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Abstract Mixed traffic conditions characterized by the

presence of different vehicle types and weak lane discipline

are common in the developing world. Different maneu-

vering capabilities of different vehicle types lead to vehi-

cle-type dependent longitudinal and lateral movement

driving behaviors. Weak lane discipline allows drivers to

simultaneously look for possible lateral movements while

progressing longitudinally. This integrated driving behav-

ior gives rise to various driving phenomena like tailgating,

multiple-leader following, swerving and filtering. How-

ever, very few studies exist in the literature that attempt to

model these typical driving behaviors of mixed traffic

streams. Moreover, most of these studies are not often

readily available. Thus, a comprehensive review of the

studies that consider modeling driver behavior in mixed

traffic conditions is presented in this paper. Often, models

developed for mixed traffic conditions stemmed out of the

basic principles employed in the development of homo-

geneous traffic models. Hence, this paper first reviews the

lane-based macro-, micro- and meso-scopic models in

tandem and identifies their strengths and weaknesses in

describing the mixed traffic system. A thorough under-

standing and conceptualization of any system is possible by

analyzing large sets of empirical data. Therefore, a brief

review on traffic data requirements to understand and

model the driver behavior and, data extraction tools to

obtain the trajectories of vehicles is presented next. Driver

behavioral models form the core of any microscopic traffic

simulation model. Core behavioral models such as car-

following and lane-changing models which describe the

longitudinal and lateral movements of drivers respectively

are reviewed next. However, these two behavioral models

may not be able to describe the integrated driving behavior

independently. Therefore, various integrated driver

behavioral models are briefed next. A simulation frame-

work is essential to implement the driver behavioral

models and evaluate their capabilities in representing larger

scale traffic systems. Hence, a brief review of various

simulation frameworks is presented subsequently. Finally,

the challenges that are involved in modeling driver

behavior in mixed traffic conditions are discussed and

some useful research directions are proposed.
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Introduction

Analytical models can be used with acceptable confidence

to reliably represent and understand the behavior of each

entity and the interaction of a limited number of entities of

a system. However, they may not be able to adequately

describe the complex, simultaneous interactions of many

system entities as in the case of a traffic system. On the

other hand, this flexibility is offered by simulation models,

but at the cost of high computational times. Nevertheless,

with the advent of high-end computers, researchers in the

recent past have adopted the simulation technique to pro-

vide effective and intelligent transportation solutions.

Thus, a comprehensive understanding of various
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simulation approaches available to describe the traffic

system is important. Time and again, models developed for

mixed traffic conditions stemmed out of the basic princi-

ples employed in the development of homogeneous traffic

models. Hence, this paper first reviews the lane-based

macro-, micro- and meso-scopic models in tandem and

identifies their strengths and weaknesses in describing the

mixed traffic system. Analyzing large sets of empirical data

helps in thorough understanding and conceptualization of

any system. Therefore, a brief review on traffic data

requirements to understand and model the driver behavior

and, data extraction tools to obtain the trajectories of

vehicles is presented next. The core of any microscopic

traffic simulation framework are the driver behavioral

models. The most essential behavioral models, car-fol-

lowing and lane-changing which describe the longitudinal

and lateral movements of drivers respectively are reviewed

next. However, these two behavioral models independently

may not be able to describe the integrated driving behavior.

Therefore, various integrated driver behavioral models are

briefed next assessing their merits and demerits. A simu-

lation framework is essential to implement the driver

behavioral models and evaluate their capabilities in rep-

resenting larger scale traffic systems. Hence, a brief review

of various simulation frameworks available in the literature

is presented subsequently. Finally, the challenges involved

in modeling drivers’ behavior in mixed traffic conditions

and some research directions are presented.

Traffic Flow Models

Traffic flow models can be categorised as macro-, micro-,

or meso-scopic depending on the level at which they rep-

resent the traffic flow. Macroscopic models take into

account the movements of vehicles in groups or platoons to

describe a traffic stream. Microscopic models predict the

longitudinal and lateral movement behaviors of each and

every vehicle in terms of speed and acceleration by con-

sidering the surrounding vehicles’ characteristics and the

environment. Mesoscopic models use explicit mathemati-

cal relationships to describe the interactions between

clusters of vehicles and thereby predict the traffic stream

characteristics on the whole. A brief review assessing the

strengths and weaknesses of each of the model class in the

context of mixed traffic flow modeling is presented here.

Macroscopic Models

Macroscopic models use the deterministic speed-flow-

density relationships to describe a traffic stream. Major

approaches that have been proposed in the literature taking

a macroscopic perspective are presented here.

Queuing Theory

The use of queuing theory is probably the most straight-

forward approach to model traffic dynamics [53, 65]. The

number of queued vehicles (n), are tracked using this

theory. The vehicles form a virtual queue when the flow

through a bottleneck exceeds the bottleneck capacity. The

infrastructure dictates the throughput capacity of bottle-

neck, C; whereas the incoming flow (q) to the bottleneck is

given by a traffic flow model. Mathematically, this can be

represented as

dn ¼ q tð Þ � C tð Þdt ð1Þ

Until the queue disappears completely, the number of

queued vehicles (n; dn denotes the change in number of

queued vehicles) change according to Eq. 1. Both the

capacity and inflow are time dependent in this description.

Random distribution pattern of the arrival of vehicles

causes time dependent variations in inflow. The possibility

of vehicles arriving in platoons or the existence of large

gaps between the vehicles can lead to fluctuations in

capacity. The capacity also fluctuates as vehicles can arrive

in platoons or there can be large gaps in between two

vehicles. Vehicle-to-vehicle fluctuations are present on one

hand. For instance, shorter headways are maintained by

some drivers having a shorter reaction time leading to a

higher capacity. Capacities also depend on road conditions

on the other hand. For a given inflow-outflow curve, the

fluctuations in the number of queued vehicles (n) is shown

in Fig. 1.

Some of the straightforward models that can be

employed for the traffic flows are provided by queuing

theory. However, these models normally consider the basic

unit of traffic as a point. In reality, the lengths of vehicles

as well as the safe distance maintained by successive

vehicles are also included in vehicular queues. Thus, these

models do not adequately describe the spatial aspect of

traffic congestion in particular. On the other hand, models

developed based on shockwave theory are capable of

describing the spatial and temporal dimensions of queues

accurately.

Shockwave Theory

Dynamics of the transition zone between two traffic states

that are characterized by different densities, speeds or flow

rates is described by a shockwave [56]. In other words, this

theory describes the spatio-temporal movement of the

boundary between two traffic states. For example, if S

denotes the wave that separates two traffic states, denoted

as 1 and 2, then the speed at which this shockwave prop-

agates can be computed as
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x12 ¼
q2 � q1

k2 � k1
ð2Þ

In other words, the change in flow over the wave divided

by the change in density equals the speed of shockwave.

This description provides a nice graphical interpretation as

depicted in Fig. 2. The slope of a line that joins two traffic

states 1 and 2 in the principal diagram represents the speed

of shockwave in time–space plane.

The spatio-temporal dynamics of traffic streams can be

predicted in a simple way using the theory of shockwaves.

This theory replicates the traffic characteristics that are

principally aligned with what are observed in reality, but it

has its weaknesses too.

(a) Traffic continues to drive at critical speed even when

it is away from congestion. In reality, it accelerates

smoothly towards free speed.

(b) The phenomenon of hysteresis is not captured by this

theory. The phenomenon of drivers choosing a

different speed to accelerate from a specific decel-

eration for similar space headways is called

hysteresis.

(c) The unprompted transitions from one state to the

other may not be well described by this theory.

More advanced approaches like continuum models that

address the above limitations are discussed here.

Continuum Models

Traffic flow dynamics are explained in terms of basic

variables, such as flows, densities and average speeds in the

continuum models. Usually, these models are derived by

drawing the analogy between the vehicular flow and the

flow of continuous media like fluids or gases. Specific

relationships that describe the average properties of traffic

flow macroscopically, like the one linking speed and den-

sity complement these models. A small number of equa-

tions that are quite easy to handle are generally used in

continuum flow models.

The dynamics of density, flow and speed are described

by most of the continuum models. The number of vehicles

Fig. 1 Functioning of queuing

theory [39]

Fig. 2 Graphical interpretation of shockwave speed [39]
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occupying a unit length at a given point of time is called

density. The number of vehicles passing a cross-section

during a particular time span is termed as flow. The speed

(average speed) of vehicles is described by the relationship

q = ku. Partial differential equations of speed variance or

traffic pressure are also used in some continuum models.

Hoogendoorn and Bovy [37] gives a comprehensive review

of continuum flow models. Most continuum models

assume that all traffic entities are homogeneous in nature,

which does not hold well in mixed traffic conditions.

Development of continuum models for mixed traffic

became prominent only in the twenty-first century.

Modeling multi-class flows across multiple lanes [13, 50,

88] was the major focus. A comprehensive list of major

macroscopic models developed till date for homogeneous

and heterogeneous traffic is presented in Table 1. The

dynamic interactions that take place between drivers of

different vehicle types have not been considered while the

diversity of vehicle types has been studied explicitly.

Ignoring side by side movement of drivers which might

cause significant errors in density predictions is the major

limitation of this category of models.

In a nutshell, the basic premise underlying macroscopic

modeling approach is, under identical traffic conditions, all

drivers behave similarly. However, this hypothesis dies the

death of a thousand qualifications in mixed traffic condi-

tions where drivers have varied capabilities depending on

the type of vehicle they drive. Also, the non-lane based

movement behavior of drivers’ makes these models

unsuitable for describing mixed traffic conditions. To

overcome these difficulties, researchers initiated modeling

various behaviors exhibited by drivers at an individual

level which gave rise to the whole new spectrum of

microscopic models.

Microscopic Models

The behavior of drivers’ at one’s own decision level, mutu-

ally giving rise to amassed traffic flows is captured by

microscopic traffic models. Different factors related to dri-

ver-vehicle combination, traffic conditions, infrastructure

conditions and external situational factors influence the

behavior of drivers’. Various microscopic models have been

proposed over the years to relate the observed driving

behavior dynamics to the parameters that describe these

conditions.Various driving sub-tasks are often differentiated

while developing microscopic models. Table 2 provides a

classification of these tasks.

Most commonly, the driving behaviors like keeping-up

the speed, acceleration, keeping a safe distance with the

leader vehicle fall in the category of longitudinal tasks;

while the lateral tasks include lane changing and overtak-

ing behaviors. While modeling the longitudinal interactions

sub-task has received quite a lot of attention, the lateral

interaction sub-task still remains a point of exploration. A

broad classification of different car-following and lane-

changing models is shown in Fig. 3. An extensive review

of these driver behavioral models developed for both lane-

based and non-lane based traffic conditions will be pre-

sented in the forthcoming sections after understanding the

advantages of microscopic approach over other categories

and identifying the data required for developing them. In

general, microscopic models require more rigorous and

detailed data from real traffic streams and they also con-

sume considerable amount of time. To overcome these

difficulties, hybrid mesoscopic models were developed by

researchers taking into account the advantages of both

macro- and micro-scopic approaches.

Mesoscopic Models

A hybrid of macro- and micro-scopic models are the

mesoscopic models which in general model the dynamics

of groups or platoons of vehicles and describe the inter-

actions between these clusters using mathematical

Table 1 Major existing

macroscopic models for

homogeneous and

heterogeneous traffic

No. Homogeneous models Heterogeneous models

1 LWR model [48, 71] Kinematic wave traffic flow model [88]

2 Payne-type models [67] Multi-class traffic flow model-an extension of LWR

model with heterogeneous drivers [84]

3 Semi-discrete model [74] LWR model with passenger-car equivalents [49]

4 Helbing-type models [28] Macroscopic model for two-flow mixed traffic [13]

5 Cell-transmission model [15–17] Multi-class first-order simulation model [62]

6 Multi-class kinematic wave theory [50]

7 Dynamic model for heterogeneous traffic [76]

Table 2 Sub-tasks in driving

Longitudinal Lateral

Facility Free speed Path keeping

Vehicular interdependence Car-following Lane changing
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equations. Three well known examples of mesoscopic

models, headway distribution, cluster, and gas-kinetic

continuum models are reviewed here.

Headway Distribution Models

The difference in passage times of two consecutive vehi-

cles is defined as the time-headway. These time-headways

are usually presumed to be identically distributed inde-

pendent random variates. As the distribution of headways

of all individual vehicles is described by neither explicitly

considering each of them nor tracing them separately, the

headway models are considered mesoscopic in their sense.

A semi-Poisson model by Buckley [8] and a Generalized

Queuing Model by Branston [7] are some typical examples

of headway distribution models. Different probability dis-

tributions to draw time headways of the lead and following

vehicles separately are used in mixed headway distribution

models. Headway distribution models are criticized for

neglecting the role of traffic dynamics. Moreover, all

vehicles are essentially the same is the major assumption

behind these models, which means the probability distri-

bution functions are independent of traveler type and

vehicle type.

Cluster Models

The role of clusters characterizes the cluster models [4]. A

set of vehicles that share a particular property is called a

cluster. Size and velocity of clusters are the most important

aspects. As a cluster can grow and decay, its size is a

dynamic characteristic. All clusters are homogeneous in

their nature as within cluster traffic characteristics like

headways, speed differences, etc., are usually not consid-

ered explicitly.

Gas-kinetic Continuum Models

Instead of explaining the dynamics of individual vehicles,

Gas kinetic models consider changes in velocity distribu-

tion functions of a traffic stream. First of these kinds of

models was proposed by Prigogine et al. [70]. The

dynamics of reduced Phase-Space Density (PSD) are

generally described by these models. The probable number

of vehicles present at an extremely small region driving

with a specific velocity at a given instant is called the

reduced PSD. Borrowed from the discipline of statistical

physics, the concept of reduced PSD can be regarded as a

mesoscopic abstraction of macroscopic traffic density. The

assumption that the speeds of slowing-down vehicles are

independent of the speeds of hindering vehicles is the

major drawback of this model. Also, vehicle class homo-

geneity is assumed while modeling.

A multi-class gas-kinetic model describing the dynamics

of Multi-class Phase-Space-Density (MUC-PSD) was

developed by Hoogendoorn and Bovy [36] to account for

heterogeneity among vehicle classes. The presence of dif-

ferent user-classes results in the asymmetric slow-down

Fig. 3 Classification of car-following and lane-changing models
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process of fast moving vehicles, which means that the user-

classes that are relatively faster catch up with the vehicles

of slower user-classes. Similarly, a multi-lane, multi-class

phase-space density (MLMC-PSD) model for lane based

heterogeneous traffic with multiple lanes was also proposed

by the same authors. The interactions between fast and

slow moving vehicles along with the possibility of a lane

change were captured by this model. In this model, two

terms of interaction, passive when viewed from the

standpoint of blocking vehicle, and active when viewed

from the standpoint of blocked vehicle were incorporated.

For each user class in a specific lane at a particular instant

driving with a certain velocity and aiming for a higher

velocity, the phase-space density was defined. A gas-ki-

netic model specific to multilane traffic flows was devel-

oped by Helbing [28] also. Although lane-changing is

explicitly considered, the approach was similar to that of

Paveri-Fontana [66]. Velocity diffusion term, lane-chang-

ing term and rate of vehicles entering and leaving the

roadway were considered additionally in this model in

contrast to that of Paveri-Fontana [66]. A comprehensive

list of major mesoscopic models developed for homoge-

neous and heterogeneous traffic is presented in Table 3.

Various problems arise with the existing mesoscopic

models when applied to mixed traffic flow modeling. The

linear measures of density that take into account only the

longitudinal headways, for calculating the Phase-Space-

Density are insufficient. Also, different vehicle classes in

mixed traffic streams have wide variations in their speeds.

For instance, at high densities, slow moving vehicles

obstruct the flow of all other fast moving classes.

Discussion

With each approach having its own merits and demerits,

there is no definitive superiority of one over the others.

When the available model building time and the hoarded

resources are too limited for developing a microscopic

model, it is suggested that macro- or meso-scopic models

be used. However, it is difficult to resist the conclusion

that, the twenty-first century known for its technology and

resources enables the modelers to go as microscopic as

possible, even to a nanoscopic level, if it may be said so, in

analyzing and modeling any system. Moreover,

microscopic approach seems to be a viable option in

modeling mixed traffic systems for the following reasons.

(a) Quite often, researchers made simplifying assump-

tions while developing macro- and meso-scopic

models like the homogeneity of vehicle classes and

drivers. Microscopic approach, on the other hand is

viable to model the individual driver behavior and

vehicular movements. Thus, the assumptions of

homogeneity of vehicle classes and drivers can be

relaxed.

(b) Even the multi-class macro- and meso-scopic mod-

els are unsuitable to represent mixed traffic flows as

the interactions among different vehicle classes are

not modeled explicitly and predicted densities are

based only on longitudinal interactions. Furthermore,

the dependency of driving behavior on surrounding

traffic conditions may not be described by these

models. On the other hand, major advantage of

microscopic approach in the context of mixed traffic

flow modeling is in its ability to capture the

interactions of different vehicle types, the effect of

surrounding traffic characteristics on driving behav-

ior and, to model the time varying dynamics of

traffic streams depending on individual driver

behaviors.

Though microscopic modeling is a better approach for

describing mixed traffic systems, it requires more intensive

and detailed data to understand the behaviors exhibited by

individual drivers under various traffic conditions and to

develop efficient behavioral models.

Data for Driver Behavioral Analysis and Modeling

The performance of a microscopic model highly depends

on the accuracy of data obtained. With data being such a

necessity, it is hard to fathom that the availability and

standardization of this is not in a stage as it should be,

especially for conducting mixed traffic driver behavioral

studies. The major reason behind this would be the lack of

proper understanding of how drivers behave in mixed

traffic conditions. Hence, different behaviors exhibited by

drivers while maneuvering in mixed traffic are explained

Table 3 Major existing

mesoscopic models for

homogeneous and

heterogeneous traffic

No. Homogeneous models Heterogeneous models

1 Reduced gas-kinetic models [70] Multi-lane gas kinetic model [28]

2 Improved gas-kinetic model [66] Multi-lane multi-class model [35]

3 Cluster models [4] Multi-class gas kinetic model [36]

4 Headway distribution models [34]
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first. Subsequently, the traffic related data realized by dif-

ferent researchers to develop behavioral models are

reviewed. Different data collection methods and extraction

tools available in the literature are discussed next. Finally,

the improvements or the need to develop a novel data

extraction tool is highlighted.

Driver Behaviors in Mixed Traffic

As discussed earlier, presence of different vehicle types

and weak lane discipline are the major features that char-

acterize mixed traffic. It is commonly observed that due to

weak lane discipline, drivers maneuvering in mixed traffic

streams exhibit some peculiar patterns such as maintaining

shorter headways, tailgating, swerving, and filtering

(Fig. 4).

Drivers in mixed traffic are likely to maintain shorter

following distances compared to the drivers in lane-based

conditions. This is because; drivers in mixed traffic have

the option of tailgating a leader vehicle by aligning to one

of its lateral edges. This behavior may shorten the safety

gap. As and when the drivers recognize the possibility of

colliding with a leader vehicle, they swerve off from the

current position. This swerving or weaving behavior of

drivers’ gives rise to integrated longitudinal and lateral

movements. While drivers weave in and out of the traffic, it

seems that they form virtual lanes for themselves to filter

off through the clearances between slow moving vehicles.

The peculiar driving patterns described above can be

modeled by collecting empirical data from real traffic

streams. Factors influencing driver behavior, methods of

data collection and tools available for data extraction are

discussed here.

Factors Influencing Driver Behavior

One of the major challenges in driver behavioral modeling

lies in identifying the factors that describe the typical

driving behaviors and to overcome the difficulties when

they are to be incorporated in the corresponding behavioral

models. Different factors that affect drivers’ behaviors can

be classified as individual and circumstantial factors. The

Fig. 4 Typical driving patterns observed in mixed traffic conditions
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former are ‘unvarying’ attributes of a driver and vehicle,

such as age and gender, education, physiological charac-

teristics like reaction time and impatience levels, aggres-

siveness or risk-taking propensity, cognitive or managerial

skills like fore-seeing and intellectuality, vehicle charac-

teristics like the size of a vehicle, and vehicular perfor-

mance attributes like engine power and maneuverability.

The circumstantial factors vary spatio-temporally which

depend on the traffic state surrounding a driver. They can

be either associated to a specific driver or the surroundings

in which the vehicle is driven [68]. Important circum-

stantial factors are weather, visibility, noise level, network

characteristics like road type, number of lanes, access type

and grade, traffic laws with respect to limiting speeds,

presence of video-cameras, traffic signs, traffic markings,

traffic signals and finally the traffic stream characteristics

and their dynamic properties like congestion level, type,

speed and acceleration of surrounding vehicles.

It is quite possible that some overlap or even a high

correlation might exist among some of the above listed

factors. The accurate and precise interrelationship between

these factors and their influence on driver behavior is not

fully or well understood. This reality, along with the issue

of enormous number of factors to be incorporated, may

have caused the traffic modelers [22, 23, 31] to rely on

simplifying assumptions while modeling the driver

behavior. Main assumptions adopted in developing driver

behavioral models are:

(a) Rules governing the safety aspect are followed by

drivers so that the accident scenarios need not be

created.

(b) The time taken by the drivers to perceive the need to

reduce their speed and react by braking determines

the distance maintained by the follower with the

leader.

(c) The stimulus which is a function of velocity

difference with respect to the lead vehicle and a

sensitivity parameter in terms of the spacing deter-

mine the drivers’ response.

(d) Drivers in car-following regime react only to the

vehicle in front.

(e) While changing lanes, drivers respond only to

vehicles in their immediate vicinity.

Since no sole model can take into consideration all the

aforementioned exogenous factors in a comprehensive

manner, the assumptions discussed above lessen the num-

ber of parameters to be regarded while building a model

and thus simplifies the task of calibration. However, the

traffic modelers are always confronted with challenge of

using adequate number of parameters to precisely describe

the driving behaviors while still giving due consideration to

keep the model sensible in the aspects of implementation

and calibration efforts. Ranney [68] summed up the sig-

nificant factors used in the currently available car-follow-

ing behavioral models. They are: time or distance headway,

relative velocity with respect to the leader vehicle, extent to

which the following vehicle tracks the variations in

velocity of the leading vehicle, speed of the traffic stream,

the time for which a vehicle sustains in a particular driving

state, whether car-following is preferred or obliged and

finally, the road curvature. The effect of first three factors

was reported pragmatically, while limited practical studies

were performed to test the influence of the other four

factors [69, 80]. Moridpour et al. [60] summed up the

significant factors included in the existing lane-changing

models. They are: front and rear space gaps in the current,

target and alternative lanes, velocities of the lane changed

vehicle, and density in the current, target and alternative

lanes. Summing up, factors that influence the driving

behavior are mainly related to traffic characteristics and

their dynamics in the immediate neighborhood. These

traffic characteristics can be acquired by obtaining trajec-

tories of vehicles traversing in a stream. Various data

collection methods used for obtaining trajectories of vehi-

cles are discussed here.

Data Collection

Trajectory data of vehicles can be obtained either by

floating-car method or video recording method. While the

former employs vehicles equipped with sensors to measure

movements and interactions of targeted vehicles, the latter

uses video cameras fixed at elevated positions to record the

vehicular movements. The advantages and disadvantages

of these two methods are reviewed here to ascertain their

suitability in obtaining trajectory data.

Floating-car Method

Compared to video recording method, data processing is

simpler in floating car method [45]. Video recording can

obtain a sequence of still images for which a time-con-

suming procedure has to be employed to get the required

parameters, whereas the floating-car method can directly

collect useful parameters depending on the sensors

employed. Another advantage of this method is, the

instrumented car can be equipped with a wide range of

sensors, including camcorders. Despite these merits, this

method has some limitations. Data can be collected only

from a limited number of instrumented vehicles. Drivers

under surveillance could behave differently than usual.

Data collection ability of this method depends on the type

of sensor fitted on instrumented vehicle as each sensor can

capture only certain type of information. Thus, many sen-

sors have to be employed to get all the required traffic
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related information. This makes the whole data collection

process expensive. Thus, many traffic modelers use video

recording method to collect traffic data.

Video-Recording Method

Trajectories and size of all vehicles can be recorded

simultaneously using video recording method. Video foo-

tage can be reviewed and examined repeatedly if neces-

sary, to guarantee the quality of data extracted. In addition,

it is an unintrusive and naturalistic method which ensures

capturing the natural driving behavior. The data collected

are not affected by the presence of researchers. However,

extracting trajectory data from the video footage is an

extremely labor-intensive process. According to Taylor and

Young [77], the extraction process can take up to six times

as long as the real time recording. Even this seems to be an

underestimate. Ahmed [1] reported that an hour of video

footage requires 1800 person-hours to process. It is also

understood that the quantum of work depends on the types

of data required and traffic conditions. Another disadvan-

tage of this method is that only a limited length of survey

stretch, around 200 m [33] to 400 m [73] can be recorded

depending on the resolution of images and field of view of

the camera. The requirement of an elevated position is also

a limitation of this method.

When evaluating different data collection methods,

accuracy of the data acquired is an important issue. How-

ever, it is difficult to compare the accuracy of data obtained

by the above discussed methods. The reason being, accu-

racy of data collected by floating-car method depends on

the equipment used. Therefore, comparison with respect to

their abilities in obtaining trajectory data of all vehicles

simultaneously is made here.

Comparison of Data Collection Methods

With floating-car method, the types of data that can be

collected depend on the ability of the sensors fitted on the

instrumented vehicle. An extra data type will need an

additional sensor, which means, it is difficult and expensive

to obtain traffic characteristics required for driver behav-

ioral studies. For example, detecting trajectories of all

vehicles in the vicinity of a subject vehicle. On the other

hand, the strength of video recording method lies in

recording everything that happens in the traffic stream at

any given point of time and space. This means, movements

of all vehicles can be captured simultaneously. Moreover,

video cameras are comparatively simple and affordable.

Therefore, video recording method seems to be suitable to

obtain the data required for developing driver behavioral

models. However, accuracy of this method depends on

pixel resolution of video images. Accordingly, the trade-off

between pixel resolution and field of view has to be con-

sidered. For example, a telephoto image provides a high

resolution but has a limited survey area whereas a wide

angle image accommodates more area but has a limited

resolution. Therefore, a high definition camera with a large

focal length factor would be able to provide good quality

data. Different extents of accuracy, ranging from 0.3 to

1.3 m have been reported in the literature [1, 27, 32, 38,

42]. If data accuracy can reach such a standard, it should be

sufficient for developing driver behavioral models. Unlike

floating-car method, the video recording method needs an

efficient data extraction tool to obtain the trajectories of

vehicles.

Data Extraction Tools

Trajectories of vehicles from video images can be extracted

either manually or by using an automatic image processing

technique. Although an image processing software can

save lot of time and cost, this technique for detecting

vehicles which are mutually overlapping (occlusion) in the

video images is still under development. Meanwhile, some

semi-automated trajectory extraction tools like Autoscope

[58] and VEVID [85] were developed. However, these

tools may not be suitable for extracting trajectories of

vehicles in mixed traffic conditions due to the non-lane

based movement behavior of drivers’. TRAZER [54] is the

only available tool for trajectory extraction in mixed traffic

conditions till date. However, its accuracy is less, even in

providing the macroscopic parameters. Another setback of

this tool is the length (only 50 m) for which a vehicle can

be tracked. Such a short tracking length would not serve

the purpose of obtaining data required for driver behavior

modeling. Hence, it may be inferred that an efficient tra-

jectory extraction tool is still a major challenge. Moreover,

it appears that fully automated data extraction tool may not

serve the purpose in mixed traffic conditions. The major

reason behind this supposition is, wide variations in

physical size of vehicles and non-lane based driving

behavior aggravating the problem of occlusion. Also, the

inability of present day fully automated extraction tools to

provide trajectories of vehicles for a longer length and

duration lead us to this conjecture.

Discussion

The factors that influence drivers’ perception and decision

making are mainly related to traffic characteristics and

dynamics in their immediate neighborhood. These traffic

characteristics can be acquired by obtaining trajectories of

all vehicles simultaneously. For obtaining the trajectory

data, video recording method seems to be a viable option

compared to floating-car method because of its monetary
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advantages and its ability to provide naturalistic driving

behavior data. However, accuracy of this method depends

on good video resolution which can be achieved by using a

high definition camera. Moreover, extracting data from

video footage is an extremely labor-intensive process.

Though fully automated data extraction tools can save

considerable time and cost, it appears that wide variations

in the physical size of vehicles and non-lane based move-

ment behavior of drivers’ in mixed traffic conditions are

the major hurdles in developing one of its kind. Hence,

developing a semi-automated traffic data extraction tool

would be a better option. The objective behind under-

standing data needs and reviewing various data extraction

tools was to arrive at a solution to obtain good quality

trajectory data by means of which efficient driver behav-

ioral models can be developed.

Driver Behavioral Models

Often times, the behavioral models proposed to describe

mixed traffic conditions stemmed out of the basic princi-

ples employed in development of homogeneous traffic

models. Therefore, it is worthwhile to understand the

undergirding principles of lane based driver behavioral

models to develop comprehensive models applicable for

mixed traffic conditions also. Fundamental driver behav-

iors can be modeled using two behavioral models, car-

following and lane changing. Car-following is the process

by which a driver trails another driver in close vicinity.

Lane-changing is the process that describes how drivers

change a lane. These two fundamental behavioral models

are discussed here, and their strengths and weaknesses in

describing the driver behaviors observed in mixed traffic

conditions are identified.

Car-following

Several car-following models found in the literature can be

classified into three broad categories, the stimulus response

models, collision avoidance models and psychophysical

models.

Stimulus Response Models

The models which describe the response of drivers to

various stimuli such as variations in distance and speeds

relative to the leader vehicle considering a fixed reaction

time belong to the category of stimulus response models.

These models are pertinent to fairly congested traffic flows

where overtaking possibilities are small and drivers are

forced to follow the vehicle in front. Drivers do not want

the gap in front of them to become too large so that other

drivers can enter it. At the same time, the drivers are

generally inclined to keep a safe distance. A series of

studies conducted at the General Motors research lab by

Chandler et al. [12], Gazis et al. [22] lead to the develop-

ment of one of the most popular models named the General

Motors (GM) nonlinear model or sometimes referred as

GHR (Gazis–Herman–Rothery) models. This model is

based on the intuitive hypothesis that a driver’s accelera-

tion is a function of relative speed and spacing. Though

GM models are capable of describing the behavior of dri-

vers’ more realistically, the following limitations may

make it unsuitable for modeling the mixed traffic flows.

(a) It assumes that the stimulus as well as the distance

headway can be perceived precisely and that the

driver can tune the response precisely [10].

(b) Interaction between longitudinal headway and lateral

position is completely ignored. Also, some behav-

ioral patterns of mixed traffic drivers like oblique

following and maintaining a shorter headway when

aligning to one edge of the front vehicle may not be

described.

(c) Considering the freedom of lateral movements that

drivers have in mixed traffic, it is uncertain whether

these models can efficiently describe the swerving

and filtering phenomena.

Collision Avoidance Models

The underlying assumption of these models is, drivers

maintain a safe distance with the vehicle in front and

adapt their speeds to ensure safe stopping to avoid rear-

end collisions [23, 43]. Such models are developed based

on fundamental equations of motion. However, they are

criticized for their inability to handle properly, the reac-

tion of a following driver to unexpected movements of

preceding vehicles. For example, it is easy to cause a rear-

end collision when the preceding vehicle brakes suddenly.

To overcome this limitation, Gipps [23] developed a

model by introducing an extra safety reaction time and

safety headway margin. Gipps model was employed in

some traffic simulation packages like MULTSIM [25];

SIGSIM [72]; SUMO [44] and AIMSUN [2]. In addition

to describing the longitudinal movement behavior suc-

cessfully, these models can be adapted to explain the

lateral movement behavior also. Gunay [26] tried to

integrate the lateral offset of the following vehicle into

Gipps model. This study was the first of its kind to discuss

two-dimensional movement of vehicles. The merits of

collision avoidance models in describing the mixed traffic

systems are:
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(a) The collision avoidance principle tends to be

adopted by most drivers’ while traversing in mixed

traffic.

(b) Considering the assumption on which this model is

developed, the tailgating behavior of drivers in

mixed traffic can be described.

(c) It is also easy to modify and incorporate the vehicle-

type dependency factor to address the issue of

vehicle-type dependent following behavior of mixed

traffic drivers.

Psychophysical Models

The basic assumption behind these models is, drivers

control their acceleration by perceiving relative speed

according to the change in visual angle of preceding

vehicle and keep their safety distance by setting a thresh-

old. This concept was first introduced by Michaels [57] and

later developed by Leutzbach and Wiedemann [46]. The

following vehicles may drift around a spacing-based

threshold as drivers have difficulties in detecting the subtle

change of the spacing headway. Thus, this model was able

to represent the phenomenon of oscillation or ‘following

spiral’ which was observed in many studies [6]. This model

was employed in some traffic simulation packages like

PARAMICS [21] and VISSIM [20]. However, the param-

eters of these models have not yet been calibrated empir-

ically. Most of the existing studies adopt the required

perceptual thresholds arbitrarily derived from human fac-

tors literature [79]. Till date studies could either prove or

disprove the validity of this model [5]. When applied to

mixed traffic flow modeling, challenges faced by these

models are:

(a) Whether drivers in mixed traffic exhibit the oscil-

lating phenomenon? Often times, it is observed that

the drivers make quick lateral movements to avoid

collisions by crossing the deceleration perceptual

threshold instead of applying brakes.

(b) Aligning to one edge of the preceding vehicle could

be a more comfortable lateral position for a driver in

mixed traffic conditions. Thus, making a lateral

movement is more likely to be the option of drivers

than decelerating.

Of various car-following models reviewed, collision

avoidance based model seems to be appropriate for mod-

eling the longitudinal movement behavior of drivers’ in

mixed traffic conditions. Collision avoidance principle

tends to be adopted by most drivers while traversing in

mixed traffic streams. However, vehicle-type dependency

factor should be incorporated into these models to capture

the longitudinal movement behavior of mixed traffic

drivers. Lane-changing is another fundamental behavior of

drivers’ to be described, for which different models are

available in the literature.

Lane-changing

Lane-changing models describe the lateral movement

behavior of drivers. Such behavior consists of two steps,

the lane selection process and the execution process. These

two steps are modeled by lane selection models and gap

acceptance models respectively.

Lane Selection Models

According to the technique employed, lane selection

models can broadly be divided into three categories;

stimulus based deterministic rule models, fuzzy logic

models and random utility models. Stimulus based deter-

ministic rule models employ a set of rules to describe the

lateral selection behavior. For example, Sparmann [75]

linked the lane selection behavior to the locations of

obstructions which were described by psychophysical

thresholds. Gipps [24] also developed a rule-based lane-

changing model in which the drivers select a lane accord-

ing to prioritized rules. Fuzzy logic rules were first used by

Oketch [64] to describe the lane selection behavior. A

similar model was developed by Hidas [31]. Wei et al. [83]

also conducted an empirical study and developed a set of

fuzzy rules to describe the lane selection behavior in urban

arterials. Random utility models were developed by Yang

[86], Ahmed [1] and Toledo [78] for describing the whole

lane changing process. In their studies, lane-changing

behavior was considered as a sequence of decision-making

processes in which three basic steps were involved, deci-

sion for changing the current lane, choice of the target lane

and gap acceptance in the target lane. They adopted dis-

crete choice modeling framework to estimate the model

parameters. Various issues which are worthwhile to be

noted to facilitate the development of lane selection models

in mixed traffic conditions are:

(a) Rule-based models are easy to understand and adjust

for practical applications. However, there is no solid

framework for calibrating the model parameters and

it is difficult to capture the interactions between the

rules. However, interaction between different rules

plays a very important role in capturing the mixed

traffic drivers’ lateral movement behavior.

(b) Although fuzzy logic models are capable of captur-

ing the humans’ imprecise perception during lane

changing, difficulties arise while abstracting the

fuzzy rules. These problems aggravate in mixed

traffic conditions as numerous fuzzy rules have to be
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abstracted if all peculiar behaviors exhibited by

drivers during their lateral movements are to be

modeled.

(c) As lane selection process is a kind of discrete choice

based on the competition between utilities of driving

on different lanes, random utility modeling may be

suitable for its description. In addition, a neat

approach for model calibration is also provided by

this technique. Nevertheless, the model specification

and calibration process for developing random utility

models is resource-demanding.

In a nutshell, random utility based models seem appro-

priate for capturing the lateral movement behavior of

mixed traffic drivers as vehicle-type dependent driving

behavior can be incorporated into this modeling framework

without much difficulty. Also, it provides an efficient

approach for calibrating the models. However, before

applying this modeling technique, the suitability of tradi-

tional lane change definition in mixed traffic conditions

should be verified as drivers in these conditions perform

non-lane based movements. After selecting a lane, drivers

search for an acceptable gap to execute their lateral

movements.

Gap-acceptance Models

The space that exists between the rear end of the leader

vehicle and the front end of the following vehicle in the

target lane is defined as gap. The total available gap is

composed of lead and a lag gap. The probability of either

accepting or rejecting a gap of particular size under a

specific set of prevailing traffic conditions is calculated by

the gap acceptance models. The minimum gap that a driver

is ready to accept is defined as critical gap. The type of

maneuver and the characteristics of drivers considerably

govern the size of critical gap. Basic gap acceptance

models were formulated as a binary choice problem. The

assumption behind these models is, drivers accept longi-

tudinal gaps available in the target lane which are at least

equal to or greater than the critical gap. Herman and Weiss

[30] assumed the critical gap to be exponentially dis-

tributed. Drew et al. [18] assumed a lognormal distribution.

Miller [59] assumed a normal distribution. Daganzo [14]

developed a multinomial probit model considering the

variations of both critical gaps and drivers. Mahmassani

and Sheffi [52] found that the number of rejected gaps had

a significant impact on critical gaps due to impatient

behavior of drivers. Deceleration rate of lag vehicle was

used by Gipps [24] as the threshold for gap acceptance.

This threshold was calculated depending on the braking

deceleration that a lag vehicle had to apply to react to the

presence of new preceding vehicle. Madanat et al. [51]

used the queuing time to investigate the effects of impa-

tience on gap acceptance behavior. Important issues to be

noted while applying traditional gap acceptance models in

mixed traffic conditions are:

(a) Requirements of the lateral width of a gap are

different for drivers in mixed traffic conditions. The

lateral width of a gap needed for a car driver is

generally equal to width of the lane. However, the

lateral width of a gap that a small sized vehicle

driver requires is a narrower one.

(b) Gap acceptance cannot be dealt as a separate step in

modeling lateral movement behavior of drivers in

mixed traffic conditions as they tend to perceive both

speed gain and space gap simultaneously, before

making a lane change decision.

Discussion

To summarize, the lane-changing process comprises many

latent tasks of drivers’ and hence is more complex than car-

following behavior. However, most existing models pro-

posed to capture this behavior are strictly rule-based, where

it is assumed that drivers always follow a sequence of if–

then rules prearranged at different decision-making levels.

Moreover, they assume that drivers are both consistent and

homogeneous. These assumptions are not realistic, espe-

cially in mixed traffic conditions. Mixed traffic drivers

exploit their maneuvering capabilities depending on the

type of vehicle and take advantage of weak lane discipline.

Apart from these, the logical relationships that cover the

whole of driving process, that is, the effect of lane

changing on longitudinal acceleration and vice versa

received almost no attention. However, in mixed traffic

conditions, there exists a huge interaction between longi-

tudinal and lateral movement behaviors as drivers always

look for simultaneous possible lateral movements while

progressing longitudinally. This gives rise to integrated

driving behavior.

Integrated Driving Behavior Models

As discussed, car-following and lane-changing are the two

fundamental driving behavioral models required for traffic

microsimulation and considerable efforts have been put in

developing them. Conventionally, car-following and lane-

changing were alienated into independent models. How-

ever, drivers in reality make integrated car-following and

lane-changing movements. These integrated movements

are more predominant in mixed traffic conditions as drivers
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look for opportunities continuously to filter off through the

gaps available, but at the same time maintain a safe dis-

tance with the vehicle they are following. Thus, during the

past decade, there was an inclination towards bringing the

car-following and lane-changing models into one inte-

grated mechanism. In fact, many researchers aspire to put

together all driver behavior components into one scheme.

However, a general model tailored to any situation seems

still not, perhaps never, available. Different approaches

generally adopted in the existing simulators and the pos-

sibilities of employing some advanced theories to model

the integrated driving behavior in mixed traffic conditions

are discussed here.

Rule Based Models

Most of the existing simulators (VISSIM, PARAMICS,

AIMSUN) employ rule based sequential/hierarchal pro-

cess. The following example illustrates how a lane-change

maneuver gets initiated within a rule based interaction

framework.

IF my present speed is less than the preferred speed

and there is a car in the front that is blocking my

further acceleration

and there is sufficient gap in the left lane

THEN start a lane-change for passing

After the initiation of a lane-change, the driver executes

it in a single time-step. However, it is a well known fact

that lane-change execution takes considerable time to get

into the desired lane as illustrated in Fig. 5. In this process,

the lane changing decision does have an effect on longi-

tudinal acceleration. Nevertheless, this cannot indeed be

captured by a rule based model.

Major drawbacks of the existing traffic microsimulation

models are:

(a) They employ car-following and lane changing

algorithms in isolation without considering the effect

of one on the other. This creates potentially incorrect

situations. For example, accelerations are predicted

separately for longitudinal and lateral driving move-

ments. This generates vehicles that leave more-than -

enough headway when following another vehicle,

nevertheless will cut-off a neighboring vehicle in the

adjacent lane, accepting a minimal gap.

(b) They do not consider how a driver scans the

roadway, identifies stimuli, and formulates a reaction

in an integrated manner.

To overcome these drawbacks, researchers explored

various concepts available in field theory, social force

theory and dynamical systems theory.

Field Theory

The field theory originated on the heels of social behavioral

theory which belongs to the discipline of psychology. This

theory was first proposed by Lewin [47]. It was developed

initially for replicating the societal situations, nevertheless

made a noteworthy contribution to the fields of community

science, psychology, public psychology, organizational

progress, process managing, and transformation manage-

ment. Field theory is described as a method for investi-

gating causal relationships. It takes into consideration two

types of forces, those that let movements towards a goal

(helping forces), or those that obstruct the movements

towards a goal (hindering forces). These forces are brought

about by exterior stimuli felt by the agent. This theory

shows the transformation in an individual’s life sphere,

Fig. 5 Integrated driving behavior
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depending on how the individual personalizes external

stimuli. It also posits that the behavior must be a derivative

of the totality of affiliated facts and these affiliated facts

make up a dynamic field. Therefore, the condition of any

element of the field depends on every other element of it.

Chakroborty et al. [9], Berthaume et al. [3] explored the

possibility of applying field theory to construct a concep-

tual framework for describing the driver movements. Each

driver or an individual has a life space, or field, that exists

around them. In every individual’s life space, there exist

the external stimuli. Each stimulus has a different set of

forces allied with it. Forces can be multiple and they can

have either an attracting or a repelling nature. The way in

which an agent will behave or react is dictated by the

cumulative effect of these forces. The perception bubble

and the forces around a vehicle i are depicted in Fig. 6.

From the foregoing discussions, it can be understood

that, a microscopic model developed using the field theory

could potentially find application in addressing prominent

issues like integrated driving behaviors. However, before

any such model is adopted, in-depth analyses and calibra-

tions must be performed. Also, such models should be

verified and validated rigorously. Analogous to field the-

ory, social force theory was also adopted by researchers to

model the driving behavior.

Social Force Theory

Helbing and Molnar [29] were the first to introduce the

social force concept to explain the behavior of pedestrians.

Social forces include the forces that make a pedestrian,

change direction and speed in order to reach a specific

target. These forces are classified into three groups, driving

forces, repulsive forces and attractive forces. The driving

force helps pedestrians to move in a desired direction. The

repulsive forces from other vehicles or objects help the

pedestrian to avoid collisions with other pedestrians or

static obstacles. The attractive forces from other people or

objects help the pedestrian move towards attractive objects.

Later, this concept was extended to analyze the movement

of vehicle drivers. Nguyen and Hanaoka [63] developed a

social force model to describe non-lane based movements

of motorbike drivers. Huang et al. [41] also proposed a

social force model to simulate the behavior of vehicles on a

two-dimensional space. This model was used not only for

motorbikes, but also for cars. Though social force models

make it possible to describe driver movements in both

longitudinal and lateral directions simultaneously, it is

complex in terms of huge number of parameters needed to

calculate the components of each force. These parameters

increasingly multiply when applied for vehicle-type

dependent driver behavior modeling. Hence, researchers

started looking at simple and effective dynamical systems

which can comprehensively represent the integrated driv-

ing behavior.

Dynamical System Approach

Scores of dynamical systems exist in various fields. The

simplest of them is the spring-mass-damper system. Yan

and Long [87] were the first to develop a spring-mass

analogy based car-following model. Their approach uses

the concepts involved in the dynamics of spring-mass

system to describe the characteristics of acceleration or

deceleration of a follower vehicle under the known con-

dition of the leader vehicle. When the distance between the

leader vehicle and the follower vehicle is greater than the

equilibrium length of the spring, acceleration of a driver is

triggered. On the contrary, when the distance is less than

the equilibrium length of the spring, deceleration of a

driver is triggered. Following this, Wang et al. [82]

developed a spring-mass analogy based model to capture

the starting and stopping processes of drivers. However,

both these researchers did not consider the lateral interac-

tion component in their model formulation.

Discussion

When applied to mixed traffic, many rules and parameters

have to be incorporated if rule-based models or, the models

developed using the concepts of field and social force

theories are adopted. On the other hand, spring-mass-

damper dynamical system analogy based approach offers

the advantage of using a simple linear equation with min-

imal number of parameters. To implement and assess the

capabilities of driver behavioral models in representing a

traffic system on a larger scale, a simulation framework is

necessary.

Fig. 6 Forces experienced by a driver [3]
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Simulation Framework

Simulation frameworks can be either event based or time

based. Only when an event occurs, the status and location

of each unit of traffic are updated in the case of event based

simulation. The condition of each vehicle is tracked at

every point of time and accordingly, the required statistics

are collected in the case of time-based simulation. Almost

all the existing traffic simulation models (VISSIM, AIM-

SUN, SUMO) are time based, because the driver behav-

ioral models such as car-following and lane-changing

require updating of driver positions at small time steps. The

longitudinal movement (car-following) models existing in

these simulators are space continuous. However, the lateral

movement (lane-changing) models are discrete in their

nature. Lateral movement within a lane is not possible with

these models. If mixed traffic streams are simulated using

such models, the lower speed vehicles quickly form a

moving bottleneck on the road, which is very rarely the

case, in reality. In general, fast moving vehicles overtake

slow moving vehicles at the earliest opportunity by making

lateral movements within a lane. A few frameworks

existing in the literature which make the space discrete

lane-changing models suitable for capturing lateral move-

ments even within the lanes are discussed here.

Discrete Cellular Automata (CA) Framework

Nagel and Schreckenberg [61] proposed the first CA

model. In their model, the space on the road which is two

dimensional is divided into a lattice of similar sized cells,

each 7.5 m long, or approximately the length of one car.

Using the four predefined routes and the four regimes

which include acceleration, deceleration, randomization

and updation, the vehicles move through the cell raster.

The overlapping of cells is not possible and the each cell

can occupy only one vehicle at a time. For this very reason,

the original CA model was not able to represent the mixed

traffic. A few extensions of the original CA model have

been suggested in the literature [11] to make it possible to

include multiple vehicle types. One option for accommo-

dating different types of vehicles is to construct a lattice of

cells that are sized in compliance with the dimensions of

the smallest vehicle and allow the vehicles to occupy more

than one cell. Mallikarjuna and Rao [55] used this

approach to describe mixed traffic conditions. In their

model, the acceleration and deceleration properties of a

vehicle type influence the length and on the other hand, the

observed lateral spacing maintained by different vehicle

type drivers’ determines the width of a cell. Another CA

model was developed by Vasic and Ruskin [81] to repre-

sent car and bicycle traffic. In this model, a cell lattice with

suitable cell sizes is created for each type of vehicle.

Depending on the overlap or intersection of more than one

type of vehicular streams, the cells in this model also

overlap. The vehicular movement is then determined by the

encroachment of the leading cells. A cell is encroached if it

is occupied or any of the overlapping cells are occupied. It

was only on narrow roads where the velocity of cars is

affected by the longitudinal distance to the next leading

bicycle, the lateral interaction between bicycles and cars

was considered. The relatively complex lattice of cells

majorly influences the complex interactions. Most exten-

sions proposed to make CA models suitable for mixed

traffic conditions was in terms of cell size to accommodate

different vehicle types. However, when modeling mixed

traffic conditions, not only the size of different vehicle

types is important, but also the microscopic interactions

between these vehicle types. Consider the filtering behavior

for example. In the real world, the path for a vehicle to

filter through is dynamically formed by the lateral clear-

ances between vehicles. A CA model cannot mimic this

dynamic behavior. Thus, it is possible to result in mis-

estimating the microscopic behaviors of drivers observed

in mixed traffic conditions. To overcome these difficulties,

a continuous lateral movement model was proposed by

Hossain and McDonald [40].

Continuous Framework

Hossain and McDonald [40] used the continuous coordi-

nate referencing technique. With coordinate based refer-

encing, it is possible to represent all the vehicles in a single

road link in a single list. Also, each vehicle can be tracked

using the co-ordinates of one of its corners. The lateral

movement model directs the movement of vehicles by first

examining whether there is a desire or any necessity for

making a lateral movement. If the vehicle has a wish or the

existing conditions necessitate a lateral movement, the

model determines the width required to move laterally and

also searches for any vehicle that may have to follow it

after that lateral movement is made. The vehicle under

consideration is allowed to move laterally only if the pre-

dicted lateral position is ‘safe’ considering the speed and

location of the new follower. The computed new lateral

position of the vehicle is also stored in the vehicle record.

The major challenge faced by this technique is, identifi-

cation of the surrounding influential vehicles. To find the

influencing vehicles, the whole road space available in the

lateral direction is searched for, which increases the com-

putational time significantly. Thus, a semi discrete

approach, where a lane is divided into virtual lanes and the

vehicles are tracked along these lanes instead of coordi-

nates was adopted by some researchers.
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Semi-discrete Framework

Falkenberg [19] proposed a model which is currently

employed in VISSIM. In this model, the lateral position

chosen by the driver in such a way that he has the maxi-

mum longitudinal time-to-collision. Given that two drivers

stay on the same path maintaining their same speed, the

time remaining until they collide with one another is

defined as time-to-collision. To find this position, the

available road width is divided by the drivers into virtual

lanes [64]. Taking into account some safe lateral distance,

the drivers construct these virtual lanes from the left and

right sides of the preceding vehicles on the roadway. The

‘type’ of both the vehicles and the ‘speed’ of the overtaking

vehicle govern the lateral safety distance that a driver

wants to keep while passing another vehicle. It is assumed

that safety distance varies linearly with the speed. Taking

into account the type of the vehicle and the longitudinal

speed, a driver applies a lateral speed to move to a desired

position from his current position. Thus, it seems possible

to model the lateral movements within a lane using this

approach. Also, the required computational power is rela-

tively low compared to a continuous framework as the

search for surrounding influential vehicles is by virtual lane

rather than by the whole road width. However, the time-to-

collision principle does not describe the microscopic

details of traffic flow (overtaking and merging) sufficiently

accurate from a single driver’s perspective.

Discussion

To describe the driver behaviors accurately in mixed

traffic conditions, a behavioral model should be able to

handle two situations not included in traditional car-fol-

lowing and lane-changing models: Drivers should be able

to choose any lateral position within a lane and as far as

the longitudinal behavior is concerned, it should be able

to handle multiple leaders in the same lane. Discrete CA

approach lacks intuitive appeal and its rules are not easily

interpretable from the microscopic driving-task perspec-

tive to handle these behaviors. Continuous simulation

framework needs high computing power as it adopts

searching the whole road space in the lateral direction for

identifying the surrounding influencing vehicles. Com-

pared to these two approaches, the semi-discrete approach

offers a better framework which is both computationally

efficient (surrounding vehicles search by virtual lanes)

and behaviorally robust (if good behavioral models are

adopted).

Challenges Ahead and Some Research Directions

The goal of studying driver behavior under mixed traffic

conditions is to propose realistic models to enhance the

reliability of micro-simulation models which are being

increasingly used in capacity estimation, congestion miti-

gation, and intelligent traffic operations studies. Specific

directions of research in a comprehensive manner are

presented in Fig. 7 and the major issues are summarized

below:

1. Data requirements: The surrounding environment

variables that describe the subject vehicle and its

relations with the neighboring vehicles, such as the

subject speed, relative speeds and spacing with respect

to the front and rear vehicles and lead and trailing

vehicles in adjacent paths are important to understand

and model the driving behavior. Trajectory data, which

consists of the observations regarding the successive

positions of vehicles at a higher time-resolution

(usually one second or shorter) provides information

on these variables. Thus, trajectory data of vehicles is

of prime importance to carry out any driver behavioral

study.

2. Data collection: A wide range of technologies, such as

aerial video shoots (quad copter), video cameras, GPS

and cellular location information have been used to

obtain the trajectory data. Data collection systems may

be either dynamic (instrumented vehicles) or static

(cameras). Data acquired by instrumented vehicles

may offer the required data without the need to put in

extra efforts for data extraction. However, these data

provide only limited information about the driving

environs. In many cases, only the information regard-

ing the vehicle in front of the subject vehicle is

observed. Therefore, while instrumented vehicles may

seem to be a potential source of rich trajectory

datasets, they are still not capable of providing the

information on the required fundamental variables (e.g.

lateral movement behaviour modeling requires obser-

vation of the vehicles in the immediate neighborhood).

On the other hand, a fixed data collection system after

employing a proper data extraction procedure can

provide information regarding the position of the

vehicle under consideration and its relations with the

surrounding traffic environment. However, most of the

existing datasets only cover short road sections, say

300–400 m long. The driving behaviors, especially

those of lateral movements are to be studied for longer

durations before and after executing them. Also, the

6 Page 16 of 20 Transp. in Dev. Econ. (2016) 2:6

123



effects of other factors like geometry, surface condi-

tions, cannot be studied on driving behaviour if the

section is too short as they remain uniform over the

length. In addition, no information about the drivers’

characteristics and only partial information about the

vehicle type (e.g. length and width) are available. To

overcome these limitations, data should be collected

from considerably longer sections with more variabil-

ity in the vehicular and geometric characteristics.

3. Data extraction: Trajectories of vehicles from video

images can be extracted either manually or by using an

automatic image processing technique. Although an

image processing software can save lot of time and

cost, this technique for detecting vehicles which are

mutually overlapping (occlusion) in the video images

is still under development. However, a fully automated

data extraction tool may not serve the purpose in

mixed traffic conditions. The major reason behind this

supposition is wide variations in physical size of

vehicles and non-lane based driving behavior aggra-

vating the problem of occlusion, thus posing a major

challenge to obtain trajectories for a longer length and

duration. Hence, it may be inferred that an efficient

trajectory extraction tool is still a major challenge.

4. Driving regimes: A number of driving regimes have

been incorporated in the driving behavioural models to

represent drivers’ behaviour under varying situations.

The evolution of acceleration models from simple car

following to multi-regime models has resulted in the

inclusion of free-flow acceleration as well as various

sub-regimes of car following (e.g. acceleration and

deceleration or responsive and non-responsive car
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Fig. 7 Challenges in mixed traffic driver behavioral modeling
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following modes). Lane changing models include

obligatory merging and courtesy yielding in addition

to the traditional mandatory and discretionary lane

changing behaviors. This trend is expected to continue

so as to develop robust models that can represent a

wide-ranging set of behaviors the drivers may exhibit

in the real world. The introduction of many driving

regimes arises the need for the definition of boundaries

with which the behavior in active mode can be

determined. For instance, headway thresholds are used

to find out whether a vehicle is in car following or free-

flow, and the circumstances that trigger mandatory

lane change or obligatory merging are determined

using various zones. However, these thresholds were

often set arbitrarily or calibrated using informal

procedures. Moreover, deterministic values of these

thresholds were used quite often without giving due

consideration to the heterogeneity in vehicle-type and

driver population. Future models should be capable of

not only explaining the behaviors in various regimes,

but also have the capabilities to capture the margins

and changeovers between these regimes. Hence,

enhanced specifications and estimation approaches

that can consider the regime boundaries as random

variables and calibrate their distributions jointly with

the other parameters of the models are very much

necessary.

5. Driver behavioral models: Compared to stimulus–

response and psychophysical car-following behavioral

models, collision avoidance based models seem appro-

priate for describing the longitudinal movement driv-

ing behavior in mixed traffic as most drivers tend to

adopt the principle of collision avoidance while

traversing a traffic stream. However, vehicle-type

dependency factor needs to be incorporated in these

models to describe the vehicle-type dependent driving

behavior observed in mixed traffic conditions. Com-

pared to rule-based and fuzzy-logic based lane-chang-

ing models, random utility models seem appropriate

for describing the lateral movement driving behavior

as the lane selection process is a kind of discrete choice

based on competition between the utilities of driving

on different lanes. However, separate models need to

be developed for each vehicle type to address the issue

of vehicle-type dependent lateral movement driving

behavior observed in mixed traffic conditions.

6. Integrated driving behavior model: Traditionally, car-

following and lane-changing were alienated into

independent models. However, drivers in reality make

integrated car-following and lane-changing move-

ments. These integrated movements are more predom-

inant in mixed traffic conditions as drivers look for

opportunities continuously to filter off through the gaps

available, but at the same time maintain a safe distance

with the vehicle they are following. Thus, during the

past decade, there was a tendency to model car-

following and lane-changing into one integrated

mechanism. In fact, many researchers wish to integrate

all driver behavior modules into one scheme. However,

a general model adapted to any situation seems still

not, possibly never, available. Hence, the possibilities

of developing integrated models using the field theory,

social force theory, and simple mechanics-dynamics

theory could be explored. Of these, mechanics-dynam-

ics theory (for e.g. a spring-mass-damper theory) could

be the most viable option because of the simple

mathematical forms involved in its formulations.
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