ���hn� x� yin� � ���x��q��n��

and ���z� � � for any other z	 Then �� is a well
de�ned probability function	 Also it is

clear that �� satis�es the condition �c� of De�nition �	" for L�� L�� Q� and �� by taking

p�n� � � and q�n� � q��n�	 Hence� �L�� ��� is �P
T
reducible to �L�� ���	

On the other hand� for a given n � �� one can generate each hn� x� yin with pro

bability ���hn� x� yin� in the following way� First� simulate GX�n� to generate x	 Then

simulate QL��x� to generate all queries	 Finally� output one of the generated queries at

random	 Thus� �� is PX�L�
samplable	 Therefore� by assumption� L� is polynomial
time

solvable on ��
average� which proves that L� is polynomial
time solvable on ��
average

because �L�� ��� �P
T �L�� ���	 tu

Next we show that NP � PPNP
samp is indeed necessary for showing %P
� � PP
comp	

That is� the following relation	

Theorem ���� If %P
� � PP
comp� then NP � PPNP
samp	

Suppose %P
� � PP
comp� and let us �rst discuss very intuitively why this seems to

imply NP � PPNP
samp	 Consider any distribution �� in PNP
samp	 By de�nition� there

exist a randomized machine G� and a NP oracle set X� such that GX�

� �n� produces

x � �n according to ��	 Since %P
� � PP
comp� every PNP
computation can be simulated

by some randomized machine whose running time is polynomial on average� thus� the

computation of GX�

� can be simulated by some randomized machine G�
� whose running

time is polynomial on average	 That is� the distribution �� itself is �on average� P

samplable� or� one can de�ne a P
samplable distribution ��� that �approximates� ��	

Since %P
� � PP
comp� clearly NP � PP
comp	 Thus� by Proposition �	�� NP � PP
samp�

that is� NP sets are decidable in polynomial
time on �
average for any P
samplable

distribution �	 Hence� NP sets are decidable in polynomial
time on ���
average	 But

this property seems to hold for �� because ��� is a �good approximation� of ��	

This intuitive idea can be formalized to prove a similar relation for weaker �average

polynomial
time� notions such as our almost polynomial
time criteria �De�nition �	��	

On the other hand� for proving the above theorem� we need a more careful argument	

We begin by de�ning the notion of �polynomial
time samplable on average�	

For any probability function �� we say that � is aveP�samplable distribution if there

exists a deterministic Turing machine G such that for each n � ��

��

��� for every s� s� � ��� if G�n� s� ���� then G�n� ss�� ��	

��� for every x � �n� ��x� � �f s � �� � G�n� s� yields x g� and

��� G runs polynomial
time on �
average� that is� there exist constants c� d � � �inde

pendent from n� such that

X
s��� �G�n�s� 	�

�timeG�n� s��
��d

n
��s� � c�

Here we use � to denote the uniform distribution on ��	 That is� G�n� s� �with

G�n� s� ���� is regarded as the execution of randomized generator that halts after con

suming all bits of s for its coin
tossing	 In the following� we will refer G satisfying ���

and ��� as a deterministic generator for �	 Notice that the generator G in De�nition �	�

can be modi�ed to this type of generator that halts always in polynomial
time	 Thus�

this notion is a natural generalization of P
samplable distribution	 We use aveP
samp

to denote the class of aveP
samplable distributions	

Now we prove the following theorem� which is a generalization of Proposition �	�	

Theorem ���� NP � PP
comp �� NP � PaveP
samp	

Proof� Consider any set L� in NP and any aveP
samplable distribution ��	 We will

construct some machine M� that recognizes L� in polynomial
time on ��
average	

Let G� be a deterministic generator for �� that satis�es the condition ��� � ���

above	 We consider any n � �� let us �x it for a while� and discuss only inputs in �n	

For simplifying notation� in the following� we write G�n� s� as G�s�	

Note that L� � NP is solvable in exponential
time	 Hence� for some polynomial

e�� we may consider only instances x with ��x� � ��e��n�
�� that is� we can use the

exponential
time algorithm for L� for those instances x with ��x�
 ��e��n�
�� and this

does not a�ect the polynomial
time computability discussion	 Thus� in the following�

we may assume that ���x� � ��e�
�	 �Again we use e� to denote e��n�	� On the other

hand� for each x � �n� we have �f s � G��s� � x � G��s� takes more than ��e�c�n�d�

steps g � ��e� 	 Thus� even if we modify G� so that it terminates after ��e�c�n�d� steps�

the probability that x is generated is reduced by only ��e� � which is at most the half of

���x�� since we have just assumed that ���x� � ��e�
�	 Hence� without losing generality�

we may assume that the worst
case running time of G��s� is bounded by ��e�c�n�d� 	

From the condition ���� G� runs in polynomial
time on �
average� which is witnessed

by constants c�� d� � �	 This intuitively means that the average running time of G��s�

is �c�n�d� 	 That is� with t�u� � ��uG�n�d� � On the other hand� as explained above�

the worst
case running time of G��s� is bounded by ��e�c�n�d� 	 Hence� with t�u� �

��

��uG�n�d�� we can claim that the running time of G� for producing some string of

length n is bounded by t��� on average� and bounded by t�e�� in the worst case	 Thus�

intuitively� for most of s � �� such that G��s� ���� G��s� halts in t��� steps� and the

number of s for which G��s� needs more than t�u� steps becomes less and less when u

increases	

For any u� � � u � e�� de�ne G
�u�
� � ��u�� � and c�� as follows�

G
�u�
� �s� �

��� G��s�� if ��u��c�n�d�
 timeG�
�s� � ��uc�n�d� � and

�� otherwise	

�For u � � use the condition timeG�
�s� � �c�n�d� instead	�

�
�u�
� �x� � �� �G

�u�
� ����x� �� c���u� �

X
x��n

�
�u�
� �x��

Then the following relations are clear from the de�nition	

Fact ��

��� For any x � �n� we have ���x� �
e�X
u��

�
�u�
� �x�	 Hence�

e�X
u��

c���u� � �	

��� For any u� � � u � e�� we have c���u�� �u�� � �	

It follows from the above ��� that for any x� there exists some u� � � u � e�� such

that ��u�� �x� � ���x���e� ! ��	 Let ux denote it	 Intuitively� for most of random seeds

generating x� G� runs about t�ux� steps	

Here for the proof� we make use of one key lemma� which is provable by a straight

forward modi�cation of �IL���	 Let us �rst review �IL���	 Consider any set L in NP

and any P
samplable distribution �	 Hence� � has a polynomial�time bounded generator

G	 From the assumption that NP � PP
comp� Impagliazzo and Levin constructed some

randomized machine M such that ��� M recognizes L� and ��� M runs in polynomial

time on �
average	 By modifying their argument �see Appendix for the detail�� we can

construct the following M� for our L� and G�	

Lemma ���� There exists a randomized machine M� with the following properties�

��� For all x � �n and u � ��

�i� M��hn� t�u�� xin�t�u�� outputs either �� �� or ��

�ii� if M��hn� t�u�� xin�t�u�� ���� then M��hn� t�u�� xin�t�u�� � � � x � L�� and

�iii� if �
�u�
� �x� �� �� then PrM�

fM��hn� t�u�� xin�t�u�� ���g � ���	

��� M� runs in polynomial time on ��
average� where ���hn� t�u�� xin�t�u�� � �
�u�
� �x� for

any u� � � u � e�	 �We arti�cially set ���hn� �� �in�t�u�� � �� c���u�� and ���x�� � �

for any other form of x�	�

��

Now by using M�� we de�ne the following algorithm M�	

prog M� �input x��

n � jxj� N � p��n�� & p� is su�ciently large polynomial	

in parallel do

��� simulate N executions of M��hn� t���� xin�t���� in parallel

by using N randomly chosen sequences as M��s random resource�

if M� yields �'� then accept'reject�
			

�e�� simulate N executions of M��hn� t�e��� xin�t�e��� in parallel

by using N randomly chosen sequences as M��s random resource�

if M� yields �'� then accept'reject�

��� determine x � L� by brute force deterministic computation�

if the computation accepts'rejects then accept'reject

od	

Clearly� this M� recognizes L� correctly	 Thus� it su�ces to show that M� runs in

polynomial
time on ��
average	 In the following discussion� we consider any su�ciently

large n� and let it be �xed	

Let c� and d� are constants witnessing that M� is polynomial
time on ��
average	

Thus� for any u� � � u � e��

X
x��n

�timeM�
�hn� t�u�� xin�t�u���

��d�

jhn� t�u�� xin�t�u�j
���hn� t�u�� xin�t�u�� � c��

Recall that ���hn� t�u�� xin�t�u�� � �
�u�
� �x� and that jhn� t�u�� xin�t�u�j is less than some

polynomial in n! t�u�� which is bounded by ��u��n�d� for some d�	 Thus� for any u�

X
x��n

�timeM�
�hn� t�u�� xin�t�u�����d�

��u��n�d�
�
�u�
� �x� � c��

Note also that
P

x��n �
�u�
� �x� � c���u� � ���u�� for any u	 Thus� for any u� � � u � e��

it follows from Proposition �	 that

X
x��n

�timeM�
�hn� t�u�� xin�t�u���

����d�d��

nd�
�
�u�
� �x� � c� ! ��

Now for a given input x � �n� estimate the running time of M��x�	 Here we fo

cus on the uxth parallel step� that is� the simulation of M��hn� t�ux�� xin�t�ux��	 Re

call that the probability that M��hn� t�ux�� xin�t�ux�� ��� is greater than ���� and

�

that M��hn� t�ux�� xin�t�ux�� is simulated by using N random sequences in parallel	

Thus� with very high probability� some simulation of M��hn� t�ux�� xin�t�ux�� yields �

or �� and furthermore it halts in �
 timeM�
�hn� t�ux�� xin�t�ux�� steps	 �Recall that

timeM�
�hn� t�ux�� xin�t�ux�� is the expected running time over all random sequences of

M��	 Thus� we can assume that the running time of M��x� is bounded by that of the

uxth parallel step� which is bounded by �NtimeM�
�hn� t�ux�� xin�t�ux��!p���uxn� for some

polynomial p�	

Hence� for some constant d� � �d�d� such that �p���uxn��
��d� � �ux��n we have

X
x	 ux�u

�timeM�
�x����d�

n
���x�

� �e� ! ��

X

x	 ux�u

��NtimeM�
�hn� t�ux�� xin�t�ux�� ! p���uxn����d�

n
�
�ux�
� �x�

� �e� ! ��nd���

X

x	ux�u

��NtimeM�
�hn� t�ux�� xin�t�ux���

��d�

nd�
�
�ux�
� �x�

! �e� ! ��

X

x	ux�u

�p���uxn����d�

n
�
�ux�
� �x�

� �e� ! ��nd�����N���d��c� ! �� ! �e� ! ��

�ux��n

n

�

�ux��

� �e� ! ��
�
nd�����N���d��c� ! �� ! �

�
�

Hence� summing up this for u � � to u � e��n�� we have
P

x��n�timeM�
�x����d��n �

p��n� for some polynomial p�	 Therefore� from Proposition �	�� we conclude that M�

runs in polynomial
time on ��
average	 tu

Now with Theorem �	�� the proof of Theorem �	� is easy	

Proof of Theorem ���� It su�ces to show that under the assumption that %P
�

� PP
comp� every PNP
samplable distribution is aveP
samplable	 Consider any PNP

samplable distribution �	 Then there exists some PNP
generator GX for �	 That is� G is

a polynomial
time bounded deterministic machine� X is a set in NP� and they satis�es

the following for some polynomial r and all n � � and x � �n�

��x� � �f s � �r�n� � GX�n� s� � x g�

Then de�ne L by

L � f hn� s� i� din � n � �� s � �r�n�� � � i � n� d � f�� �g� and �GX�n� s��i � d g�

��

where �GX�n� s��i is the ith bit of GX�n� s�	 Clearly� L is in %P
� 	 Thus� it is polynomial

time decidable on average under uniform distribution	 On the other hand� the function

GX �under uniform distribution� is �P
tt
reducible to L �under uniform distribution�	

Therefore� GX is computed by some G� that runs in polynomial
time on average under

uniform distribution	 tu

�� The Second Question

In this section� we discuss the second question	 That is� from the assumption NP �

PP
comp� how far can we prove� Or more speci�cally� for which distribution class D� can

we prove NP � PD�

We �rst show that the assumption implies NP � PPNP
tt

samp	

Theorem ���� If NP � PP
comp� then NP � PPNP
tt

samp	

Proof� The proof is essentially the same as the one for Theorem �	�	 It follows from Pro

position �	� that the assumption implies that PNP
tt � PP
comp	 Then by exactly the same

argument as the one for Theorem �	�� we can show� for every PNP
tt
samplable distribution

�� that � is aveP
samplable	 Thus� by Theorem �	�� every NP set is polynomial
time

solvable on �
average	 That is� NP � PPNP
tt

samp	 tu

Therefore� the di�erence between PPNP
tt

samp and PPNP
samp is essential for our original

question� namely� the question of whether it holds that NP � PP
comp �� OptP �

PP
comp	 This leads us to another type of question	 That is� the relation between

PPNP
tt

samp and PPNP
samp� or in more general� between distribution classes PNP

tt
samp and

PNP
samp	

Here we show that the class PNP
tt
samp is in fact not so small by proving that it

�essentially� contains some distribution class� i	e	� the class of �P
computable distri

butions� which seems much stronger than P
comp	 Let us �rst de�ne the notion of

��P
computable distribution�	 Intuitively� an input distribution � is a �P
computable

if � is de�ned as some �P function	 That is� there exists a polynomial
time computable

binary predicate R and a polynomial q such that for each x �let n � jxj��

��x� �
jj fw � �q�n� jR�x�w� g jj

�q�n�
�

Let �P
comp denote the class of �P
computable distributions	

For any two input distributions �� and ��� we say that �� approximates �� within

constant factor if c����x� � ���x� � c����x� for some constants c�� c� � � and for all

x � ��	 We have the following theorem	

�"

Theorem ���� Every input distribution in �P
comp is approximated within constant

factor by some input distribution in PNP
tt
samp	

For the proof we use hashing functions	 Here we use linear hashing functions of

Carter and Wegman �CW"�� for our concrete hashing functions	 A linear hash function

h from �l to �m is given by a Boolean �m� l�
matrix A � �ai�j�� and maps any string

x � x� � � � xl � �l to some string y � y� � � � ym� where y � Ax under modulo �	 Let

Hl�m be the set of linear hash functions from �l to �m	 The following facts are basic

properties of linear hash functions	

Fact �� For all x � �l and for all y � �m�

Prh�Hl�m
fh�x� � y g �

�

�m
�

Fact �� For all x�� x� � �l� x� �� x�� and for all y�� y� � �m�

Prh�Hl�m
fh�x�� � y� j h�x�� � y� g �

�

�m
� and thus

Prh�Hl�m
fh�x�� � y� � h�x�� � y� g �

�

��m
�

We make use of the following lemma	

Lemma ���� Let X be any subset of �l of size K � �k for some k � �� and letm � k!c

for some integer c � �	 For all x � X de�ne Px by

Px � Prf �h�x� � y� � ��x� � x� � X � x� �� x �h�x�� �� y �� j h � Hl�m� y � �m g�

Then Px is bounded as follows��
��

�

�c

�

�

�c
�

�

K
� Px �

�

K
�

Proof� In the following� we assume that hashing function h is chosen from Hl�m ran

domly and that the domain of y is �m	 First we have

Px �
X
y

��m
Prf �x� � x� � X � x� �� x �h�x�� �� y � j h�x� � y g
 Prf h�x� � y g

�
X
y

��m
 ��m ��� Prf �x� � X �x� �� x � h�x�� � y � j h�x� � y g�

�
X
y

��m
	
��

jjXjj � �

�k
c

�

�

�k
c
�
�
��

�

�c

�
�

�c
�

�

K
�

On the other hand� we have

��

Px � Prf h�y� � x j y � �m� h � Hl�m g �
X
y

��m
 ��m � ��m �
�

K
� tu

Jerrum� Valiant� and Vazirani �JVV��� showed a method to generate� for any set

X in P and a given l� a string of length l in X with almost the same probability in

polynomial
time by using some NP oracle	 The above lemma gives a much simpler

method to do the same task provided we know the size of X 	 �l� in fact� the method

uses an NP oracle only nonadaptively	 This point is crucial for proving our theorem	

Proof of Theorem ���� Let � be any input distribution in �P
comp	 Then by de�

nition� there exists a polynomial q and a polynomial
time computable binary predicate

R such that for any n � � and any x � �n� ��x� � jj fw � �q�n� jR�x�w� g jj��q�n�	 We

�rst de�ne the following sets X� and X��

X� � f hn� h� yi � n � �� h � Hn
q�n��q�n�
�� y � �q�n�
�� and

�x�w� x�� w� � x� x� � �n � w�w� � �q�n�

� xw �� x�w� � h�xw� � h�x�w�� � y � R�x�w� � R�x�� w�� � g�

X� � f hn� h� y� i� di �

n � �� h � Hn
q�n��q�n�
�� y � �q�n�
�� � � i � n! q�n�� d � f�� �g� and

�x�w � x � �n � w � �q�n� � h�xw� � y � R�x�w� � �xw�i � d � g�

�where �xw�i is the ith bit of w�

Next consider the following randomized machine G� and for any x � �n� de�ne ���x� to

be the probability that G�n� generates x	

prog G �input n��

generate h from Hn
q�n��q�n�
� randomly�

generate y � �q�n�
� randomly�

if hn� h� yi � X� then output � and halt�

use oracle X� to �nd some xw � �n
q�n� with h�xw� � y and R�x�w��

if no such xw exists then output � else output x	

Then clearly both X� and X� are in NP	 Furthermore� it is easy to modify G so

that G asks only nonadaptive queries to X� �X� � NP	 Thus� G can be considered as

a PNP
tt
generator	 On the other hand� it follows from Lemma 	� that �� approximates

� within constant factor	 This almost proves the theorem	

Here� precisely speaking� �� is not a real input distribution because �� may assign

some positive value to error symbol (��	 It is possible� however� to modify G to use

polynomially many y�s in parallel and thereby reducing the probability to yield (�� to

less than ��q�n�	 Then G can output any string of length n instead of (�� while keeping

��

the property that �� approximates � within constant factor	 The detail analysis is left

to the reader	 tu

Notice that if �� approximates �� within constant factor� then the polynomial
time

solvability is equivalent between ��
average and ��
average	 Thus� we have the following

corollary	

Corollary ���� P�P
comp � PNP
tt
samp	

Acknowledgments

The second author thanks to Professor Uwe Sch�oning for inviting him to the Univer

sit�at Ulm� which made this joint research possible� and to the people in the Abteilung

Theoretische Informatik �in particular� Uwe Sch�oning and Thomas Thierauf� for their

warm hospitality to him	 The authors have bene�tted very much from valuable discus

sions with Professor Johannes K�obler� Professor Uwe Sch�oning� and Professor Thomas

Thierauf	

References

�BDG��� J	 Balc)azar� J	 D)*az� and J	 Gabarr)o� Structural Complexity I� EATCS Mo

nographs on Theoretical Computer Science� Springer
Verlag� ����	

�BDG��� J	 Balc)azar� J	 D)*az� and J	 Gabarr)o� Structural Complexity II� EATCS

Monographs on Theoretical Computer Science� Springer
Verlag� ����	

�BCGL��� S	 Ben
David� B	 Chor� O	 Goldreich� and M	 Luby� On the theory of average

case complexity� J� Comput� Syst� Sci� �� ������� �������	

�CW"�� J	 Carter and M	 Wegman� Universal classes of hash functions� J� Comput�

Syst� Sci� �� ���"��� ������	

�CG��� R	 Chang and W	 Gasarch� On bounded queries and approximation� in Proc�

��th IEEE Sympos� on Foundations of Computer Science� IEEE �������

�"��	

�Gur��� Y	 Gurevich� Average case completeness� J� Comput� Syst� Sci� �� �������

�������	

��

�IL��� R	 Impagliazzo and L	 Levin� No better ways to generate hard NP instances

than picking uniformly at random� in Proc� ��st IEEE Sympos� on Founda�

tions of Computer Science ������� �������	

�JVV��� M	 Jerrum� L	 Valiant� and V	 Vazirani� Random generation of combinatorial

structures from a uniform distribution� Theoret� Comput� Sci� �� �������

�������	

�Joh��� D	 Johnson� The NP
completeness column� An on going guide� J� Algorithms

 ������� �������	

�Kre��� M	 Krentel� The complexity of optimization problems� J� Comput� Syst� Sci�

�� ������� ������	

�Lev��� L	 Levin� Average case complete problems� SIAM J� Comput� � �������

������	

�SY��� R	 Schuler and T	 Yamakami� Structural average case complexity� in Proc�

��th Foundations of Software Technology and Theoretical Computer Science�

Lecture Notes in Computer Science �� ������� �������	

��

Appendix� Proof of Lemma ���

Let us �rst review the proof of the following theorem �i	e	� Proposition �	�� proved in

�IL���	 Then the lemma is proved by a straightforward modi�cation of their proof	

Theorem A��� �IL��� NP � PP
comp �� NP � PP
samp	

Suppose that NP � PP
comp	 Consider any �� in PP
samp and any NP set L�� and

we show that L� is polynomial
time decidable on ��
average	

We may assume some polynomial
time computable predicate W� and polynomial p�

such that for all x � �� �letting n � jxj�� x � L� � �w � �p��n� �W��x�w� �	 Since ��

is P
samplable� there exist some polynomial
time bounded generator G� for ��	 That

is� for some polynomial r� and for all x � �n�

���x� �
k f s � �r��n� jG��n� s� � x g k

�r��n�
�

Now consider any su�ciently large n� and let us �x it in the following discussion	

For simplifying our notation� we write G��n� s� as G��s�� and r��n� and p��n� as r� and

p� respectively	

Here again we use linear hash functions	 Recall that Hl�m is the set of linear hash

functions from �l to �m	 For any x � �n� h� � Hl� �r�� and h� � Hn�l� � we say that

�h�� h�� z� determines x if

�v � �l� � h��v� � s � f��s� � x � h��x� � z �

� �v� � �l� � �h��v�� � s� � f��v�� � x� �� x � �� h��x�� �� z ��

We show that for appropriate choice of l� and l�� �h�� h�� h��x�� determines x with high

probability	 In the following� let kx � bjj logG��
� �x� jjc	 Note that �kx � jjG��

� �x� jj

�kx
�� hence� ���r��kx� � ���x�
 ���r��kx�
�	

Lemma A��� For any x � �n� let l� � r� � kx � � and l� � l� ! �	 Then we have

P� � Prf �h�� h�� h��x�� determines x jh� � Hl��r�� h� � Hn�l� g �
�

��
�

Proof� Let us �x our x� and let z � h��x�	 In the following� we assume that h� �resp	�

h�� is chosen from Hl��r� �resp	� Hn�l�� uniformly at random	 De�ne P� and P� as follows

�P� varies depending on h���

P� � Prh�f �v � �l� �G��h��v�� � x � g� and

P� � Prh�f �v�� v� � �l� �G��h��v��� �� G��h��v����

h��G��h��v���� � h��G��h��v���� � z � g�

��

Then clearly� P� � P� � maxh� P�	

First from the following inequalities� we show that P� � ���	 �In the following� the

range of s�s and v�s are G��
� �x� and �l� respectively	�

P� �
X
�s�v�

Prh�fh��v� � s g �
X

�s�v���s��v��

Prh�fh��v� � s � h��v
�� � s� g

�

�z ��
jjG��

� �x� jj � �l�

�r�
�

���� ��

�
�

�

��r���
�

�

�

�
��

�

�

�
�

�

�
�

For estimating P�� let F be the range of G� � h�	 Then� for all h�� jjF jj � �l� and

therefore we have the following	

P� � Prh�f �x�� x� � F �x� �� x� � h��x�� � h��x�� � z � g

�
X

x� 	�x��F

Prh�fh��x�� � h��x�� � z g

� jjF jj����l��� � ��l���l� �
�

��
�

tu

Now consider a procedure Q� stated below	 The idea of Q� is as follows	 For a given

x � �n� let G��
� �x� be the set of strings y such that G��y� � x	 Choose k randomly

from f�� �� ���� r�g� then with probability ��r�� we have k � kx �kx � blog jjG��
� �x�jjc�	

If k � kx� then by Lemma A	�� for randomly selected hash functions h� and h��

�h�� h�� h��x�� determines x with probability � �'��	 That is� we can indirectly spe

cify x by �h�� h�� h��x��� and thus� Q� can ask a right query to an oracle L�
�� which is

essentially the same as asking x to L�	

prog Q� �input x � �n��

choose k randomly from f�� ���� r�g�

l� � r� � k � �� l� � l� ! ��

choose h� randomly from Hl��r�� choose h� randomly from Hn�l� �

y � hn� k� h�� h�� h��x�in � and yi � hn� k� h�� h�� h��x�� iin for each i� � � i � n�

if y � EX� � y �� EX� �
Vn

i���xi � � � yi � EX��

then if y � L�
� then accept else reject

else output �	

Here oracle sets are de�ned as follows �here let l� � r� � k � �� l� � l� ! �� x �

G��h��v��� x� � G��h��v���� and x� � G��h��v�����

EX� � f hn� k� h�� h�� zin � �v � �l� � h��x� � z � g

EX� � f hn� k� h�� h�� zin � �v�� v� � �l� � x� �� x� � h��x�� � h�x�� � z � g�

EX� � f hn� k� h�� h�� z� iin � �v � �l� � h��x� � z � xi � � � g�

L�
� � f hn� k� h�� h�� zin � �v � �l�� w � �p� � z � h��x� � W��x�w� � g�

��

Following the above argument� we can easily show that Q��x� gives a correct answer

with probability � ����r�	 Note also that when Q��x� says accept'reject� then the

answer is always correct	

From the assumption that NP � PP
comp� sets EX�� EX�� and L�
� are all solvable

by some machines N�� N�� and N� respectively in polynomial
time under the following

uniform distribution �in the following� we use Hl��r� and Hn�l� to denote jjHl��r� jj and

jjHn�l� jj��

���hn� k� h�� h�� zin� �
�

r�
Hl��r�
Hn�l�
 �
l�
�

Similarly� EX� is solvable by some machine N in polynomial
time under the following

uniform distribution�

���hn� k� h�� h�� z� iin� �
�

r�
Hl��r�
Hn�l�
 �
l�
 n

�

We estimate the computation time of Q� when using these three machines N� � N	

�In the following� only N� � N� �under distribution ��� are investigated� the analysis for

N �under ��� is almost the same and thus omitted	� Unfortunately� we cannot claim

that Q� runs in polynomial
time on ��
average	 The problem is that for wrong choice of

k� h�� h�� Q��x� may ask a query y to N� � N� with probability much larger than ���y�	

It is� however� possible to show that if �h�� h�� h��x�� determines x� then the probability

that y is queried is close to ���y�	

De�ne ��� � �� to be the probability that a string y is queried by Q��x� when x is

given under distribution ��	 That is�

��� � ���hn� k� h�� h�� zin� � ���x� � PrQ�
f Q��x� queries hn� k� h�� h�� zin g�

Here suppose that k is chosen correctly� that is� k � kx	 Then for any �h�� h�� h��x��

that determines x� we have

��� � ���hn� k� h�� h�� h��x�in� � ���x�

�

Hl��r�

�

Hn�l�

� ���r��k�

�

Hl��r�

�

Hn�l�

� ��l�

�

Hl��r�

�

Hn�l�

�
�

r�
Hl��r�
Hn�l�
 �
l�

� ���hn� k� h�� h�� h��x�in��

where�means equal up to a polynomial factor	 Thus� for those hn� k� h�� h�� h��x�in that

determine x� machines N� � N� �and similarly N� return the answer within reasonable

amount of time	 Or more speci�cally� if we estimate the time complexity of QN��N��N��N�

�

only for the case where k � kx and �h�� h�� h��x�� determines x� then we can show that

the running time is polynomial on ��
average	

��

Now for a su�ciently large polynomial p� consider a new procedure Q�
� that runs Q�

for p�n� times in parallel and outputs an answer if one of the executions of Q� returns

the answer	 Recall that there is not so small chance that k � kx and �h�� h�� h��x�� de

termines x	 Thus� for any input x� the probability that it is determined with the correct

k by some execution of Q� is very high	 This is enough to prove that �Q�
��

N��N��N��N�

runs in polynomial
time on ��
average	 Therefore we have Theorem A	�	

Lemma �	 is proved almost the same way as above	 Here we need to consider a

generator G� that may not halt in a �xed polynomial
time	 However� by considering

time bounded version G
�u�
� of G�� we can easily show that �Q�

��
N��N��N��N� indeed satis�es

the conditions ��� and ���	

�

