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Abstract

Background: Novel analytical tools, which shorten the long and costly development cycles of biopharmaceuticals

are essential. Metabolic flux analysis (MFA) shows great promise in improving our understanding of the metabolism

of cell factories in bioreactors, but currently only provides information post-process using conventional off-line

methods. MFA combined with real time multianalyte process monitoring techniques provides a valuable platform

technology allowing real time insights into metabolic responses of cell factories in bioreactors. This could have a

major impact in the bioprocessing industry, ultimately improving product consistency, productivity and shortening

development cycles.

Results: This is the first investigation using Near Infrared Spectroscopy (NIRS) in situ combined with metabolic flux

modelling which is both a significant challenge and considerable extension of these techniques. We investigated

the feasibility of our approach using the industrial workhorse Pichia pastoris in a simplified model system. A parental

P. pastoris strain (i.e. which does not synthesize recombinant protein) was used to allow definition of distinct

metabolic states focusing solely upon the prediction of intracellular fluxes in central carbon metabolism.

Extracellular fluxes were determined using off-line conventional reference methods and on-line NIR predictions

(calculated by multivariate analysis using the partial least squares algorithm, PLS). The results showed that the

PLS-NIRS models for biomass and glycerol were accurate: correlation coefficients, R2, above 0.90 and the root mean

square error of prediction, RMSEP, of 1.17 and 2.90 g/L, respectively. The analytical quality of the NIR models was

demonstrated by direct comparison with the standard error of the laboratory (SEL), which showed that

performance of the NIR models was suitable for quantifying biomass and glycerol for calculating extracellular

metabolite rates and used as independent inputs for the MFA (RMSEP lower than 1.5 × SEL). Furthermore, the

results for the MFA from both datasets passed consistency tests performed for each steady state, showing that the

precision of on-line NIRS is equivalent to that obtained by the off-line measurements.

Conclusions: The findings of this study show for the first time the potential of NIRS as an input generating for MFA

models, contributing to the optimization of cell factory metabolism in real-time.
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Background
By 2007 the sales of all biopharmaceuticals totalled £60

billion representing 16% of the overall pharmaceutical

industry and it is still growing, including the com-

mercialisation of monoclonal antibodies (mABs) [1].

Biopharmaceuticals are a novel group of drugs which

are revolutionising the treatment of serious causes of

human ill health such as cancers, leukemias and degen-

erative illnesses. They are the most potent, the most com-

plex and the most expensive drugs ever developed. The

cost for biopharmaceuticals development can account for

as much as 30% to 35% of the total cost of bringing a new

drug to the market [2], so any reduction in the length of

the development cycle of biopharmaceuticals could have a

major impact on the overall drug economics. For this to

happen, one of the most important factors is to improve

our understanding of the metabolism of the cell factories

(protein expression systems) during the key upstream step

in the drug manufacturing process, the fermentation or

cell culture step, in order to help ensure consistent drug

quality, potency and half life. Although fermentation tech-

nology has made immense advances in recent years, our

ability to understand and control in real time the metabo-

lism of cell culture systems or microbial fermentations is

still very limited [3].

Metabolic flux analysis (MFA) is considered a central

pillar in modern systems biology for investigating meta-

bolic networks [4]. The classic approach to MFA includes

metabolic balancing (stoichiometric modelling) [5] or
13C-metabolic flux analysis using 13C-labeled substrates

[6]. The application of MFA has been frequently shown to

facilitate improved insights into cellular metabolism, and

thus to enhance or increase production of desired prod-

ucts in both microbial [7-9] and cell culture systems [10]

by identifying, for example, process bottlenecks and de-

signing improved feeding strategies [4]. However, classic

MFA approaches involve conventional off-line analytical

methods (including GS-MS, LC-MS and NMR) or isotope

tracing methods, which makes it complex, costly and time

consuming. It is difficult to envisage such an approach

lending itself to rapid on-line analysis [11]. By contrast,

Goudar and co-authors [12] investigated the use of metab-

olite balancing to generate metabolic models of CHO cell

cultures in quasi-real time. This approach showed much

promise, but a large number of off-line measurements (27)

were still necessary using various analytical methods, with

results obtained post-process, highlighting the need for

combining MFA with real time metabolite information

[13]. If this were feasible, the integration of suitable real

time analytical techniques could raise the utility of MFA

to a new level offering enhanced real time metabolic un-

derstanding, which would really impact on clone selection

capability, cell line development, rapid medium and

process optimization in the development phase at lab

scale, improved scale translation and finally to real time

structured intervention in the metabolism of the cell

factory (real time metabolic control). This would be a

valuable tool in metabolomics and would represent a con-

siderable addition to the toolkit available for industrial

systems biology [14].

The obvious question which arises now is: Which real

time, preferably in situ, techniques could be integrated

into metabolite balancing to achieve this capability? Vibra-

tional spectroscopy, driven by the Food and Drug Admin-

istration (FDA) initiative Process Analytical Technology

(PAT) framework [15], has already shown considerable

promise in the measurement of a range of analytes within

both microbial and animal cell cultures both at-line (rapid

off-line) or on-line, usually in situ [3,16]. Despite the evi-

dent attractions of vibrational spectroscopy, to date these

techniques have not been used in metabolic modelling as

they have been reported to have errors which are too high

to be used in metabolic flux networks [12]. However,

NIRS has a number of significant features which make it

admirably suited to employment in such systems includ-

ing, its non-destructive nature, rapidity of analysis (from a

few seconds up to two minutes for a large scan number),

the lower absorbances in the NIR region, which means it

can be used without sample pre-treatment in matrices

which are both highly absorbing and light scattering such

as the typical fermentation fluid, the ease of sample pres-

entation via steam sterilisable in situ probes and the

potential to predict chemical and physical parameters

from a single spectrum [16-18].

In the present study, we investigate the feasibility of

establishing a robust platform technology for MFA by

using a single probe, an in situ NIRS probe as a monitoring

technique to predict near real-time intracellular metabolic

fluxes in chemostat cultures of a Pichia pastoris strain. We

chose Pichia pastoris, a methylotrophic yeast, as it is cur-

rently one of the most effective and versatile expression

systems used in the biopharmaceutical industry for recom-

binant product production [19,20]. Chemostat cultures

were used to allow a clearer definition of distinct metabolic

states. We focused just on central carbon metabolism of a

parental strain (i.e. that does not synthesize recombinant

protein) to test the validity of our approach in a simplified

model system. The findings of this study represent a sig-

nificant step forward towards real-time metabolic control

of cell factories and establishes a viable platform for using

on-line vibrational spectroscopic measurements as inputs

to MFA models in bioprocessing, replacing the use of off-

line measurements (wet chemistry methods).

Results and discussion
Central carbon metabolism in a chemostat culture for

three glycerol-limited steady state P. pastoris cultures

was analysed using the methods described in (Methods).
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The use of a parental strain of P. pastoris (not producing

recombinant protein) simplified the system to allow the

establishment of a framework for determination of intra-

cellular metabolic fluxes by using NIR as an input-

generating tool for MFA. This experimental system

allowed the unambiguous examination of the link be-

tween changes in cell growth rate (determined by dilu-

tion rate) and the culture response, which would have

been difficult in batch or fed-batch cultures. If the

current study successfully proves that it is feasible to use

such an approach combining real time NIRS measure-

ments with metabolic flux modelling (MFA) in a simpli-

fied model organism, it will then be possible to take this

research to the next level by examining the industrial

relevance of this approach in fed-batch cultures of a pro-

tein secreting Pichia strain.

Dilution rates were varied between 0.05 to 0.15 h-1 in

order to obtain three different states: low, medium and

high dilution rates, designated as A, B and C (Table 1).

The resulting metabolic states of the cells were subse-

quently assessed quantitatively via metabolic flux

analysis with the extracellular metabolites rates calcu-

lated with both off-line measurements (reference) and

on-line NIR predictions (section NIR modelling).

Fermentation data

The dry cell weight, glycerol, dissolved oxygen and dilu-

tion rate for the chemostat culture are shown in Figure 1.

The cell physiology of each steady state was characterized

by analysing the last four data points in each of the

sections marked as A, B and C: low, medium and high

specific growth rates, respectively. The preceding batch

phase lasted approximately 24-27 h at which point the

chemostat culture run was initiated by setting the dilution

rate at 0.05 h-1. An increase of carbon evolution rate

(CER) and oxygen uptake rate (OUR) with dilution rate

(from state A to C) were observed (Table 1), however

biomass yields increased only from state A to B, with

negligible differences between medium and high dilution

rate (state B and C).

NIR modelling

Model development

The raw spectra of the chemostat culture of P. pastoris

(Figure 2a) show changes in the spectral baseline as well

as in the signal intensity, becoming closer to detector

saturation with process time. Any other spectral changes

directly linked to the analytes of interest in these raw

spectra that are relevant for the calibration model are

difficult to visualise and so it is crucial to use appropri-

ate pre-processing techniques. Savitzky-Golay second

derivative and mean centering were applied in the model

development cycle to help remove unimportant baseline

Table 1 Glycerol-limited steady states (States A: low

(0.05 h-1), B: medium (0.10 h-1) and C high (0.15 h-1) dilution

rate) achieved in Pichia pastoris chemostat cultures

A B C

Dilution rate, D (h-1) 0.05 0.10 0.15

CO2 evolution, CER (mmol/L/h) 21.34±0.42 24.82±0.36 30.24±0.44

O2 uptake, OUR (mmol/L/h) 62.80±0.33 68.90±0.36 75.73±0.10

Respiration quotient, RQ 0.33±0.02 0.36±0.01 0.40±0.06

Yield, YX/S (gDCW/gGly) 0.63 0.67 0.67

Figure 1 Growth profile of Pichia pastoris chemostat culture: dilution rate (D), dissolved oxygen (pO2) percentage, dry cell weight

(DCW) and glycerol concentrations over the course of the experiment. States A, B and C: low (0.05 h-1), medium (0.10 h-1) and high (0.15 h-1)

dilution rate, respectively.
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signals from the samples and extract relevant “hidden”

information. In the second derivative data, absorbance

maxima are converted to minima that are enveloped by

positive side lobes [17]. In addition, spectral data band-

width is sharply reduced allowing for resolution of

overlapping peaks, and the baseline differences between

spectra are largely eliminated. After removing the domin-

ant water peaks (1400 and 1900 nm) and the spectral

region above 2000 nm (not usable when using silica fibre

optic probes due to the noise of the fibres having an

adverse effect on the spectra [18]), spectral changes with

process time were identified in the second (1050 – 1650

nm) and first overtone (1450 – 2050 nm) regions. For

biomass, -CH absorption bands were identified in the

1250 –1350 nm region, while for glycerol a broader region

was chosen (1500-1800 nm), which includes the –OH

stretch band and other -CH second overtone bands [21].

As can be seen in Figure 2b it is possible to see the pro-

gress of the fermentation process from the derivatized

spectra, for example in the region of 1500-1800 nm, where

glycerol is absorbing, the most negative peak corresponds

to the batch phase of the process, with process time and

as the glycerol concentration decreases the peak becomes

less negative due to glycerol consumption by the cul-

ture. In order to assess the selected wavelength regions

with respect to the different analytes monitored, aque-

ous solutions of both biomass and glycerol were

scanned [22]. Figure 2c and d show the relevant regions

for biomass and glycerol in aqueous solutions, respect-

ively. The wavelength regions used in the actual PLS

models were broader to include process variations in

the spectral information over a wider wavelength win-

dow resulting in better results.

Once the spectra were pre-processed, it was necessary

to identify the time periods of interest for each analyte.

Due to the very low (limiting) concentration of glycerol

(<1 g/L) and only slight changes in the concentration of

biomass during the continuous phase, models developed

based solely in this phase failed validation and therefore,

the correspondent predictions could not be used for the

metabolic flux analysis (data not shown). Because PLS-

NIRS models are based on the amount of variance

captured during the calibration procedure: the more

changes in the process it includes, the more robust the

models will be. These changes can be: inherent varia-

tions of analyte levels, accumulation profiles, spectral

Figure 2 (a) Raw and (b) Pre-processed (2nd derivative) NIR spectra of Pichia pastoris chemostat cultures c) 2nd derivative spectra of 0

and 30 gL-1 of aqueous solutions of Biomass from 1250-1340 nm and (d) 2nd derivative spectra of 0 and 50 gL-1 of aqueous solutions

of glycerol from 1680-1715 nm. States A, B and C: low (0.05 h-1), medium (0.10 h-1) and high (0.15 h-1) dilution rate, respectively.
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matrix differences and interfering absorptions [17]. If

the concentration range being modelled is very limited,

the PLS algorithm is not able to provide good predic-

tions, and PLS models fail validation, as seen when only

the chemostat phase was included. Therefore spectra

from both the batch and chemostat dynamic phase (the

period between steady states) were included to capture

as much as possible the inherent variations in analyte

levels, accumulation profiles, spectral matrix differences,

and interfering absorptions. During the first phase of

the process (batch) the glycerol concentration rapidly

changed (from 40 g/L to 0 g/L) as it is rapidly being con-

sumed for formation of biomass. This will ensure that

the quantification of analytes from the NIRS models are

representative and include enough variation in sample

properties so these models could be potentially used in

future fermentation runs [17]. The enhanced range of

analyte concentrations and spectral variation led to more

robust PLS models capable of predicting accurately the

analyte concentrations in this study (Table 2).

Model validation

From the calibration statistics (Table 2), both glycerol

and biomass PLS models performed reasonably well,

with R2-values above 0.90 or above for both calibration

and external validation, indicating a good fit between the

measured and predicted data. The RMSEP/RMSECV

ratios were very close to one, indicating no significant

differences between the performance of the calibration

and validation models and so robustness in the face of

process and analyte variation. This result is a good indi-

cator of how in practical terms the models would behave

when exposed to process-to-process variability seen in

fermentation processes. Figure 3 shows the concentration

correlation plots after internal and external validation of

the biomass and glycerol calibration model. The models

predictive ability in the fermentation broth is high as all

the samples are distributed along the y = x line.

According to the SEL values shown in Table 3, the

RMSEP values for both biomass and glycerol models are

lower than 1.5 × SEL, which indicates that the perform-

ance of the NIR models is suitable for quantifying biomass

and glycerol as the basis for calculating extracellular me-

tabolite rates to be used in the MFA model [23,24]. NIR

has never been used for such real-time metabolic model-

ling, mainly because it has been in the past associated with

high errors relative to the concentrations of key analytes

[25]. Goudar et al. (2006) [12] considered the errors

Table 2 Near Infrared calibration models and validation for glycerol and biomass in Pichia pastoris chemostat cultures

Model
Range
(g/L)

λ (nm) LV
Calibration Cross-validation External validation RMSEP

RMSECVRMSEC (g/L) R2 RMSECV (g/L) R2 RMSEP (g/L) R2

Glycerol 0-40 1500-1800 3 1.70 0.98 3.38 0.95 2.90 0.95 0.86

Biomass 0-30 1250-1350 5 0.48 0.97 0.93 0.91 1.17 0.94 1.26

λ: wavelength; LV: number of latent variables; RMSE: root-mean square error; R2: correlation coefficient.

Figure 3 (a) Raw and (b) Pre-processed (2nd derivative) NIR

spectra of Pichia pastoris chemostat cultures. States A, B and C:

low (0.05 h-1), medium (0.10 h-1) and high (0.15 h-1) dilution

rate, respectively. Blank circles represent samples from the calibration

(training) set and filled circles represent samples from the validation

(test) set.

Table 3 Method qualification results for reference

method and for NIR

Analyte Method Range
Reference method

SEL SDmean

Glycerol Enzymatic assay 0 – 40 2.37 2.20

Biomass Gravimetry 0 – 30 0.79 0.56

SEL: standard error of laboratory; SDmean: mean standard deviation of

replicate measurements.

All results are shown in g/L. The method and the concentration range of each

analyte used in the PLS models are also shown.
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reported in two papers on NIR and MIR to be unaccept-

ably high (above 20%) [25,26], and for that reason they

suggested inappropriate the use of such spectroscopic

techniques as a replacement to the current largely off-line

methods used. The present authors have intensively

studied the application of NIRS to fermentation and cell

culture systems to predict a number of different analytes

simultaneously (from biomass to different substrates and

types of products, including proteins) [18,27,28] and the

reported errors in these studies were significantly lower

than those reported above. In the present investigation we

show that the validation errors (RMSEP) for biomass and

glycerol are less than 10% of the concentration range of

the analytes, and in terms of sensitivity, NIRS was com-

parable to the reference methods used (Table 3). Further-

more, both biomass and glycerol NIR models yielded R2,

RMSECV and RMSEP values close to other published

studies using on-line NIR probes [29,30]. This is within

the concentration range Goudar et al. (2006) suggest as

acceptable for analyte quantification [12]. Thus, the major

objection in principle to the use of NIRS to predict extra-

cellular fluxes accurately enough to use these values as

inputs to MFA models is shown not to be valid. As dem-

onstrated here, careful calibration procedures, taking

into account appropriate choices wavelength selection

protocols, can be effectively used to generate effective NIR

analyte models with acceptable errors simultaneously for

more than one analyte in near real-time. It is also import-

ant to note that NIR models were built based on spectral

samples taken every 30 min (the sample interval can be

decreased if necessary), with no-sample preparation and

no additional cost, as opposed to the time-consuming and

costly reference methods used.

There are other sensor systems used in bioprocessing,

but their applicability is still very limited with respect to

on-line and in-situ measurements either due to specific

aseptic conditions requirements, low or single number

of measured analytes, drift and other rather low phy-

siological relevance [31]. Raman and Mid-Infrared spec-

troscopy are strong candidates for multivariate analysis

in fermentation systems, but their in-situ technology is

still under development [32,33]. Fluorescence based

methods, dielectric spectroscopy, flow cytometry are

optical methods commonly used to determine biomass,

one of the most challenging as well as important mea-

surements in the bioreactor cultivation of live cells. But

again they are influenced either by the culture condi-

tions (eg. stirring, aeration, broth conductivity, pH and

viscosity), or the in-situ probes are still in development,

or are dependent upon the cell type and size, and not

always are able to measure multiple fermentation

parameters [31,34].

NIR probes offer a high-quality signal from a bioprocess,

they are physically robust instruments compared to the

aforementioned sensors, suited for industrial manufactur-

ing processes, being able to monitor multiple analytes

simultaneously, avoiding the need to use multiple on-line

sensors, which is often a limiting step in a fermenter set-

up. NIRS technology is applicable to most fermentation

expression systems, to batch and fed-batch systems, being

able to monitor not only biomass and glycerol (as in this

study) but also other metabolites such as glutamate, glu-

tamine, ammonium, alcohols, proteins, organic acids, etc.

[35] with the aid of multivariate data analysis as well as

capturing physical process changes (viscosity, temperature

changes, contaminations, system failures), an advantage

for process control, in particularly in the production of

biopharmaceutical [16,35].

Thus, the NIRS constitutes one of the most favourable

on-line in situ technology to form the basis for near real-

time measurements of multiple inputs to metabolic flux

modelling of cell factories in bioprocessing. The findings

presented here constitute the first step part of a structured

multidisciplinary research programme, to be applied for

modelling cell factories (such as protein expression

systems) using microbial and cell line approaches as well

as dynamic (fed-batch) fermentation processes. Transfer-

ring this technology from the simplified system used here

to an industrial process will involve addressing significant

new challenges. These include: first, high cell density and

associated very short process time constants; second,

increased metabolic complexity. Regarding the first point,

it has been demonstrated that NIR can deal with measure-

ments in high cell density systems [1-3], including Pichia,

especially where the medium is soluble (as here). In situ

spectroscopy is also very fast (seconds per spectral acqui-

sition). As to increased metabolic complexity, there are

existing published metabolic models of Pichia that can be

built upon [4,5]. Due to published mis-conceptions on

error in IRs measurements (discussed above), it was first

of all necessary to establish the feasibility of applying NIR

as an input measurement system for MFA in a simplified

system. In this study we have done so.

Metabolic flux analysis

Network properties

A simplified biochemical reaction network was adopted

here for P. pastoris (adapted from [36]), and is illustrated

in Figure 4. Only the central carbon metabolism was

considered, including reactions that are important for

producing biomass and energy (glycolysis, tricarboxylic

acid cycle - TCA, pentose phosphate – PPP, and fermen-

tative pathways). It includes a total of 44 reactions and 45

compounds, and the balanced growth condition can be

applied to 36 internal metabolites, resulting in a 36 × 44

stoichiometric matrix with 8 degrees of freedom (m-n);

the matrix and the list of reactions is given in the

Additional file 1. The overall pathway was simplified by
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grouping some reactions into single ones without any loss

of accuracy of representation [36]. The aim is to use a

model with which is possible to investigate applying NIRS

as a novel tools able to improve process monitoring and

control in real time. The intracellular fluxes were calcu-

lated from the extracellular rates using the two independ-

ent datasets: the off-line and on-line (NIRS) measurements

(section Extracellular flux rates); and the stoichiometric

model described above. The stoichiometric model was

constrained by the extracellular metabolites, i.e. uptake/

production rates for O2, CO2, glycerol and biomass and

the production rates for ethanol, citrate and pyruvate,

which based on HPLC analysis were not detected and

therefore considered null (results not shown). The follow-

ing major assumptions were used in the model: (i) the bio-

mass synthesis reaction (r44) was considered constant

under the different process conditions and it was based on

the macromolecular composition of P. pastoris from [37];

(ii) the glyoxylate cycle was considered inactive [38].

Extracellular flux rates

The concentration of both glycerol and biomass calcu-

lated from both the off-line measurements and on-line

NIR predictions were used for the calculation of the spe-

cific extracellular rates shown in Figure 5. The errors

presented are the propagated errors [39] which include

both metabolite measurement errors and also biomass

errors. As D increases, an increase of 3, 1.5 and 3-fold,

respectively, of the glycerol consumption and both CO2

and biomass specific production rates were observed

(from both off-line and on-line calculations). However,

the changes relative to the oxygen consumption rate

were not significantly different between each state. Using

a t-test statistical analysis between off-line and on-line

Figure 4 Metabolic flux distribution in Pichia pastoris and

respective intracellular flux NIR predictions in glycerol-limited

chemostat at low (state A=0.05 h-1), medium (state B=0.10 h-1)

and high (state C=0.15 h-1) dilution rates. The fluxes for each

reaction in the network corresponding to a D of 0.05, 0.10 and

0.15 h-1 are given from top to bottom, respectively (mmol/gDCW/h).

Metabolites names are displayed in bold: GLC = glucose; G6P =

glucose-6-phosphate; F6P = fructose-6-phosphate; FBP = fructose-1,6-

biphosphate; GAP = glyceraldehyde-3-phosphate; DHAP =

dihydroxyacetone phosphate; DHA = dihydroxyacetone; HCHO =

formaldehyde; CO2 = carbon dioxide; GOL = glycerol; RU5P = ribulose-

5-phosphate, XU5P = xylulose-5-phosphate; R5P = ribose-5-phosphate;

S7P = sedoheptulose-7-phosphate; E4P = erytrose-4-phosphate; PG3 =

3-phosphoglycerate; PEP = phosphoenolpyruvate; PYR = pyruvate;

ACD = acetaldehyde; ETH = ethanol; AcCoA = acetyl CoA; ACE =

acetate; OA = oxaloacetate; ICIT = citrate; aKG = alpha-ketoglutarate;

Suc = succinate; Mal = malate; (cyt) = cytosol; (mit) = mitochondria.

Figure 5 Calculated Extracellular Rates (mmol/gDCW/h) for

Oxygen, Carbon Dioxide, Glycerol and Biomass at low (state

A=0.05 h-1), medium (state B=0.10 h-1) and high (state C=0.15 h-1)

Dilution Rates in Pichia pastoris chemostat culture using both

off-line and on-line (NIR) measurements.
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results for each dilution rate and each of the extracellu-

lar rates determined, it was clear that there were no

significant differences between the on-line and off-line

extracellular rates (p<0.001). The extracellular rates were

then used to compute intracellular metabolic fluxes for

state A to C using Equation 5. The predictions from

NIR extracellular rates were very close to the rates de-

rived from the off-line assays, as expected from the input

rates. For that reason, only the intracellular fluxes pre-

dicted by the on-line NIR measurements for the P.

pastoris chemostat cultures at different dilution rates are

shown in Figure 4 (the intracellular fluxes predicted by

off-line measurements can be found in Additional file 1).

Negative values signify that the reaction is operating in

reverse direction. Key metabolic fluxes and pathways are

discussed below.

Consistency test

The values obtained for the consistency index h for each

steady state (NIR and experimental data) were lower

than the corresponding χ
2 (chi-square) values for a 95%

confidence interval (3.84) and the one redundant equa-

tion (i.e. consistency test degrees of freedom), as seen in

Table 4. This shows that the off-line and on-line data are

both consistent with the pseudo-steady assumption and

also the assumed biochemistry, and that there are no

systematic or gross measurement errors. The results

from statistical analysis on the extracellular rates and the

consistency test show that NIR spectrometry can be

used as an on-line tool in fermentation systems to deter-

mine real-time intracellular metabolite fluxes.

Effect of dilution rate on central carbon metabolism of P.

pastoris cells

Figure 4 shows the predicted on-line NIR intracellular

carbon fluxes observed in the chemostat culture of

P. pastoris under different dilution rates. In some in-

stances, the term ‘relative flux’ will be used to describe

fluxes normalized to the specific glycerol uptake rate (i.

e. rx/r40, where rx is the reaction number of the flux re-

action used, and r40 the flux reaction for glycerol con-

sumption) and to allow a direct comparison among the

different states investigated (state A to C), this type of

terminology is widely used in the context of MFA

[40,41].

Flux distribution in glycolysis/gluconeogenesis and PPP

Glyceraldehyde-3-phosphate (GAP) links the glycolysis/

gluconeogenesis pathways with the methanol and gly-

cerol uptake pathways in the P. pastoris metabolic net-

work. At all dilution rates the majority of glycerol is

funnelled into the glycolytic pathway (r6), and much less

towards gluconeogenesis (r4) (Figure 4). However, with

the increased dilution rate the relative fluxes of glycerol

to glycolysis decrease (r6/r40: from 86% to 40%, from

state A to C, respectively), while an increase is seen from

gluconeogenesis towards the PPP (r4/r40: from 22%

to −15%, from state A to C, respectively – note that this

reaction is reversible). The increase of the relative flux

through the PPP (r21/r40) coincided with an increase in

biomass yield (from 0.63 gDCWg-1Glycerol at low dilution

rate to 0.67 gDCWg-1Glycerol at 0.15 h-1). Furthermore, the

carbon flux through the PPP (r21) that re-entered

glycolysis at the level of fructose-6-phosphate (F6P) and

glyceraldeheyde-3-phosphate (GAP) (r26) was at least

50% less at higher dilution rates (states B and C) than at

lower dilution rate (state A). This indicates that the PPP

is being used for NADPH generation to support the

production of biomass. It is known that the oxidative

part of the PPP (r21) is considered to be the major

NADPH regenerating reaction in yeast and is driven by

the demand for biomass synthesis, and in fact here it

showed the highest flux of all the PPP reactions (Figure 4).

Heyland (2010) [42] suggested a similar findings to ours:

“as NADPH is used as an electron donor during biomass

synthesis and the glucose-6-P and 6-P-gluconate dehydro-

genases of the PPP pathway are the major NADPH regen-

erating reactions in yeast (r21), the flux increase through

the PPP pathway might be a direct effect of the higher bio-

mass yield, as suggested previously by Blank et al. (2005)

[43]”. The higher biomass yield observed here at higher di-

lution rate (state C) is likely to be a result of the flux in-

crease through the PPP.

Flux distribution in TCA In all steady states (from A

to C) the cells exhibited a respiratory metabolism, as

the fluxes from respiro-fermentative metabolism (from

r10 to r13) were zero (Figure 4), typical of aerobic

culture conditions. This supports the view that

P. pastoris cells operate to produce biomass with very

little or no by-product formation when they are not

oxygen limited and are growing on glycerol [40,44].

On the other hand, it was observed that the flux en-

tering the TCA cycle from the pyruvate node (r30)

was approximately the same at all dilution rates. This

had consequences in terms of the TCA cycle: from

alpha-ketoglutarate (r18) onwards the TCA cycle activ-

ity significantly decreased at the highest dilution rates

(state B and C).

Table 4 Consistency test validation results

State DF hexp hNIR χ2 Pass/fail

A 1 2.50 2.29 3.84 Pass

B 1 3.34 1.54 3.84 Pass

C 1 2.68 0.00 3.84 Pass
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Flux distribution and biomass synthesis Alpha-

ketoglutarate (aKG) represents a key metabolite linking

the entry and exit of carbon sources from the TCA cycle

to pathways involved in amino acid metabolism for bio-

mass synthesis [8,42]. At higher dilution rates the energy

requirements are fulfilled without the complete TCA

activity and most of the carbon flux in the TCA is chan-

nelled towards synthesis of the biomass precursors from

aKG. This is supported by the decrease in the fluxes in

the reactions r18-r20, as the remaining TCA metabolites

(succinate and malate) are not involved in the synthesis

of biomass. It is possible that the TCA cycle is operating

at its maximum capacity when the specific growth rate

is high as it has been proposed in other studies [41,45],

and therefore the fluxes of the TCA metabolites are lim-

ited at higher dilution rates, as the emphasis moves to-

wards rapid protein synthesis to generate new cell mass

driven by the high feed rates (states B and C). Under

such conditions of stress, cells look to the PPP and glu-

coneogenesis pathways as an alternative source of energy

and building blocks for cell growth. The increase seen

here in PPP fluxes would logically be associated with the

increase of other cell building blocks, such as DNA and

RNA that are mainly produced through these pathways.

Similarly, in chemostat cultures of S. cerevisiae it has

been reported that a decrease in the cell protein content

at higher dilution rate may be related to a significant de-

crease in the TCA cycle fluxes [46]. This suggests that P.

pastoris cells grown at high dilution rates might need

nutrient supplementation to maintain high rates of pro-

tein synthesis, while at lower dilution rates the cultures

would be more self-sufficient. This effect would be more

pronounced if a heterologous protein were being expressed

at high levels, as seen in [37,41]. In the present study as

specific growth rate is pushed higher increased need

for biosynthetic intermediates leads to the situation noted

here, where the TCA intermediates are increasingly

diverted to intracellular metabolites (aKG) linked to bio-

mass synthesis.

Conclusions
The applicability of NIRS with advanced process model-

ling to define real-time metabolic fluxes in the industri-

ally relevant cell factory P. pastoris is reported herein. A

single in-situ NIR probe was used to predict biomass

and glycerol consumption rates in near real time. Focus-

ing only on central carbon metabolism of these cultures

enabled us to assess the viability of this novel approach

in light of previously published objections which indi-

cated that this approach was not appropriate.

The results of the MFA showed that the NIR predic-

tions were equivalent to the off-line reference methods,

thus showing the potential of NIRS to be used in real-

time MFA. The implementation of NIRS-MFA has

potential utility in mainstream biotechnology industries,

in particular, it expands our ability to monitor and con-

trol the metabolism of a key cell factory in real time

using a low cost, robust multivariate monitoring tech-

nology as opposed to the current costly, complex and

time consuming methods. Advances in metabolic flux

modelling are essential to complement other rapidly

expanding applications in biotechnological techniques,

such as transcriptomics and proteomics, in the develop-

ment of novel biopharmaceuticals. Further work using

more complex systems e.g. protein producing strains

where the metabolic network will be expanded to in-

clude protein synthesis pathways, is on-going. This sub-

stantially extends the challenges encountered in this

study and permits a systematic evaluation of this poten-

tial platform technology’s industrial relevance and utility.

Methods
Strain and media

A Pichia pastoris strain CBS7434 MutS was supplied by

Ingenza Ltd (UK). The yeast strain was kept as frozen

stock cultures in Yeast Nitrogen Base (YNB) medium

(34 gL-1 YNB) at −80°C. Inocula were prepared from 1

ml of the frozen culture sample which had grown on a

2-L shake flask in 600 ml of standard BMGY medium,

containing 1% Yeast Extract, 2% Mycological Peptone,

1% Glycerol, 1.34% YNB, 100 mM Potassium phosphate

(pH 6.0) and 4×10-5% Biotin; This was grown at 30°C,

250 rpm, for 20–24 hours until an OD600 of approxi-

mately 2.5 was reached. Finally the contents of the flask

were transferred to the bioreactor to create an inoculum

concentration of 10% (v/v). The chemostat culture

contained per liter: 40 g of glycerol; 26.7 mL H3PO4

(85%); 14.9 g MgSO4⋅7H2O; 0.93 g CaSO4; 18.2 g K2SO4;

4.13 g KOH; 4.35 mL of PTM1 salt solution; and 0.1 mL

antifoam.

Chemostat cultivation

The reactor used was a 15-l (total volume) stainless steel

bioreactor (BIOSTAT C.-DCU, B. Braun Biotech Inter-

national, Switzerland). The cultivation was carried out at

a temperature of 30.0±0.1°C and a pH of 5.5±0.1

(maintained by automatic addition of 24% NH4OH). The

dissolved oxygen concentration (DO) was maintained

above 30% of saturation by a cascade controlling system

(maintained by an agitation rate of 300–1200 rpm and

aeration rate 1–3 vvm). Exit gases (O2 and CO2) were

measured as % using a digital gas analyzer TANDEM Pro

(Applikon Biotechnology Ltd, Gloucestershire, UK). Real

time values of pH, DO, agitation speed, temperature, air-

flow rate, O2 and CO2 were recorded automatically by the

bioreactor software MFCS DA (Sartorius, UK). After 24 h,

the feed and waste pumps were started to initiate chemo-

stat cultivation. Following three to four residence times,

Fazenda et al. Microbial Cell Factories 2013, 12:51 Page 9 of 14

http://www.microbialcellfactories.com/content/12/1/51



time invariance of the following variables was assumed to

indicate a steady state: optical density, glycerol concentra-

tion, oxygen uptake and carbon evolution rate, OUR and

CER respectively. Three steady states were achieved with

the following dilution rates: A=0.05 h-1, B=0.10 h-1 and

C=0.15 h-1. Knowing that the maximum specific growth

rate, μmax, of P. pastoris on excess glycerol is 0.17 h-1 [44],

states A, B and C were considered: low, medium and high

dilution rate, respectively.

Sampling and Off-line measurements

Samples were taken approximately every 4 hours over

the cultivation process and analysed as described below.

Biomass was estimated by gravimetric difference as dry

cell weight (DCW): 5-ml of culture fluid was filtered

onto a pre-dried, pre-weighed 0.2 μm filter (Whatman,

Maidstone, UK). Cells were washed with 2×5 ml of ster-

ile water and the filter dried to a constant weight in an

oven (105°C for 24 h). Glycerol determination was car-

ried out using a Boehringer Mannheim Glycerol enzym-

atic kit (148–270, Lewes, UK) at 340 nm.

NIR

Spectra were acquired with a dual beam NIR process

spectrometer (Foss- NIRSystems Inc., Silver Spring,

MD, model XDS) using a transflectance probe sub-

merged in the bioreactor with a gap of 0.5 mm

resulting in an effective path length of 1 mm was suffi-

cient to acquire reasonable spectra. Spectral measure-

ments were referenced against a NIST traceable

reference material (serial number R99P0079). Due to

the nature of the reference and the design of the probe

the referencing procedure was carried out with a re-

flectance probe (Foss NIRsystems, Maryland, USA). A

correction factor was then applied to compensate for

the differences in the acquired spectra from the reflect-

ance probe, used in the instrument calibration proced-

ure, and the transflectance probe that was utilised for

spectroscopic measurements. The probe was mounted

in one of the side sampling ports of the bioreactor. As

these ports also housed the pH and dissolved oxygen

probes, any sample measurements made should have

been representative of the whole reactor contents and

would not have had a significant impact on the mixing

efficiency of the reactor. Spectral measurements (X

data) were an average of 32 scans, taken every 30 mi-

nutes over the NIR range of 800–2200 nm.

Data analysis and calibration development

Spectral collection was performed using VISION (version

3.0, Foss NIRSystems) and calculations were carried out

using Matlab version 7.12 (2011a) (MathWorks, Natick,

MA) and the PLS Toolbox version 6.5.1 (Eigenvector Re-

search, Manson, WA). Multivariate calibration models

were developed with the PLS algorithm. All the spectra

were mean-centered, and second-order Savitzky-Golay

(SG) derivatives were applied (filter width of 33 data

points and a second-order polynomial fit) before develop-

ment of the calibration models. The performance of deve-

loped models was assessed by global analysis of the root

mean square errors of cross-validation (RMSECV) and

prediction (RMSEP), latent variable (lv) number, and the

respective correlation coefficient, R2, between the pre-

dicted and measured values for both calibration and vali-

dation sets [47]. Biomass and Glycerol concentration

data (Y data) determined from the off-line measure-

ments were interpolated using the interp1 command

(linear interpolation) in Matlab and matched to the NIR

spectral data. A random number table was used to div-

ide the data into calibration (85 samples) and validation

sets (30 samples), so that the model could be externally

validated in the absence of more samples. To aid in

gaining an analytical basis for the model development,

NIR spectra of aqueous solutions of glycerol (0–50 g/l)

and aqueous suspensions of biomass (0–30 g/l), all ad-

justed to the bioprocess pH, were also prepared and

scanned (Figure 2c and d).

Reference method qualification

Reference method qualification was accessed using the

statistic standard error of laboratory (SEL). SEL is

defined as the standard error of variance between repli-

cates analyzed by the reference method and was calcu-

lated using Equation 1 [23]. 16 samples were analysed in

duplicate for each analytical method (see section Sam-

pling and Off-line measurements). Accuracy can be de-

termined by agreement between the RMSEP and SEL.

As a rule [23,24], considering that the R2 and the

RMSEP indicate the precision achieved in the NIR cali-

bration, R2 values higher than 0.90 indicate excellent

precision, as well as RMSEP values lower than 1.5 ×

SEL. R2 values between 0.70 and 0.90 mean good preci-

sion, as do the RMSECV values between 2–3 × SEL.

While, models with R2 values lower than 0.70 are only

suitable for qualitative purposes, allowing distinction

between low, medium and high values for the measured

parameter being analysed.

SEL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

N

j¼1

X

r

i¼1

yiy−yi

� �2

N r−1ð Þ

v

u

u

u

u

t

ð1Þ

where yij is the ith replicate of the jth sample, �y1 is the

mean value of all replicates of the jth sample, r is the num-

ber of replicates and N is the total number of samples.
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Estimation of specific extracellular rates

The specific growth rate was determined from the mass

balances in the fermenter, resulting in

μ ¼
F

V
þ

1

X

dX

dt
ð2Þ

where μ is the specific growth rate (h-1), F the flow

rate (L/h), V the fermenter volume (L), X the bio-

mass concentration (mol/L), and t is time (hours).

Accordingly, specific uptake or production rates for

glycerol, O2 (OUR) and CO2 (CER) were calculated

based on:

q ¼
F Cin−Coutð Þ

VX
ð3Þ

where q is the specific uptake or production rate (mmol/

(gDCWh)), while Cin and Cout are the reactor inlet and out-

let concentrations (mol/L) of the nutrients or metabolites.

The extracellular rates were determined from Equations 2

and 3 using six separate data points from the end of each

dilution state (A, B and C) and averaged to obtain a single

value for each state. The biomass concentration was deter-

mined either by the off-line method described in 4.5 or by

the on-line NIR predictions.

Metabolic flux analysis

Assuming a pseudo-steady state approximation (PSS),

the material balance equation for the intracellular me-

tabolites [48] can be written as

dc tð Þ

dt
¼ 0 ¼ A � r⇒0 ¼ A � r ¼ Anrn þ Abrb ð4Þ

The intracellular fluxes were calculated based on the

material balance model expressed in matrix notation

where A is the matrix of stoichiometric coefficients

consisting of m rows corresponding to the intracellular

metabolites and n columns corresponding to the number

of metabolic reactions (Additional file 1). The vector r

contains the net reaction fluxes (mmol/(gDCWh)) and

vector c denotes the concentrations of the intracellular

rates. A and r were split into the unknown (An and rn)

and known (Ab and rb) matrices and vectors of stoichio-

metric coefficients and rates, respectively. The known

and unknown rates correspond to the extracellular and

intracellular metabolic fluxes, respectively. The intracel-

lular metabolite fluxes can be determined from Equation 5

using simple matrix inversion if A is square (m = n). If A

is not a square matrix, the system becomes redundant and

it is valuable to include the surplus information to check

the consistency of the data and the assumed biochemistry.

In this case m > n and the fluxes can be determined via

the method of weighted least squares [49]:

rn ¼ − AT
nΨAn

� �

−1
AT
nΨ

−1rb ð5Þ

where ψ is the variance-covariance matrix of the extra-

cellular fluxes calculated directly from the measure-

ments. Once the intracellular rates were estimated, the

consistency of the metabolic fluxes to the measure-

ments was estimated by calculating the consistency

index, h given by:

h ¼ e0 � pinv Jð Þ � e ð6Þ

With J, the variance-covariance matrix of the vector of

residuals (Equation 9), pinv(J) the pseudo-inverse matrix

of J and e the vector representing the deviation from

zero of the intracellular metabolites concentrations

Figure 6 Schematic diagram of the experimental set-up used. Two datasets were generated a) off-line and b) on-line data and used as

inputs for Metabolic Flux Analysis for the prediction of intracellular metabolites fluxes of central carbon metabolism of a chemostat culture of

Pichia pastoris.
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calculated as follows

e ¼ −R � rb
0 ð7Þ

R is the redundancy matrix expressed by:

R ¼ Ab−An � pinv Anð Þ � Ab ð8Þ

And the variance-covariance matrix of the vector of

residuals (J):

J ¼ RT � Y b � R ð9Þ

The consistency index method is based upon statis-

tical hypothesis testing to determine whether redundan-

cies are satisfied within the experimental error [50,51].

The first step in applying a consistency test is to deter-

mine the number of redundant equations present in the

stoichiometry matrix, A. This is done by comparison of

the number of degrees of freedom of the matrix A

(DF=8) and the number of known measurements used

in the MFA model (nine). Comparison of h with the χ
2

test function determines whether the residuals of

Equation 5 deviate beyond their expected distribution

around 0 for a specified significance (confidence level).

If a given r fails the consistency check (i.e., h > χ
2), then

there is a (confidence level)% chance that either r

contains gross measurement errors or the assumed bio-

chemistry is incorrect. For this, one additional redun-

dant measurement was used as the degrees of freedom

for statistical hypothesis testing. The confidence interval

of the known and the unknown fluxes was analysed by

calculating the estimates of the respective variance-

covariance matrices (Ψb and Ψn) given in Equation 10.

The standard deviation vectors of the fluxes were then

obtained by the squared root of the respective variance

covariance matrix diagonals [52].

Ψ ′
b ¼ 1−Ψ � RT R � Ψ � RTð Þ−1 � R � Ψ

Ψ ′
n ¼ A−1

n � Ab � Ψ � AT
n � A−1

n

� �T

ð10Þ

All the computational tasks required to perform meta-

bolic flux analysis were implemented in Matlab (version

7.12, 2011a) (MathWorks, Natick, MA).

Experimental plan

To obtain the estimates for the intracellular metabolic

fluxes from the MFA model, extracellular rates were calcu-

lated using Equations 2 and 3 from two datasets (off-line

and on-line measurements) and the results compared. A

diagram of the approach used is shown in Figure 6.

Additional file

Additional file 1: Metabolic network for P. pastoris. List of reactions,

metabolites and stoichiometric matrix and predictions of intracellular

fluxes.
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