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ABSTRACT 

The Kidney Precision Medicine Project (KPMP) plans to construct a spatially specified 
tissue atlas of the human kidney at a cellular resolution with near comprehensive molecular 
details. The atlas will have maps of healthy, acute kidney injury and chronic kidney disease 
tissues. To construct such maps, we integrate different data sets that profile mRNAs, proteins 
and metabolites collected by five KPMP Tissue Interrogation Sites. Here, we describe a set of 
hierarchical analytical methods to process, combine, and harmonize single-cell, single-nucleus 
and subsegmental laser microdissection (LMD) transcriptomics with LMD and near single-cell 
proteomics, 3-D nondestructive and immunofluorescence-based Codex imaging and spatial 
metabolomics datasets. We use nephrectomy, healthy living donor and surveillance transplant 
biopsy tissues to create a harmonized reference tissue map. Our results demonstrate that 
different assays produce reliable and coherent identification of cell types and tissue 
subsegments. They further show that the molecular profiles and pathways are partially 
overlapping yet complementary for cell type-specific and subsegmental physiological 
processes. Focusing on the proximal tubules, we find that our integrated systems biology-
based analyses identify different subtypes of tubular cells with potential for different levels of 
lipid oxidation and energy generation. Integration of our omics data with pathways from the 
literature, enables us to construct predictive computational models to develop a smart kidney 
atlas. These integrated models can describe physiological capabilities of the tissues based on 
the underlying cell types and pathways in health and disease. 
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INTRODUCTION 
The kidney is one of the most diverse organs in the human body in terms of its cellular 

heterogeneity, and possibly second only to the brain in its spatial complexity. Accordingly, 
decoding the functional and pathogenic mechanisms of kidney disease has been challenging; 
as such, nephrology has consistently ranked behind all other subspecialties of medicine in 
terms of the drug discovery pipeline 1. Delineating the cell types and subtypes in different 
regions of the kidney during health and disease will help identify the tissue-level, cellular and 
subcellular pathways and processes involved in disease initiation and progression, and aid in 
drug discovery.  

The Kidney Precision Medicine Project (KPMP) is a consortium funded by the National 
Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) that aims to ethically and 
safely obtain kidney biopsies from participants with chronic kidney disease (CKD) or acute 
kidney injury (AKI); create a reference kidney atlas; characterize disease subgroups to stratify 
patients based on molecular features of disease; and identify critical cells, pathways, and 
targets for novel therapies and preventive strategies. The KPMP features an expanding set of 
complementary set of high throughput assays for molecular entities that span transcriptomic, 
proteomic, metabolomic profiles and spatial/structural properties of kidney tissue. These 
assays, described here for the five initially funded Tissue Interrogation Sites (TISes), will be 
integrated to create a comprehensive knowledge environment for the human kidney. This 
knowledge environment will be compiled by the KPMP Central Hub to serve as a foundation 
for a spatially specified interactive smart tissue atlas that will include molecular and 
physiological information on healthy and diseased states of all individual cell types within the 
adult human kidney.  

The KPMP envisions that harmonization and integration of different types of molecular data 
from omics assays, combined with state-of-the-art pathological and clinical descriptors, will 
allow us to classify different disease subtypes and states for diagnostic and therapeutic 
purposes. Numerous groups have proposed the use of integrated multiomics analysis to 
characterize disease phenotypes using tools that include Bayesian, correlative, network-based 
and machine learning-based clustering algorithms 2-4. The goals of these approaches include 
prediction of clinical outcomes, identification of underlying disease mechanisms and 
stratification of patients 5. KPMP further envisions that the final integrated analytical 
environment will serve as a knowledge base for the entire field that will empower a molecular 
anchored outcome prediction and development of targeted treatments. 

Here, we present an overview of KPMP’s strategies to harmonize and integrate multiple 
data types through identification of subcellular pathways and functions that delineate cell-level 
biochemical and physiological functions. Using reference kidney pilot tissue samples, we have 
performed data harmonization and integration to investigate the complementarity of different 
data types and develop a pipeline for the generation of tissue maps.      
 
RESULTS 
Outline of KPMP Data Types 

In these analyses, there were four transcriptomic, two proteomic, one imaging-based, and 
one spatial metabolomics tissue interrogation assays that consisted of 3 to 48 different 
datasets obtained from 3 to 22 participants (Supplementary Table 1). These assays and their 
detailed tissue pre-analytical, tissue processing, data acquisition and analytical data 
processing pipelines are outlined in Figure 1. We also summarize the steps whereby the data 
sets were integrated and harmonized in the upper right side of this descriptive map view of the 
KPMP data integration paradigm. 
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Pathway- and network-level integration of multiple molecular interrogation techniques 
reveals cell- and tissue-specific biological processes that are critical for renal 
physiology 

To overcome the inherent challenges of multiomics integration and assay dependent 
divergence, we employed dynamic enrichment analysis 6 and network mapping 7. We 
evaluated the convergence of subcellular processes (SCPs) and pathways that are over-
represented in different cell types or subsegments within the kidney (in comparison to the other 
cell types or subsegments), using single cell RNASeq data from PREMIERE TIS (Michigan, 
Princeton, Broad) 8, single nucleus RNASeq data from UCSD/WU TIS 9, Laser microdissected 
(LMD) bulk RNASeq (Supplementary Table 2) and LMD proteomics (Supplementary Table 3) 
from the OSU/IU TIS, Near Single Cell (NSC) proteomics from the UCSF TIS (Supplementary 
Table 4) and spatial metabolomics from the UTHSA-PNNL-EMBL TIS (Supplementary Table 
5A/B/C from 3 different participants).  

Single-cell 8 and -nucleus 9 RNASeq analysis resulted in the grouping of multiple cells or 
nuclei into clusters that were assigned to a particular cell type based on the expression of 
essential genes. The top 300 most significantly differentially expressed genes (DEGs) and 
proteins (DEPs) of each cluster or subsegment compared to all other clusters or subsegments 
as well as the metabolites assigned to glomerular and non-glomerular kidney regions 
(Supplementary Table 6) were subjected to enrichment analysis to create pathway maps 
(Supplementary Table 7) for the three representative cell types contributing diverse function to  
kidney physiology: proximal tubular epithelial cells (Figure 2A, Supplementary Figure 1A for 
nonspecific pathways), podocytes (Supplementary Figure 1B) and principal cells of the 
collecting ducts (Supplementary Figure 1C). The final maps revealed highly interrelated SCPs 
that are intimately linked to the physiological function of the respective cell types. Furthermore, 
these SCPs are highly overlapping between assays and datasets with up to 74% of them being 
repeatedly enriched in two or more assays, confirming the inherent agreement among these 
different assays. While the individual significant genes or gene products coming from multiple 
assays were not necessarily the same, placement of these gene products into an 
interconnected pathway map showed innate congruence between the assays. The key 
subcellular processes (SCPs) for the different cell types differed significantly.  

Cell-type specific SCP networks predict overlapping and complementary pathways that 
accurately support each cell type’s whole cell function. Proximal tubule networks predict a high 
metabolic activity and describe ion reabsorption and ion-triggered glucose reabsorption 
pathways as well as ammonia metabolism and detoxification pathways (Figure 2A). The 
predictions are in agreement with the energy intensive ion, glucose and other small molecule 
reabsorption by the proximal tubule cells 10 and their predominant function in ammonium 
excretion and renal drug clearance 11. The identification of cellular iron homeostasis pathways 
documents the iron storage capacity of proximal tubule cells 12 that among other functions, 
also mitigates kidney damage during acute kidney injury 13. Podocyte/glomerular networks 
focus on cell-cell/cell-matrix adhesion, glomerular basement membrane/extracellular matrix 
(ECM) and actin dynamics (Supplementary Figure 1B), all pathways fundamental for barrier 
generation and consequently for glomerular filtration. Principal cell/collecting duct networks 
concentrate on ion reabsorption (Supplementary Figure 1C), emphasizing the important role of 
the collecting duct in fine-tuning these mechanisms, thereby regulating systemic electrolyte 
and water balance. 

These networks document that 13% (principal cells/collecting duct), 27% (proximal tubule 
cells/tubulointerstitium) and 74% (podocytes/glomerulus) of all predicted SCPs were 
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discovered by at least two different technologies. A closer investigation of the SCPs further 
highlights that the overlap is even higher, if only the SCPs that describe cell type specific 
functions are considered. Furthermore, the different datasets describe complementary 
subfunctions of the same physiological processes. For example, both proteomic datasets of 
the proximal tubule subsegments describe fatty acid transport via carnitine shuttling into the 
mitochondrial matrix, where the enzymes for mitochondrial beta oxidation are localized (Figure 
2A). The PREMIERE SC RNASeq dataset predicts carnitine biosynthesis, i.e. synthesis of the 
central molecule of the carnitine shuttle. 

Integration of pathways that were predicted based on the tubulointerstitial metabolites, such 
as ‘Glycolysis and Gluconeogenesis’ and ‘D-Arginine and D-ornithine metabolism’ 
(Supplementary Figure 1D), into the Molecular Biology of the Cell Ontology (MBCO) SCP-
networks (Figure 1A) further underline the predicted high metabolic activity of the proximal 
tubule cells. Glomerular metabolites enrich for pathways (Supplementary Figure 1C), such as 
sphingolipid and arachidonic acid metabolism, that support cell-matrix/cell-cell adhesion and 
gap junctions, respectively 14. Dynamic enrichment analysis of both single-cell RNA-seq 
datasets predicts the involvement of another metabolic pathway, i.e. retinol metabolism, in 
podocyte function, in particular as a regulator of tight junctions (Supplementary Figure 1B). 
Retinoic acid has a regulatory effect on tight junctions 15, 16 and plays a significant role in 
mitigating podocyte apoptosis and dedifferentiation during podocyte injury 17.  

The enrichment results suggest that proximal tubular cells have the capacity to meet the 
high energy demand by not only fueling the citric acid cycle via beta oxidation, but also via 
glucose and glutamine catabolism. Nevertheless, beta oxidation is most consistently predicted, 
in agreement with previous studies documenting lipid metabolism as the preferential energy 
source in proximal tubule cells 18, 19. Investigation of the pathway components of these SCPs 
documents that the different omics technologies identify different components of these 
pathways that integrate into a comprehensive description of the relevant biochemical pathways 
(Figure 2B). Each technology contributes genes, proteins and metabolites for a fuller 
description of the pathways than would be obtained by a single technology. Tubulointerstitial 
metabolites, for example, contain glucose, cofactors of the pyruvate dehydrogenase complex 
and multiple adenosine nucleotides/nucleosides (i.e. metabolites of the energy carrier ATP). In 
agreement with the results of the pathway predictions, network mapping 7 revealed that cell-
type specific DEGs and DEPs lie within the same area of the human interactome 
(Supplementary Figure 1E), indicative of close functional relationships. 

In parallel, we identified modules in a kidney-specific functional network using the top 
ranked 300 marker genes and proteins across all datatypes in order to detect sets of cell-type 
specific, functionally related genes 20, 21. The module detection algorithm finds groups of genes 
that form tightly connected communities within a kidney-specific functional network, which is 
constructed using a data-driven approach from gene-gene relationships across thousands of 
experimental assays. After module detection, gene enrichment analysis is performed within 
each module to understand the key functions of the genes in each module. As with dynamic 
enrichment analysis, the modules display clear cell-type specific functional enrichments 
(Supplementary Table 8). For example, the network of proximal tubule marker genes includes 
modules enriched in anion transport and cellular response to metal ions (Figure 2C), the 
network of podocyte marker genes includes modules enriched in glomerulus development and 
cell-cell adhesion (Supplementary Figure 1F), and the network of principal cell marker genes 
includes modules enriched in sodium ion transport (Supplementary Figure 1G) 
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Integration of diverse transcriptomic interrogation techniques shows strong agreement 
and technological synergy between assays 

While single-cell RNASeq has the ability to identify different cell types and map individual 
transcriptomic profiles of cells, the technique does not provide spatial context or adequate 
coverage of transcriptomic depth that laser microdissection (LMD) combined with bulk 
RNASeq could offer. LMD transcriptomics can identify subsegment-specific differential gene 
expression (i.e., over- or under-representation of a specific gene within a subsegment as 
compared to all other subsegments) for nearly the entire human transcriptome (Supplementary 
Figure 1H). An idealized integration scenario would combine these assays synergistically such 
that they could complement the shortcomings of each other, improve quality control metrics 
across technologies, and increase rigor and reproducibility of the overall study. These pilot 
studies combined four distinct transcriptomic assays: single-cell RNASeq, multiplexed single-
cell RNASeq, single-nucleus RNASeq, and LMD RNASeq. Our results show that the 
combination of approaches provide a fuller description of spatial organization and molecular 
components within each cell type than any one approach by itself. 

Multiscale integration of the three different transcriptomic interrogation techniques shows 
strong agreement and technological synergy between assays. KPMP Tissue Interrogation 
Sites incorporate a diverse portfolio of transcriptomic assays that have different advantages 
and shortcomings. Three TISes, PREMIERE (U. Michigan, Princeton, Broad), UCSF and 
UCSD/Washington U, performed two separate single-cell RNA-seq assays and one single-
nucleus RNASeq assay, respectively. From these dissociated cell/nuclei-based transcriptomic 
assays, we identified a total of 22,268, 27,757, and 17,659 cells. Our results showed that the 3 
disparate transcriptomic assays, regardless of their spatial specificity, can be hierarchically 
harmonized (Figure 3A). First, we see that different single-cell and single-nucleus 
transcriptomic assays in KPMP align favorably for most of the cell types, whereby top cluster 
descriptors, i.e., marker gene candidates for each cell type, agree across different assays. The 
integrated analysis of the single cell and single nuclei transcriptomic data yielded 16 clusters at 
a resolution of 0.6 from 45,536 cells/nuclei. Cells from the three TISes were included in all 
clusters indicating successful integration of the data (Figure 3B). Differential expression 
analysis of the genes expressed in each cluster versus all other clusters generated cell-type 
specific gene sets. Each gene set included known kidney cell-type specific markers which 
enabled assignment of clusters to specific cell types and established the validity of these 
measurements for generation of a tissue map. The cell types identified included intrinsic kidney 
cell types as well as immune cell types.                 

We also performed bulk transcriptomic assays on LMD subsegments, which are shown in 
Figure 3A, and mapped to the associated single cell clusters. We integrated single-cell 
sequencing, single-nucleus sequencing, and LMD transcriptomics datasets by assigning each 
cell in the integrated single-cell datasets to the nearest LMD subsegment, based on the 
Pearson correlation between the expression profiles for each cell and each subsegment. We 
find that there is strong concordance across the datasets in case of the low (Figure 3C) and 
integrated single cell/nucleus clustering, whereby the majority of the cells from each cluster 
were assigned to the correct corresponding LMD subsegment in an unbiased manner (for 
example, proximal tubule cells are assigned to the proximal tubule subsegment, while 
podocytes are assigned to the glomerular subsegment). 
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Post-hoc power analysis reveals that 16-25 participants are sufficient for consistent   
classification of cell types 

We evaluated how many reference participant samples need to be processed to generate 
RNASeq libraries that will be subjected to whole genome transcriptomic sequencing to obtain 
consistent reproducible results. This allows an estimation of how many participants need to be 
recruited for the identification of reliable disease-related mechanisms. We used the 
PREMIERE single-cell 8 and the USCD/WU single-nucleus 9 RNASeq datasets that were 
obtained from 24 and 47 libraries (Supplementary Table 1) (17,532 cells and 12,100 nuclei 
after quality control), respectively. We separately subjected both RNASeq datasets, with and 
without random and progressive removal of libraries, to a standardized single-cell sequencing 
analysis pipeline (Supplementary Figure 2A) followed by comparison of the results obtained for 
the down-sampled datasets with the complete datasets (Supplementary Figure 2B). Similarly, 
we analyzed the LMD proteomic dataset obtained from 11 nephrectomy samples and 
subjected the full or down-sampled LMD datasets to a standardized analysis pipeline, followed 
by comparison of the results. Our results indicate that for a consistent detection of podocytes 
(i.e. in more than 95% of all down sampled datasets with the same library counts), at least 16 
(~11,727 cells) or 7 libraries   (1,837 nuclei) are needed if subjected to single-cell RNASeq 
(Figure 4A) or single-nucleus RNASeq (Figure 4B), respectively. Consistent detection of 
proximal tubule and principal cells depended on only 2 and 3 libraries (~1,367 or ~2184 cells), 
respectively, in the case of single-cell RNASeq or 4 and 12 libraries (~1,005 or ~3,100 nuclei), 
respectively, in the case of single-nucleus RNASeq. Additionally, our results suggest that the 
accuracy of single-cell or single-nucleus assignments to the selected cell types is relatively 
stable (with the exception of podocytes in the single-cell dataset) as documented by the low 
number of cells that are assigned as different cell types or mapped to an unrelated tissue 
subsegment.  

The Pearson correlations between the fold changes of the identified DEGs of the down-
sampled and the complete datasets also depend on the analyzed libraries. For example, a 
Pearson correlation of 0.8 or higher is achieved with 11, 4 and 9 libraries (~7,961, ~2,866 and 
~ 6,708 cells) for podocytes, proximal tubule cells and principal cells, respectively, based on 
the single-cell dataset; and 7, 29 and 47 libraries (~1,837, ~7,428 and 12,100 nuclei) based on 
the single-nucleus dataset. The slow increase in the correlation coefficient of DEGs for 
proximal tubule cells likely results from the continuous increase in identified proximal tubule 
clusters, each adding new proximal tubule related DEGs. The Pearson correlation between the 
p-values of predicted GO BPs or level-3 MBCO SCPs already falls below 0.8, if less than 19 to 
24 libraries (~14,096 to 17,532 cells) or 16 to 47 libraries (~4,047 to 12,100 nuclei) are used in 
the case of single-cell and single-nucleus RNASeq, respectively (Supplementary Figure 2C, 
3D, respectively). This is unsurprising given the small size of the SCPs and pathways (GO 
processes contain 35 ± 71 genes, level-3 MBCO SCPs 11 ± 11 genes). Comparisons of the 
top predicted GO and MBCO processes document that one would still be able to get a similar 
amount of information from a downsampled dataset (even if SCP p-values correlation 
coefficients are below 0.8). An increase of the cutoff rank from 10 up to 20, on average, allows 
reidentification of 70% of the top predictions, if single cell RNASeq data of only two to 14 
libraries (~1,367 to ~10,119 cells) is subjected to MBCO enrichment analysis (Figure 4A) and 
reidentification of 50% of the top predictions, if data from only two to four libraries (~1,367 to 
~2,866 cells) are used (Supplementary Figure 2C). Similar results were obtained for the single-
nucleus RNASeq predictions. On average 12 and 15 libraries (~3,100 and 3,835 nuclei) 
allowed reidentification of seven of the top 10 predicted podocyte and proximal tubule MBCO 
SCPs, respectively, while 21 libraries (~5,462 nuclei) were sufficient to reidentify five of the top 
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10 principal cell GO BPs (Figure 4B). Five of the top 10 predicted podocyte and proximal 
tubule MBCO SCPs could even be reidentified based on eight libraries or ~2,066 nuclei 
(Supplementary Figure 2D). For the LMD proteomics dataset, six to eight samples were 
sufficient to reproduce the results obtained for the full datasets with only minor variations in the 
correlation of identified DEGs (Figure 4C) and SCPs (Supplementary Figure 2E) or SCP 
rankings (Figure 4C).  

 
 
Proteomic and transcriptomic assays produce non-overlapping and biologically 
complementary assessment of subsegmental molecular composition 

It has been shown that transcriptomic and proteomic assays do not always produce 
overlapping results 22. This discrepancy had been hypothesized to stem from the differences in 
RNA and protein turnover as well as differences in assay methodologies 23. We have two 
subsegmental proteomic and four transcriptomic assays within KPMP that can be cross 
correlated to assess consistent co-expression of mRNA and protein levels across different cell 
types or tissue subsegments. Both proteomic datasets identified protein expression in two 
kidney sub-segments: glomeruli and tubulointerstitium (for LMD) or proximal tubule (for NSC). 
To allow for an unbiased cross-platform comparison, we focused on podocytes (glomeruli in 
LMD) and proximal tubular cells and subsegments in the single-nuclei/cell and LMD bulk 
RNASeq datasets as well. We identified the gene and protein expression values of each 
participant within each cell type cluster or subsegment, followed by the calculation of all 
pairwise correlation coefficients between these samples. Hierarchical clustering of the 
correlation coefficients documented that the absolute gene and protein expression values are 
specific for a particular platform and not for their anatomical origin (Supplementary Figure 3A). 
Such clustering behavior could arise from the inconsistent detection of genes and proteins by 
the different technologies, many genes or proteins are only detected by a particular 
technology, but not by another. However, even if we remove those genes and proteins that 
were not consistently detected across all six technologies (Supplementary Figure 3B), the 
clustering still groups samples obtained by the same technology (and not same anatomical 
origin) into the same group. Since platform related biases should influence gene or protein 
expression values independently of their tissue origin, the calculation of expression ratios 
between two values obtained by the same platform might reduce such biases. In agreement 
with this statement, the logarithmized ratios of gene and protein expression values between 
the glomerular and tubular cell types or subsegments (and vice versa) were specific for the 
anatomical region, as revealed by the clustering results that are obtained with (Figure 5A) or 
without (Supplementary Figure 3C) removal of those genes and proteins that were consistently 
detected by all 6 technologies. The clustering results document that such a normalization 
approach shifts the focus from the platform to the biology. Nevertheless, each platform can 
provide additional information, as documented by the technology related sub-clusters and the 
sets of genes and proteins uniquely identified by each technology. Similar results are obtained, 
if the samples are clustered based on the top 50 predicted GO BPs or MBCO level-3 SCPs 
(Supplementary Figure 3D and 4E, respectively). Correlation analysis of averaged log2 fold 
changes between all RNASeq and proteomic platforms further supports high consistency of 
results (Figure 5B) and indicates that the consideration of multiple datasets increases accuracy 
of the results, since averaged RNASeq and proteomic datasets show a higher correlation with 
each other than any individual RNASeq and proteomic datasets (Figure 5C). 
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Imaging-based molecular data and non-spatial proteomic and transcriptomic assays 
together produce cohesive marker expression signatures. 

Imaging assays are critical in providing spatial specification of the deep mapping by 
techniques such as single-cell RNASeq or bulk proteomics 24. Imaging and single-cell RNASeq 
assays provide complementary information at the single cell level. While imaging assays 
identify the spatial localization of individual cells together with their expression signatures for a 
limited number of proteins, single-cell RNASeq assays provide more extensive transcriptomic 
profiles for individual cells. Through integrating imaging and single-cell transcriptomic datasets, 
we can infer extensive molecular profiles for spatially localized cells. 

A first step towards this integration is to develop approaches to integrate maps of cell types 
identified using imaging and single-cell transcriptomic technologies. Here, we construct a 
mapping matrix to transform the cell-type specific protein expression profiles measured using 
the imaging assay to cell-type specific gene expression profiles measured using single-cell 
transcriptomic assays (Figure 6). An entry in the mapping matrix is high if the corresponding 
imaging cell type is highly weighted in the linear combination of imaging cell type expression 
profiles that approximate the expression profile of a cell type in the single-cell transcriptomic 
dataset. We find that this mapping approach performs particularly well for cell types 
characterized by a smaller number of unique markers in the imaging dataset (for example, 
endothelial cells or podocytes). Despite differences between protein and gene expression 
across cell types, the mapping demonstrates congruence across cell type-specific expression 
profiles measured using imaging and transcriptomic assays. 

Future integration will explore mapping of cell types classified by this approach to our large-
scale 3-D imaging with common markers including monolithic cell types such as neutrophils, T-
cells and proximal tubule epithelial cells. In doing so, we will leverage 3-D relationships (e.g., 
densities and distance to anatomical structures of interest, etc.) between immune cells, the 
endothelium and tubular epithelial cells to better understand the biology and enrich the imaging 
signatures of health and disease. 
 
Integration of gene expression profiles with metabolic pathways show cell subtype-
specific metabolic signatures 

Single-cell/nucleus RNASeq technologies allow for the classification of cellular subtypes, 
each might specialize on a few of the cell type specific functions. One example of cellular 
subtypes are the seven different proximal tubule cell subtypes that were identified in the 
PREMIERE dataset 8. At its current resolution, spatial metabolomics allows for distinguishing 
glomerular and non-glomerular metabolites only. Due to the abundance of proximal tubules in 
the kidney cortex, a reasonable hypothesis is that most of the nonglomerular metabolites are 
generated by proximal tubule cells. This hypothesis is supported by our enrichment analysis. 
The pathways that are predicted for non-glomerular metabolites either overlapped with or were 
closely related to the pathways that are predicted for proximal tubule cells and subsegments 
based on the other datasets (Figure 2A). 

One noteworthy feature of the differential gene expression pattern in the subtypes of the 
proximal tubule cells is the variations in the levels of expression of mRNAs encoding enzymes 
in the beta-oxidation pathways. Due to the high energy demand, lipid metabolism is critical for 
the physiological activities of the proximal tubule cells 18, 19. The data from the single cell 
transcriptomic studies suggest that we may be able to predict the biochemical activity of 
proximal tubule tissue from the single cell expression data (Figure 7A). As a step towards 
construction of such predictive dynamical models we generated a canonical pathway map of 
mitochondrial beta-oxidation pathways from prior knowledge (www.genome.jp/kegg) 
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(Supplementary Figure 4A). Mitochondrial beta-oxidation describes the iterative generation of 
acetyl-CoA by sequential removal of two-carbon units from the fatty acid acyl chain. The first 
cycle during the oxidation of palmitoyl-CoA contains most of the enzymes that participate in its 
complete oxidation (Figure 7B). We specified the relative expression levels for the beta 
oxidation enzymes in the different subtypes of proximal tubule cells after assigning subtype 
specific gene expression values to the participating enzymes (Figure 7B). In Figure 7C we 
show the relative percentages of each enzyme in the different proximal tubule subtypes, in 
figure 7D the tissue collection types of the PT cells in each cluster. These percentages are 
calculated from mean read counts that are given in supplementary Figure 4B. Our pathway 
map suggests that a subpopulation of about 26% of all PT cells (clusters PT-1 and PT-5) over 
proportionally contributes to total beta oxidation activity in the proximal tubule.  

Decrease in fatty acid oxidation, resulting in a loss of ATP generation, has been shown to 
be a significant contributor to tubulointerstitial fibrosis 19. Our results suggest that upon general 
injury, a subset of proximal tubule cells could - because of decreased beta oxidation - 
contribute disproportionately to fibrosis and decreases in the physiological capability of the 
proximal tubule as a whole. This hypothesis that needs to be experimentally tested 
demonstrates that the integration of multiple omics technologies can give rise to new 
assumptions of cellular mechanisms involved in kidney physiology and pathophysiology.  
      
DISCUSSION 

The advances in transcriptomic technologies along with other omics and imaging assays 
offer unprecedented insights into the organization of tissues at cellular resolution and the 
molecular constituents of the different cell types and their subtypes. Here, we have integrated 
data generated by multiple omics technologies as well as imaging assays to provide a detailed 
view of the molecular machinery present in kidney tissue. Our integrative analytics allows us to 
conclude that integration of multiple omics technologies permits identification of pathways and 
functional modules across cell types with greater confidence than any individual omics 
technology.  

This is partly because the different technologies identify different members of the same 
functional pathway (i.e. SCP), giving greater confidence that the pathway is likely to be 
operational in the cell type of interest. Furthermore, these technologies offer differing 
perspectives into the physiological function or role of a given cell type, and they can act as 
complementary quality control steps for each other. For example, given the transcriptomic 
profile of each single-cell cluster and the corresponding subsegments, we show that we can 
successfully predict the spatial localization of each cell type. In addition, we show that our 
approach allows a detailed look at a validated pathway within proximal tubular cells, 
suggesting that there could be multiple subtypes of proximal tubule cells in humans. We 
predict that these subtypes differ in their potential for lipid metabolism, which is critically 
important for the physiological function of proximal tubule cells, as cellular energetics have 
been shown to be critical for reabsorptive activity. Here, it is important to note that 
mitochondrial content is potentially a driver of cellular subtype identity, and as KPMP 
researchers have noted before 8, using a universal percent mitochondrial transcript cutoff may 
not be optimal for processing of these data.  

Though the post-hoc power analysis documents how many participants are needed to 
recover known biology, we cannot conclude from these results how many patients are needed 
to recover unknown biology that might be associated with disease development. Patients may 
manifest diverse molecular signatures even within diagnostic categories and sampling many 
patients may be crucial for elucidating disease subtypes and heterogeneous disease 
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processes and mechanisms across the patient population. Furthermore, critical disease 
signatures might be captured by rare cell types or subtle expression differences across 
individuals. Nevertheless, our post-hoc power analysis can help to estimate the reliability of an 
identified cell subtype or predicted disease mechanism by documenting that it is consistently 
recovered using down-sampled datasets. 

Our approach is amendable to future computational modeling studies that can further 
improve the proposed tissue atlas. For example, mapping the beta-oxidation pathway for lipid 
metabolism to a set of coupled reactions that are specified as differential equations could allow 
us to develop dynamical models of this pathway in the different subtypes of proximal tubular 
cells. Simulations using such models can predict how changes in the number of cells in the 
relevant subtypes or changes in enzyme levels in particular subtypes can change the 
metabolic capability of the proximal tubules, thus affecting the physiological processes needed 
for reabsorption. These types of predictive capabilities of tissue maps of interacting molecular 
entities at cellular resolution will allow us to build a smart kidney atlas, where we do not only 
describe the different cell types, subtypes and location and levels of molecular entities, but 
also use this information to predict physiological capability of the tissue. While our integrated 
computational approaches allow single-cell transcriptomics to identify cellular subtypes with 
higher confidence, we note that these findings still require experimental confirmation with 
spatial assays, such as multiplexed in situ hybridization, which are being incorporated into the 
KPMP. Final maps in the atlas will always need to incorporate experimental verification of 
computationally derived information. 

Information becomes knowledge only when it is deliberately and systematically catalogued 
such that new cohesive insights can readily be drawn. Ontology is an ideal tool that can 
logically represent the data and metadata in a human- and computer-interpretable manner and 
to enable the generation of new knowledge, especially when such knowledge involves 
multiscale relationships between molecules, cell types and their subtypes and tissue level 
physiological function. In addition to the integrated analytics presented here, the KPMP is also 
building a community-based Kidney Tissue Atlas Ontology (KTAO), which will systematically 
integrate different types information (such as clinical, pathological, cell and molecular) into a 
logically defined tissue atlas, which  can  then be further utilized to support various applications 
34. Taken together, the final interactive knowledge environment and the smart kidney tissue 
atlas constructed by KPMP should be able to help redefine cellular types and subtypes in the 
kidney; improve patient care by providing new disease classifications; and may ultimately lead 
to new patient-specific novel therapeutic approaches. 
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METHODS 
Omics and imaging assays used within KPMP target different types of molecular 

components with different resolution, sensitivity and precision. An important function of the 
KPMP Central Hub is to integrate the different types of data using a set of analytical 
techniques. This process is summarized in Figure 1. Throughout the paper, we consistently 
use the same continuous color-code to identify different assays or cell types. The experimental 
assays that generate the raw data and all their technical details including standard operating 
procedures are detailed under the supplementary information and publicly released with all 
their technical details and version-controlled release dates on the KPMP protocols.io page 
(https://www.protocols.io/groups/kpmp/publications). 
 
Identification of differentially expressed genes, proteins and metabolites 

We analyzed data from four types of transcriptomic, two proteomic, one imaging-based and 
one metabolomic tissue interrogation assays. The pilot data presented for each assay 
comprises 3 to 48 different datasets that are obtained from 3 to 22 participants (Supplementary 
Table 1). Participants kidne tissue was procured from a spectrum of tissue resources including 
from unaffected parts of tumor nephrectomy specimen (n=38), living donor preperfusion 
biopsies (n=3), diseased donor nephrectomies (n=5), and normal surveillance transplant (n=5) 
and native kidney biopsies (n=4). Within each assay we generated lists of differentially 
expressed genes (DEGs), proteins (DEPs) and metabolites that describe those genes, 
proteins or metabolites that are upregulated or enriched in a particular single cell cluster, single 
nucleus cluster or kidney subsegment, if compared to all other clusters or subsegments. 

For pathway enrichment analysis and module identification, cluster-specific differentially 
expressed genes (DEGs) were obtained from published analyses from PREMIERE TIS 
(Michigan, Princeton, Broad) single-cell RNA sequencing (RNASeq) 8 and UCSD/WU TIS 
single-nucleus RNASeq 9 datasets. We excluded the clusters proximal tubular cells-3 and 
principal cells-2 from the single-nucleus RNASeq dataset, since these clusters showed an 
inflammatory or a stress response. Laser microdissected (LMD) RNASeq and proteomics, 
near-single-cell (NSC) proteomics and spatial metabolomics datasets were individually 
processed as described in supplementary methods.  
 
Ranking of Differentially Expressed Genes and Proteins 

In the case of the DEGs and DEPs that were used for dynamic enrichment analysis, 6 
module identification, 21 and post-hoc power analysis, single nucleus and single cell DEGs 
were first ranked by p-value and then by decreasing fold changes (i.e., fold changes were used 
as a tiebreaker). Top ranked 300 entities were subjected to downstream analysis. Similarly, 
DEGs and DEPs obtained for each kidney subsegment based on LMD bulk RNASeq, or LMD 
and NSC proteomics, were ranked first by p-value and decreasing fold changes and the top 
ranked 300 DEGs and DEPs subjected to pathway enrichment analysis or module detection 
(see below). 

For the cross-platform comparisons, we did not combine sequencing and proteomic results 
of multiple participants to generate DEGs and DEPs, but compared the results obtained for 
each individual person. Therefore, we could not calculate p-values for the LMD and NSC 
technologies. Furthermore, since both proteomic technologies only generated results for 2 
subsegments, i.e. the glomerular and proximal tubule segments for NSC proteomics and the 
glomerular and tubulointerstitial subsegments for the LMD proteomics, we collectively 
calculated the fold changes between podocyte/glomeruli and proximal tubules/tubulointerstitial 
cells or subsegments for each individual participant (see below). DEGs and DEPs were then 
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ranked by fold change, before submitting the top ranked 300 DEGs and DEPs for downstream 
analysis.  

 
Standard and Dynamic Enrichment Analysis 

Top DEGs and DEPs for each podocyte cluster/glomerulus, proximal tubule cell 
cluster/tubulointerstitium and principal cell cluster/collecting duct subsegment were separately 
subjected to standard enrichment analysis using Gene Ontology Biological Processes (GO 
BPs) or the Molecular Biology of the Cell Ontology (MBCO) level-3 subcellular processes 
(SCPs) 6 and Fisher’s Exact Test. An open access ontological framework for this analysis can 
be found at https://github.com/SBCNY/Molecular-Biology-of-the-Cell.  

The right-tailed Fisher’s Exact test calculates the likelihood of obtaining the observed or a 
higher overlap between a list of DEGs/DEPs and a list of genes/proteins annotated to a 
particular SCP. To calculate this likelihood, we consider which genes or proteins have a 
chance to be identified as differentially expressed. Only genes/proteins that are detected by 
this method and statistically analyzed for differential expression can be identified as 
DEGs/DEPs and only these genes/proteins are considered as the background set for the 
Fisher’s Exact test. Similarly, the background set only contains genes that have a chance to be 
assigned to a given SCP in a given ontology. In the case of the single cell 8 and nucleus 9 
RNASeq datasets, all genes that are part of the UMI (Unique Molecular Identifier) read count 
matrices comprise the experimental background genes. In the case of the LMD bulk RNASeq, 
and the LMD and NSC proteomics datasets, the experimental background genes/proteins 
were all genes/proteins that were statistically analyzed by the TISs for differential expression 
(Supplementary Tables 2, 3 and 4, respectively). Ontological background genes/proteins were 
all genes that are annotated to at least one pathway within that particular ontology. The 
intersection of the experimental and ontological background genes/proteins is called 
background genes/proteins and is different for every assay and ontology combination. For 
additional statistical accuracy we removed all genes and proteins that were not part of the 
background genes/proteins from the lists of DEGs, DEPs and SCP genes before each 
enrichment analysis. 

Additionally, we subjected the top DEGs and DEPs to dynamic enrichment analysis using 
MBCO 6. The annotated interconnected hierarchy of MBCO is enriched using a unique 
algorithm that infers relationships between functionally related SCPs. Dynamic enrichment 
analysis uses these relationships to generate context-specific higher-level processes by 
merging functionally related SCPs that contain at least one DEG or DEP. The context specific 
higher-level SCPs contain all genes of the original SCPs and are added to the annotated 
ontology to generate a context specific ontology. The context specific ontology at this point 
contains single or merged SCPs. This list is then used for enrichment analysis of the DEPs or 
DEGs using Fisher’s Exact test. The top five predicted SCPs or merged SCPs are connected 
based on the inferred relationships, and all networks for a particular cell type/segment merged, 
whereby each SCP was color-coded according to the source assay(s) that initiated its dynamic 
enrichment.  

 
Module Detection 

In parallel to enrichment analyses, we also performed another network-based pathway 
enrichment technique, identifying modules of cell-type specific marker genes within the kidney-
specific functional network using the HumanBase interface (hb.flatironinstitute.org). For each 
cell type (proximal tubule, podocyte and principal cell), module detection was performed using 
the top 300 DEGs from each cell-type specific transcriptomic dataset cluster and the top 300 
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DEPs from each proteomics dataset. Module detection is a network-based approach described 
in Krishnan et al., and construction of the functional networks is described in Greene et al 20, 21. 
In contrast to the prior knowledge-based MBCO networks, the kidney-specific functional 
network is constructed using a data-driven regularized Bayesian framework based on the 
information in thousands of datasets, which include co-expression, transcription factor binding, 
protein-protein interactions, and other data types. Modules are detected using a community 
clustering algorithm based on connectivity between genes in the kidney-specific functional 
network, and enrichment analysis is subsequently performed to identify functional enrichments 
in each module. 

 
Enrichment Analysis of Metabolites 

All glomerular and nonglomerular metabolites that were identified for the three participants 
were merged and subjected to pathway enrichment analysis using MetaboAnalyst 25. The top 
six predicted metabolic pathways were mapped onto MBCO pathways whenever possible; if 
they did not have a corresponding pathway, the original pathway names were preserved.  
 
Integration of Single-Cell/Single-Nucleus Transcriptomics 

In contrast to bulk mRNA sequencing, where the gene expression measurements reflect an 
average across all captured cell types, single-cell or single-nucleus mRNA sequencing allows 
the measurement and comparison of comprehensive gene sets obtained from individual cells. 
This approach enables mapping of cellular heterogeneity with high throughput. In the first 
phase of the project, three KPMP tissue interrogation sites (TISes) performed this approach to 
generate single/single nucleus expression data from normal adult kidney tissue. In addition to 
locally acquired kidney tissue samples, each TIS also used a set of common KPMP pilot tumor 
nephrectomy tissue samples to generate the expression data.  Single-cell transcriptomic data 
was produced by PREMIERE (24 libraries from 22 participants) 8 and UCSF (10 libraries from 
10 participants), whereas the single-nucleus data was made by UCSD (47 libraries from 15 
participants) 9. Following is the brief description of the integration of the data from the three 
sites.  

Data from each site were first processed using the Seurat 3.0 R package 26. As a quality 
control step, nuclei/cells with less than 500 and more than 5,000 features and more than 20% 
mitochondrial genes were removed. The processing steps included normalization and 
identification of highly variable genes. We then removed potential doublets using 
DoubletFinder 27 from each dataset. Next, we used the integration algorithm embedded in the 
Seurat R package to perform combined analysis of single-cell/single-nucleus transcriptomic 
data. The integration algorithm first identified a set of anchor genes in each processed dataset. 
These anchor genes were then used to harmonize the datasets. The downstream process 
included scaling, principal component analysis, batch integration using harmony, 
dimensionality reduction using Uniform Manifold Approximation and Projection (UMAP), and 
unsupervised clustering. The clustering was performed at a low resolutions (0.5). Enriched 
genes for each cluster compared to all other clusters were identified by running the Wilcoxon 
rank sum test. 
 
Integration of Single-cell, Single-nucleus and Laser Capture Microdissection Bulk 
Transcriptomics 

To integrate single-cell sequencing, single-nucleus sequencing, and LMD bulk 
transcriptomic datasets, we first determined the overlap between genes identified both in the 
LMD dataset and in the corresponding single-cell transcriptomic dataset. From this set of 
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shared genes, we restricted further analyses to a subset of genes showing variable expression 
in the single-cell dataset.  We then computed the Pearson correlation between each individual 
cell in a scaled single-cell dataset and the LMD transcriptomic dataset for the same participant. 
For this correlation, we used the logarithm of a “mean ratio vector” which is composed of 
relative expression of a gene within a subsegment divided by the average expression of the 
same gene within all other subsegments within the dataset for the same participant, averaged 
across all participants. Using this approach, we can assign each cell to the appropriate LMD 
segment that shows the highest correlation value. To evaluate the overall segment 
assignments for individual cell clusters, we examine the normalized distribution of cells 
assigned to each LMD segment within a given single-cell cluster and present this as a 
normalized heatmap that represents overlap between different transcriptomic assays.  

 
Post-hoc power analysis 

The  PREMIERE single-cell RNASeq 8 and the UCSD/WU single-nucleus RNASeq 9 
datasets were obtained from 22 and 15 participants, respectively, whose samples were 
sequenced in 24 and 47 libraries. We used these datasets to assess the reproducibility and 
reliability of both assays in a post-hoc power analysis. This analysis compares results of the 
full datasets with the results from down-sampled datasets where libraries are randomly and 
systematically removed from the full data. Both datasets were separately subjected to a 
standardized Seurat pipeline for the identification of single-cell (or -nucleus) clusters and 
DEGs. Nuclei and cells with less than 500 and more than 5,000 features as well as more than 
20% mitochondrial genes were removed. ‘SCTransform’ was used for data normalization and 
scaling (based on top 2,000 features), followed by principal component analysis. We used 
jackstraw analysis to identify the last significant principal component (alpha = 0.01) among the 
top 20 components. The last and all earlier principal components (independent of their 
significance) were used for dimensionality reduction before identifying single nucleus/cell 
clusters (resolution = 0.4). 

DEGs of each cluster were identified (adjusted p-value: 0.05) and compared with literature-
curated cell-type specific essential genes (Supplementary Table 9) using Fisher’s Exact test to 
assign a kidney cell type to each cluster. The assigned cell type is that cell type whose 
essential genes had the most significant enrichment among the DEGs of that cluster. To 
document the reliability of that cell type assignment we compared its p-value to the p-value of 
the second prediction (that cell type whose essential genes had the second most significant 
enrichment among the DEGs of that cluster). The larger the distance between both p-values, 
the more reliable the cell type assignment. The number of clusters that were assigned to each 
cell type was documented. Nuclei and cells that were assigned to a particular cell type and 
map or do not map to the corresponding tissue subsegment were counted as well, based on 
the subsegmental correlation analysis as described above. The top 300 DEGs were subjected 
to standard and dynamic enrichment analysis using gene ontology and MBCO. 

We progressively and randomly removed libraries from the full (reference) datasets to 
generate 100 non-overlapping downsampled datasets for each number of remaining 
participants. Downsampled data was subjected to our analysis pipeline and results were 
compared with the reference results. We calculated the percentage of downsampled datasets 
for each number of remaining participants that identified a particular cell type. If a particular cell 
type was identified in a down-sampled dataset we counted how many nuclei/cells were 
assigned to the same and a different cell type in the reference analysis and how many 
nuclei/cells of a particular cell type mapped and did not map to the correct tissue subsegment. 
We calculated the Pearson correlation between the DEGs and the pathways predicted for that 
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particular cell type in the downsampled datasets, and the reference datasets based on 
log2(fold changes) and negative log10(p-values), respectively. Since in the case of dynamic 
enrichment analysis the same SCP might be part of multiple SCP combinations that are 
predicted with different p-values, we assigned the most significant -log10(p-value) to each SCP. 

Pathway enrichment analysis normally involves identification of the most significant 
pathways irrespective of their p-values. A down-sampled dataset may still contain the same 
information as the full dataset, but less data might decrease reliability of the predictions and 
distort the ranking of the predicted pathways. As such, one might have to investigate lower 
ranked pathways. Consequently, we determined how many SCPs have to be considered in a 
down-sampled analysis to re-identify at least 70% (or 50%) of the top 10 or seven predictions 
obtained from standard or dynamic enrichment analysis with the full dataset, respectively. 
Using the full datasets, we identified the top 10 predicted GO BPs, the top 10 predicted MBCO 
level-3 SCPs based on standard enrichment analysis and the top seven predicted level-3 
SCPs or SCP-combinations based on dynamic enrichment analysis. We then analyzed for 
each down-sampled dataset, how many predictions are needed to reidentify at least 70% or 
50% of the identified reference SCPs. Notice that the top seven predictions based on dynamic 
enrichment analysis can contain more than seven SCPs, since each prediction is either a 
single SCP or a unique combination of two or three SCPs.  

Similarly, we randomly and progressively removed participants from the full LMD 
proteomics dataset, followed by the recalculation of fold changes and significance between the 
protein expression values in the glomerular and tubulointerstitial subsegments. All significant 
DEPs (FDR ≤ 0.05) were compared between the full and the downsampled datasets. 
Additionally, the top 300 significant DEPs of each subsegment were subjected to enrichment 
analysis and predicted pathways compared as described above. 

 
Proteomic-Transcriptomic Co-expression Analysis 

LMD and NSC proteomic datasets identified protein expression in two kidney subsegments: 
glomeruli and tubulointerstitium for LMD and glomeruli and proximal tubule for NSC. For an 
unbiased cross-platform comparison we focused on podocytes (glomeruli in LMD) and 
proximal tubular cells (tubular subsegments in LMD) in the single-nuclei/cell and LMD bulk 
RNASeq datasets. We identified technology and participant specific cluster gene expression, 
using the “Average Expression” functionality embedded in Seurat R package (RNA assay, 
counts slot) on the cells/nuclei assigned to the same clusters in the integrated PREMIERE, 
UCSF and UCSD/WU data analysis described above. The gene lists of all proximal tubule 
clusters of an individual participant and technology were merged. If a gene was identified by 
more than one cluster, we defined the highest expression value as the merged expression 
value for that gene. For each technology we characterized all genes/proteins that were 
identified in at least one cluster or subsegment of at least one participant and defined these 
genes/proteins as a technology specific background set. The intersection of all background 
sets was defined as the set of common genes. Participant-specific podocyte or glomerular 
gene and protein expression was calculated by dividing gene and protein expression in 
podocytes, or glomeruli, by gene and protein expression in proximal tubule cells or proximal 
tubule/tubulointerstitial subsegments, after adding 1 to prevent division by 0. Ratios were 
inverted to describe proximal tubule/tubulointerstitial specific gene expression. Log10 absolute 
expression values and log2(ratios) of all genes/proteins or all common genes/proteins were 
subjected to pairwise correlation, followed by hierarchical clustering. Log2 ratios were 
averaged over each participant within each technology and pairwise Pearson correlation 
coefficients were determined between the different technologies using the set of common 
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genes. Mean log2 ratios were averaged across the four RNASeq platforms and the two 
proteomic platforms, followed by determination of the Pearson correlation coefficient using the 
set of common genes. 

 
Comparison of Cell Type-specific Imaging and Transcriptomic Expression Data 

To integrate cell type-specific imaging and transcriptomic data, we first constructed 
matrices with average expression values for each gene in each cell type cluster for both the 
set of 16 normalized integrated transcriptomic clusters and the CODEX clusters. We 
normalized each gene in both transcriptomic and CODEX matrices to have a mean of 0 and 
standard deviation of 1. We then filtered both datasets to include only genes represented in 
both the transcriptomic and the imaging datasets and computed the average expression of 
each gene/protein in each cell type. We next considered the problem of constructing a matrix 
to computationally map transcriptomic cell clusters to the imaging cell clusters. Specifically, let 
A be the N x k1 matrix of average protein expression values by imaging data clusters, C be the 
N x k2 matrix of average gene expression values by transcriptomic clusters, and M be the k1 X 
k2 matrix that maps A to C. We want to find M such that AM ≈ C. We can approximate M by 
taking the Moore-Penrose pseudoinverse of A, denoted A+, with M ≈ (A+)(C). M then provides 
a set of weights that map the imaging cell types to the transcriptomic cell types, with a large 
value for an entry in M in position (i, j) indicating that the imaging cell type i makes a large 
contribution to approximating the expression vector of transcriptomic cell type j as a linear 
combination of imaging cell types. Before visualizing matrix M as a heatmap, we first 
normalized each row to have mean of 0 and standard deviation of 1 in order to identify the 
transcriptomic cell types that are weighted most heavily in the mapping to each imaging cell 
type.  

 
Generating Pathway Maps for Beta-oxidation Network from Single-cell RNASeq Clusters  

To better understand one of the most significantly enriched pathways in our integrated 
analytics of proximal tubules, reactions involved in fatty acid beta oxidation were extracted 
from KEGG (www.genome.jp/kegg). KEGG enzyme and compound IDs were replaced by their 
human annotated genes and compound names, respectively. Subcellular localization of each 
gene was identified using the jensenlab human compartment database based on a jensenlab 
confidence of at least four (i.e. 80% of maximum confidence in the database) 28. Gene 
products that were annotated to the mitochondrial matrix or inner mitochondrial membrane 
were kept, generating a canonical network of mitochondrial beta oxidation. Mean read counts 
of the 7 proximal tubule subclusters within the PREMIERE dataset were assigned to the 
enzymes using the average expression functionaly of the Seurat R package (RNA assay, 
counts slot). Relative levels of the enzymes were visualized as pie charts, where the size of 
each slice represents the fraction of that enzyme in a particular subcluster. For each enzyme 
the average read counts in each subcluster was normalized towards the sum of the enzyme 
read counts in all clusters. The diameter of each enzyme pie chart is an arbitrary minimum 
diameter (30 arbitrary units) plus the binary logarithm of the sum of the mean UMI counts for 
that enzyme normalized to the mean UMI counts of the least expressed enzyme. 
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Figure 1. Graphic outline of KPMP data integration and harmonization procedures. The 
“subway map” representation of the experimental and analytical protocols used within KPMP is 
shown in operational flow from kidney biopsy to the integrated multimodal data represented in 
this manuscript. The kidney biopsy, which is processed through three different tissue 
processing methods, is shared among TISes that generate the data. Four key modalities of 
molecular data are generated: transcriptomic (red), proteomic (blue), imaging (yellow) and 
metabolomic (green). Biopsy core 2 and 3 are used for the molecular analysis, biopsy core 1 
(not depicted) is used for histological analysis. 
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Figure 2. Downstream analysis of differentially expressed genes and proteins 
documents coherence and complementary results obtained by seven different 
technologies/centers. Nephrectomy tissues were subjected to single-nucleus (SN) and 
single-cell (SC) RNASeqq, laser microdissected (LMD) RNASeq and proteomics, near single 
cell (NSC) proteomics and spatial metabolomics. (A) Top 300 differentially expressed genes 
(DEGs) and differentially expressed proteins (DEPs) of each proximal tubule/tubulointerstitium 
cluster or subsegment were subjected to dynamic enrichment analysis using the Molecular 
Biology of the Cell Ontology (MBCO). Subcellular process (SCP)-networks were generated 
from the top seven most significant predictions. Metabolites associated with non-glomerular 
compartments were subjected to MetaboAnalyst enrichment analysis and the top six predicted 
pathways were integrated into the SCP networks after mapping to MBCO SCPs. Predicted 
SCPs that describe canonical cell biological functions were removed from this figure and are 
instead shown in Supplementary Figure 1A. (B) All six datasets were screened for genes, 
proteins and metabolites that are expressed or generated by proximal tubule cells or 
subsegments and are associated with metabolic SCPs selected from the SCP-networks. (C) 
The top 300 DEGs/DEPs for each proximal tubule cell type or subsegment were subjected to 
module identification in a kidney-specific functional network, and gene ontology enrichment 
analysis was performed for each module. The size of each node represents its degree, and its 
color the number of data sources supporting that gene. 
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Figure 3. Integrated transcriptomic analysis reveals coherent cell-specific signatures. 
(A) Integrated UMAP of single-cell and single-nucleus technologies with associated LMD 
images of nephron subsegments. The corresponding segments shown include the markers 
used to identify each: Phalloidin – FITC labeled phalloidin for dissection of glomeruli and other 
structures; LRP2 – Megalin with AlexaFluor 568 secondary (red); UMOD – directly conjugated 
AlexaFluor 546 Ab to uromodulin (red); fluorescein labeled PNA – Peanut Antigen labels 
collecting ducts (green); DAPI included for nuclei (blue). (B) Each cluster contains cells and 
nuclei obtained by each one of the three technologies. (C) Each cell in the integrated 
transcriptomic single-cell analysis is mapped to the closest subsegment (subsegment with 
highest Pearson correlation of gene expression) in the laser capture microdissection data. To 
compute the Pearson correlation between the gene expression profiles of cells and LCM 
segments, the gene profiles were restricted to genes shared between the two datasets and 
showing variable expression in the single-cell dataset and correlations were computed 
between the logarithm of the mean ratio vector for each LCM segment and the scaled 
expression profile of each cell in the single cell dataset. For each single-cell cluster and LCM 
subsegment, the number of cells from that cluster assigned to the corresponding segment is 
displayed in the heatmap. The heatmap is colored according to the number of cells assigned to 
each LCM subsegment, scaled so each row has mean of 0 and standard deviation of 1. 
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Figure 4. Post-hoc power analysis suggests that 16-25 participants are sufficient to 

reproducibly characterize most major cell types in single-cell transcriptomics. 

Participant libraries or samples were randomly and progressively removed from the (A) 

PREMIERE single-cell (24 libraries), (B) UCSD single-nucleus (47 libraries) RNASeq, and (C) 

LMD proteomics (11 samples) datasets to generate at max 100 non-overlapping random 

groups for each number of remaining participants. Datasets were subjected to an automated 

single-cell/nucleus and proteomic data analysis pipeline and results compared between the 

downsampled and complete reference datasets. ‘Cluster count’ documents how many clusters 
were assigned to a particular cell type. ∈/∉ reference cluster counts how many cells that were 

assigned to a particular cell type were assigned to the same cell type (above abscissa, positive 

cell counts) or a different cell type (below abscissa, negative cell counts) in the reference 

analysis. ∈/∉ LMD subsegment counts how many cells assigned to a particular cell type have 

gene expression values that correlated the most with the named (above abscissa, positive 

value) or a different (below abscissa, negative value) LMD subsegment. The Pearson 

correlation of the log2(fold changes) of cell type specific DEGs or subsegment specific DEPs 

was determined between each down-sampled dataset and the reference dataset. To quantify 

how reliably biological information can be reproduced, we identified to which rank a researcher 

has to lower the cutoff to re-identify at least seven or five of the top ten pathways that were 

predicted based on the full dataset and standard enrichment analysis and to re-identify 70% or 

50% of all SCPs that were part of the top seven predictions based on dynamic enrichment 

analysis. Libraries label the number of used sequencing libraries for each down-sampled 

dataset, cells the average number of total cells that were obtained from those libraries. See 

Supplementary Figure 2 for additional quality control measures and cell types. 
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Figure 5. Correlation analyses demonstrate concordance across different omics 
technologies. Log2(fold changes) between podocyte (or glomerulus) and proximal tubule cells 
(or tubulointerstitium) were calculated for each participant based on each technology and 
common genes/proteins identified by each technology subjected to comparative analysis. (A) 
Hierarchical clustering of pairwise correlation coefficients between the log2(fold changes). 
Heatmap shows up- and downregulated genes/proteins of each sample in red and blue, 
respectively. Genes and proteins were rearranged according to the clustering results. White 
spots indicate undetected genes or no expression differences. Labels describing 
podocyte/glomerular and proximal tubule/tubulointerstitium RNASeq and proteomic datasets 
are colored aquamarine and orange, respectively.Curly brackets group samples obtained by 
the same technology: 1: LMD RNASeq, 2: NSC/LMD Proteomics, 3: SC RNASeq PREMIERE, 
4: SC RNASeq UCSF, 5: SN RNASeq UCSD/WU. (B) Log2(fold changes) obtained by the 
same platform were averaged across all participants, followed by averaging of the results 
across all four transcriptomics and two proteomics platforms. Positive (negative) log2(fold 
changes) indicate podocyte/glomerular (proximal tubule/tubulointerstitial) expression, 
respectively. (C) Pairwise correlations between the single cell/nucleus RNASeq and proteomic 
datasets. 
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Figure 6. Imaging-based and transcriptomic assays show consistent cell-type-specific 
marker signatures. (A) CODEX multiplexed immunofluorescent image of an exemplary 
biopsy section (renal transplant biopsy with acute cellular rejection), showing identical areas 
with two different sets of markers. Upper panel: collagen IV (red), CD31 (green), synaptopodin 
(magenta), Pan-CK (gray), CD278 (cyan), CD90 (yellow). Lower panel: CD45 (red), CD4 
(green), CD11c (gray), CD8 (cyan), CD38 (magenta), CD279 (yellow). Cell nuclei are blue 
(stained with Hoechst dye). Original magnification 200x. (B) Selected individual channels of 
the subregions highlighted by yellow and green brackets above. (C) Mapping matrix showing 
relationships between markers characterizing CODEX cell-type clusters and transcriptomic 
cell-type clusters. Colorbars to the top and left of the heatmap show broad cell-type categories 
(red = endothelial, green = fibroblast/mesangial, blue = podocyte, orange = tubular, yellow = 
immune). 
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Figure 7. Proximal tubule cell subtype-specific beta oxidation pathways. (A) Simplified 
flow chart for the generation of cell subtype specific metabolic reaction networks that can form 
the basis for dynamic models. (B) Proximal tubule (PT) cell subtype specific mean enzyme 
expression values were added to a canonical reaction network of mitochondrial beta oxidation 
(using the PREMIERE single cell data). Enzymes are visualized as pie charts, where the sizes 
of the slices represent the relative enzyme expression (i.e. averaged read counts) in each cell 
subtype. Total pie sizes logarithmically increase with increasing summed enzyme expression 
of all cell subtypes. The prominence of the PT-1 and PT-2 slices suggests that most of the 
beta oxidation activity arises from two particular PT cell subtypes. Notify that we used directed 
arrows to indicate which reactants are on the same side of the equation, although all reactions 
are reversible. (C) Mean UMI counts of each enzyme in percent of the summed mean UMI 
counts of that particular enzyme. Colors shift from light to dark orange with increasing 
percentage. Enzyme names are official NCBI gene symbols. (D) Cell counts of the proximal 
tubule clusters documents that all clusters contain cells from each tissue collection procedure.  
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SUPPLEMENTARY INFORMATION 
 
Supplementary Methods 

Seven different RNASeq, proteomics, metabolomics and imaging datasets were generated 
and analyzed by five different TISes. The PREMIERE TIS (composed of Michigan, Princeton, 
Broad)  generated single cell RNASeq data, the USCD/WashU TIS generated single-nucleus 
data, the UCSF TIS generated single-cell RNASeq, near-single-cell proteomics and Codex 
imaging data, the IU/OSU TIS generated laser microcapture dissection (LMD) RNASeq and 
LMD proteomics data and the UTHSA-PNNL-EMBL TIS generated spatial metabolomics data. 
 
Single-nucleus RNASeq (UCSD/WashU) and Single-cell RNASeq (PREMIERE) 

UMI count matrixes and list of differentially expressed genes were downloaded from 
published analyses for the PREMIERE TIS (composed of Michigan, Princeton, Broad) single-
cell RNA sequencing (RNASeq) 8 and UCSD/WashU TIS Single-nucleus RNASeq 9 datasets. 
We excluded the proximal tubular cells-3 and principal cells-2 clusters from the single-nucleus 
RNASeq dataset, since these clusters showed an inflammatory or a stress response. 
 
Subsegmental LMD Transcriptomics (IU/OSU) 

A comprehensive Laser MicroDissection (LMD) protocol is published on protocols.io 

(https://www.protocols.io/view/laser-microdissection-8rkhv4w). Briefly, 12 m frozen sections 
are obtained from an Optimal Cutting Temperature (OCT) preserved tissue block and adhered 
to LMD membrane slides (Leica, Buffalo Grove, IL). Tissue undergoes a rapid staining protocol 
involving acetone fixation, washes with RNAse-free PBS, and antibody incubation in 10% 
bovine serum albumin. Slides undergo dissection with a Leica LMD6500 system with pulsed 
UV laser. After collecting a minimum tissue area of 500,000 μm2 in an RNAse-free micro-
centrifuge tube, RNA is isolated using the PicoPure RNA IsolationKit according to 
manufacturer’s instructions (Applied Biosystems, Cat# KIT0204). RNA quality is assessed by 
bioanalyzer, ribosomal RNA is depleted, and cDNA libraries are prepared using the SMARTer 
Universal Low Input RNA Kit (Takara, No. 634938). Sequencing was conducted on an Illumina 
HiSeq4000. Mapping was performed using STAR (v2.5.2b) and read counts were quantified 
with featureCounts (subread v.1.5.0). Total read counts mapping to each gene were generated 
with edgeR, normalized, and converted to expression ratios. 

Segment specific gene expression was compared to the gene expression in all other 
subsegments using an unpaired ttest with equal variance. Subsegment specific gene 
expression ratios were calculated similarly. 
 
Subsegmental LMD Proteomics (IU/OSU) 

A comprehensive Laser MicroDissection (LMD) proteomics protocol is published on 
protocols.io https://www.protocols.io/view/laser-microdissection-for-regional-transcriptomics-
8rkhv4w?version_warning=no. Our LMD proteomic methods have also been previously 

published in detail 29, 30.  Briefly, 10 m frozen sections are obtained from an OCT preserved 
tissue block and adhered to polyethylene naphthalate (PEN) membrane slides for LMD. 
Frozen sections are fixed in 70% ethanol, incubated in H2O to remove OCT, briefly stained 
with hematoxylin, and dehydrated in ethanol. LMD is performed and glomeruli and 
tubuloninterstitial samples are collected separately in 0.5% Rapigest/50 mM NH3HCO3 solution. 
The collected samples are then boiled for 20 minutes for protein retrieval and digested 
overnight with trypsin.  Peptides are dried, re-suspended in acetonitrile/formic acid and 
analyzed using liquid chromatography tandem-mass spectrometry (LC-MS/MS) analysis using 

https://www.protocols.io/view/laser-microdissection-8rkhv4w
https://mcas-proxyweb.us3.cas.ms/certificate-checker?login=false&originalUrl=https%3A%2F%2Fwww.protocols.io.us3.cas.ms%2Fview%2Flaser-microdissection-for-regional-transcriptomics-8rkhv4w%3Fversion_warning%3Dno
https://mcas-proxyweb.us3.cas.ms/certificate-checker?login=false&originalUrl=https%3A%2F%2Fwww.protocols.io.us3.cas.ms%2Fview%2Flaser-microdissection-for-regional-transcriptomics-8rkhv4w%3Fversion_warning%3Dno
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an Easy-nLC 1000 HPLC coupled to an Orbitrap Fusion mass spectrometer (Thermo 
Scientific, Waltham, MA).  Data is searched using Proteome Discoverer 2.1 (Thermo Scientific) 
and searched against a human Uniprot database (version 05/26/18). Data are analyzed 
following global normalization of spectral counts. 

Glomerular gene expression was compared to the tubulointerstitial gene expression using 
an unpaired t-test with equal variance. Glomerular to tubular specific gene expression ratios 
were calculated similarly. 
 
3-D Immunofluorescence Imaging and Tissue Cytometry (IU/OSU) 

The entire 3-D fluorescence imaging and tissue cytometry protocol is published on 
protocols.io (dx.doi.org/10.17504/protocols.io.9avh2e6).  Briefly, frozen cores are sectioned at 

50 m using a cryostat and fixed using 4% paraformaldehyde. A panel of up to 8 antibodies 
was incubated to identify renal and immune cell types. Images were acquired in up to 8 
channels using a Leica SP8 Confocal Microscope. Volume stacks spanning the whole 
thickness of the tissue were taken using a 20× NA 0.75 or 40× NA 1.3 objectives with 0.5- to 
1.0-μm spacing. Large scale confocal imaging of overlapping volumes was performed with an 
automated stage and stitched using Leica LASX software (Germany). 3-D image rendering 
was done using Voxx v2.09d. The 3-D tissue cytometry was performed on image volumes 
using VTEA, which was developed as a plugin for ImageJ/FIJI as previously described 31. 

 
CODEX Imaging (UCSF) 

The CODEX system is the combination of an (1) oligo-nucleotide based antibody labeling-
detection technique, (2) a microfluidics instrument coupled with an inverted microscope 
capable of whole slide scanning, and a (3) software suite that consists of an image processor 
and an ImageJ-based image analysis solution 32. First, a section from an optimal cutting 
temperature compound-embedded tissue block is cut and incubated manually in a single step, 
with a set of antibodies each tagged with a unique oligonucleotide sequence. The following 
phase consists of iterative cycles of detection, imaging, and dye removal. In each cycle, a 
maximum of three targets are revealed by spectrally distinct dyes (AF488, Atto 550, and Cy5) 
tagged with oligonucleotides complementary to the oligonucleotide tag of a given antibody. 

The acquired images are processed by the CODEX processor in a set sequence of steps: 
shading correction, tile registration, deconvolution, drift compensation, overlap cropping, 
background subtraction, best focus detection/interpolation, stitching, cell segmentation, and 
spillover compensation. 

The output of the cell segmentation step of image processing is an .fcs file (similarly to 
flow-cytometry solutions). This file contains the individual fluorescent intensity values (can 
range from 0 to 65k) of each cell for each marker. Fluorescent intensity values allow the 
definition of cell populations by manual gating of the segmented cells using visual assessment 
of the image and previous literature data on the expression pattern of our marker set in human 
kidney. 

Native renal biopsies taken at University of California, San Francisco from patients with 
minimal change disease (n = 3), thin-basement membrane disease (n = 1), and post-surgical 
biopsies from tumor nephrectomies (n = 2) were used. In addition, case 18-162 from KPMP 
pilot sample pool was also processed (Supplementary Table 1). 
 
Spatial Metabolomics (UTHSA-PNNL-EMBL) 

10 m thick renal cortical tissues were sectioned on a cryostat (Leica Microsystems) and 
prepared for matrix assisted laser deposition imaging (MALDI) mass spectrometry by spraying 

https://dx.doi.org/10.17504/protocols.io.9avh2e6
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with the norharmane MALDI matrix (Sigma) using the TM-Sprayer automated spraying robot 
(HTX Technology). Imaging was performed using a MALDI-FTICR imaging mass spectrometer 
(Bruker Daltonics) set at a 120,000 resolving power at m/z 400 or a MALDI-Orbitrap mass 
spectrometer (Thermo Scientific) set at the 120,000 resolving power at m/z 200. The data was 
inspected following the quality control guidelines as developed within KPMP and converted 
into the imzML centroided format using the SCiLS software (Bruker Daltonics) or ImageInsight 
software (Spectroglyph, LLC), followed by the submission to METASPACE and annotation 
against the SwissLipids and HMDB molecular databases with the false discovery rate of 20%, 
as described in 33.  

We have developed an approach to find glomeruli markers in MALDI imaging mass 
spectrometry data by using METASPACE and co-localization analysis. First, we have selected 
a template marker that was localized within the glomerular regions, as confirmed by the 
histology. This ion was annotated by METASPACE as ceramide phosphate CerP(d34:1) 33. 
Then, we performed a spatial co-localization analysis by calculating for all other detected 
metabolites and lipids their spatial correlation with CerP(d34:1) using the cosine score. The 
molecules with the correlation above 0.2 were considered and manually curated to show the 
co-localization with the glomeruli regions by overlaying every ion image with the histological 
image. The resulting 30 markers were uploaded to the KPMP DataLake and were used for the 
multiomics integration analysis.  
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Supplementary Figure 1. Top 300 differentially expressed genes (DEGs) and differentially 
expressed proteins (DEPs) of each proximal tubule/tubulointerstitium, podocyte/glomerular and 
principal cell/collecting duct cluster or tissue subsegment were subjected to dynamic 
enrichment analysis using the Molecular Biology of the Cell Ontology (MBCO). SCP-networks 
were generated from the top seven most significant predictions. (A) The predicted proximal 
tubule SCP-networks contained SCPs that describe basic cell biological functions. SCP-
networks that are related to specific proximal tubule cell functions are visualized in figure 2A. 
(B) Podocyte/glomerular SCP-networks almost exclusively focus on SCPs involved in barrier 
formation, a fundamental prerequisite for glomerular filtration. (C) Principal cell/collecting duct 
networks describe ion reabsorption pathways that document collecting duct function in the fine 
tuning of ion and water reabsorption for whole body water homeostasis. (D) All glomerular and 
non-glomerular metabolites obtained from the three nephrectomy samples were subjected to 
pathway enrichment analysis using MetaboAnalyst. Top six predictions were mapped to 
MBCO level-3 SCPs, if possible.   (E) The human interactome is a network of ~15,000 proteins 
that are connected, if they physically interact with each other. To identify if the DEGs and 
DEPs of each cell type/tissue subsegment map to the same area in the human interactome 
and consequently interact with the same proteins, we used the top 300 DEGs and DEPs as 
seed nodes and calculated the Module Distance Score (MDS) for each interactome protein 7. 
The MDS is higher the closer a protein is to the seed nodes when compared to all other non-
seed nodes. Hierarchical clustering of pairwise correlations between MDS documents that the 
different technologies identify cell type specific DEGs and DEPs that map to neighboring areas 
in the human interactome. Red and blue indicate positive and negative module distance 
scores, respectively. Sample rows and interactome protein columns were rearranged 
according to the hierarchical clustering results. Modules were generated for proximal tubule 
cells and subsegments (F) and for principal cells and (G) collecting duct subsegment, as 
described in Figure 2C.  (H) Volcano plots illustrating differentially expressed genes in laser 
micro-dissected sub-segments for the glomerulus, proximal tubule, thick ascending loop of 
Henle, distal convoluted tubule, collecting duct, and interstitium without tubules. Comparisons 
are made between the sub-segment of interest and all other subsegments. The p-value 
threshold depicted is an unadjusted p < 0.05. 
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Supplementary Figure 2. Single-cell transcriptomic post-hoc power analysis. (A) Single-cell 
and single-nucleus sequencing analytical pipeline (B) and downstream post-processing 
analytical pipeline used for post-hoc power analysis. Single-cell clusters were assigned to cell 
types based on the significance of the overlap between cluster-specific DEGs and cell type 
specific essential genes as determined by Fisher’s exact test. Complete post-hoc power 
analysis profile for (C) PREMIERE single-cell, (D) UCSD single-nucleus, and (E) LMD 
proteomics. Differences between the minus log10(p-values) of the most significant and second 

most significant overlaps document high certainty of cell type assignments. ∈/∉ LMD 
subsegment shows a how many cells map (above abscissa, positive values) or do not map 
(below abscissa, negative values) to different subsegments than the ones shown in figure 4. 
Rank cutoffs were generated as described within Figure 4. Pearson correlations between 
down-sampled datasets and complete (reference) datasets based on the top-50 GO Biological 
Processes (with or without removal of all processes with less than 50 annotated genes) and 
the top-50 MBCO level-3 SCPs. For dynamic enrichment analysis all SCPs among the top 25 
predictions were compared. Since an SCP can be predicted as part of multiple SCP 
combinations or as a single SCP, its p-value was assigned to be the p-value of the most 
significant prediction. RNASeq quality control measures include the number of total cells in 
each analysis as well as the number of unique molecular identifiers (UMIs), features and the 
percentage of expressed mitochondrial (MT) genes in each cluster.  
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Supplementary Figure 3. Correlation analysis between the different omics technologies. 
Pairwise correlation coefficients of (A) absolute gene/protein expression in 
podocyte/glomerulus and proximal tubule/tubulointerstitial hierarchically cluster by technology 
(and not by anatomical region), (B) independently if the full dataset or (C) a dataset that 
contains only shared genes and proteins. However, considering the expression ratio of each 
gene/protein versus the other anatomical region enables clustering by anatomical region, as 
shown in Figure 5A, even if all genes/proteins are considered. Top 300 DEGs or DEPs were 
subjected to pathway enrichment analysis and (D) the top-50 GO BPs and (E) MBCO level-3 
SCPs subjected to hierarchical clustering based on pairwise correlation coefficients between -
log10(p-values). All heatmaps show either logarithmized absolute gene/protein expression 
values of each sample, log2(fold changes) or minus log10(p-values). White spots indicate 
undetected genes/proteins/SCPs or genes and proteins that are equally expressed in both cell 
types/kidney subsegments. Sample rows and gene/protein columns were rearranged 
according to the hierarchical clustering results. 
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Supplementary Figure 4. Proximal tubule cell subtype specific beta oxidation. (A) Full beta 
oxidation pathway map containing the relative enzyme expression in each proximal tubule cell 
subtype. (B) Mean UMI counts of each enzyme in each cell subtype. 
 



 

SUPPLEMENTARY TABLES 
 
Supplementary Table 1. Samples used for different analytical pipelines. 
 
Supplementary Table 2. Laser microdissected (LMD) RNASeq gene expression 
 
Supplementary Table 3. Laser microdissected (LMD) Proteomics protein expression 
 
Supplementary Table 4. Near Single Cell (NSC) Proteomics protein expression 
 
Supplementary Table 5. Spatial metabolomics metabolite correlations for participants 18-139 
(A), 18-142 (B) and 18-342 (C). 
 
Supplementary Table 6. Top 300 differentially expressed genes (DEGs) and proteins (DEPs) 
predicted by each assay for each analyzed cell type/tissue subsegment.  
 
Supplementary Table 7. Dynamic enrichment analysis results of the top 300 DEGs and 
DEPs.  
 
Supplementary Table 8. Gene Ontology enrichments for modules in the kidney-specific 
functional network of top DEGs and DEPs in proximal tubules, podocytes, and principal cells. 
 
Supplementary Table 9. Literature curated cell-type specific essential genes used for cell 
type identification. 
 
 
 
 
 
 
  



 

DATA AVAILABILITY 
All raw and processed data described in this manuscript is available through the KPMP 

Data Portal at kpmp.org. 
 
 
 
ACKNOWLEDGEMENTS 

Kidney Precision Medicine Project acknowledges the all the participants, patients, and the 
scientific officers from National Institute of Diabetes and Digestive and Kidney Diseases. 
KPMP was supported by NIH grants UH3 DK114923, UH3 DK114920, UH3 DK114933, UH3 
DK114937, UH3 DK114907 and U2C DK114886. A complete list of all KPMP members can be 
found at kpmp.org. We thank Joseph Goldfarb for critically reading of the manuscript. 
 
 
 
AUTHOR CONTRIBUTIONS 
 
Integrated analysis and interpretation: Jens Hansen1,*, Rachel Sealfon2,*, Rajasree 
Menon3,*, John Cijiang He1, Jonathan Himmelfarb11, Olga G. Troyanskaya2,#, Matthias 
Kretzler3,#, Ravi Iyengar1,#, Evren U. Azeloglu1,# 
 
Pilot tissue procurement, data coordination and metadata curation: Becky Steck3, Abhijit 
Nair3, Jeffrey B. Hodgin3, Matthias Kretzler3,#, Evren U. Azeloglu1,# 
 
SC/SN RNASeq data generation and processing: Rajasree Menon3,*, Blue B. Lake5, 
Andrew Schroeder6, Edgar A. Otto3, Jeffrey B. Hodgin3, Minnie Sarwal6, Kun Zhang5, Sanjay 
Jain12, Matthias Kretzler3,#, Jens Hansen1,* 

 
LMD transcriptomics data generation and processing: Michael T. Eadon4, Daria 
Barwinska4, Pierre C. Dagher4 
 
LMD and NSC proteomic data generation and processing: Samir Parikh7, John P. 
Shapiro7, Tara K. Sidgel6, Minnie Sarwal6, Brad Rovin7 
 
Imaging data generation and processing: Dejan Dobi6, Seth Winfree4, Tarek M. El-Achkar4, 
Zoltan Laszik6 
 
Spatial metabolomics data generation and processing: Theodore Alexandrov8, Dusan 
Velickovic9, Christopher R. Anderton9,10, Guanshi Zheng10, Annapurna Pamreddy10, Kumar 
Sharma10 
 
Manuscript preparation: Jens Hansen1,*, Rachel Sealfon2,*, Rajasree Menon3,*, Michael P. 
Rose3, Yongqun He3, Ian H. de Boer11, Olga G. Troyanskaya2,#, Matthias Kretzler3,#, Ravi 
Iyengar1,#, Evren U. Azeloglu1,#. All authors commented and edited the manuscript and 
assisted in the assembly of the final version. 
 
 
DISCLOSURE OF FINANCIAL INTERESTS 

None.  



 

REFERENCES 
 
1. Strippoli GF, Craig JC, Schena FP. The number, quality, and coverage of randomized controlled 

trials in nephrology. Journal of the American Society of Nephrology : JASN 2004; 15: 411-419. 

2. Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol 2017; 18: 83. 

3. Yan J, Risacher SL, Shen L, et al. Network approaches to systems biology analysis of complex 
disease: integrative methods for multi-omics data. Brief Bioinform 2018; 19: 1370-1381. 

4. Shi WJ, Zhuang Y, Russell PH, et al. Unsupervised discovery of phenotype-specific multi-omics 
networks. Bioinformatics 2019; 35: 4336-4343. 

5. Bersanelli M, Mosca E, Remondini D, et al. Methods for the integration of multi-omics data: 
mathematical aspects. BMC Bioinformatics 2016; 17 Suppl 2: 15. 

6. Hansen J, Meretzky D, Woldesenbet S, et al. A flexible ontology for inference of emergent 
whole cell function from relationships between subcellular processes. Sci Rep 2017; 7: 17689. 

7. Berger SI, Ma'ayan A, Iyengar R. Systems pharmacology of arrhythmias. Sci Signal 2010; 3: 
ra30. 

8. Menon R, Otto EA, Hoover P, et al. Single cell transcriptomics identifies focal segmental 
glomerulosclerosis remission endothelial biomarker. JCI Insight 2020; 5. 

9. Lake BB, Chen S, Hoshi M, et al. A single-nucleus RNA-sequencing pipeline to decipher the 
molecular anatomy and pathophysiology of human kidneys. Nat Commun 2019; 10: 2832. 

10. Bhargava P, Schnellmann RG. Mitochondrial energetics in the kidney. Nat Rev Nephrol 2017; 
13: 629-646. 

11. Wang K, Kestenbaum B. Proximal Tubular Secretory Clearance: A Neglected Partner of Kidney 
Function. Clin J Am Soc Nephrol 2018; 13: 1291-1296. 

12. van Swelm RPL, Wetzels JFM, Swinkels DW. The multifaceted role of iron in renal health and 
disease. Nat Rev Nephrol 2020; 16: 77-98. 

13. Zarjou A, Bolisetty S, Joseph R, et al. Proximal tubule H-ferritin mediates iron trafficking in acute 
kidney injury. J Clin Invest 2013; 123: 4423-4434. 

14. Eich C, Manzo C, de Keijzer S, et al. Changes in membrane sphingolipid composition modulate 
dynamics and adhesion of integrin nanoclusters. Sci Rep 2016; 6: 20693. 

15. Dar MI, Jan S, Reddy GL, et al. Differentiation of human neuroblastoma cell line IMR-32 by 
sildenafil and its newly discovered analogue IS00384. Cell Signal 2020; 65: 109425. 

16. Li J, Li Q, Geng S. All‑trans retinoic acid alters the expression of the tight junction proteins 
Claudin‑1 and ‑4 and epidermal barrier function‑associated genes in the epidermis. Int J Mol 
Med 2019; 43: 1789-1805. 

17. Mallipattu SK, He JC. The beneficial role of retinoids in glomerular disease. Front Med 
(Lausanne) 2015; 2: 16. 

18. Meyer C, Nadkarni V, Stumvoll M, et al. Human kidney free fatty acid and glucose uptake: 
evidence for a renal glucose-fatty acid cycle. Am J Physiol 1997; 273: E650-654. 



 

19. Kang HM, Ahn SH, Choi P, et al. Defective fatty acid oxidation in renal tubular epithelial cells 
has a key role in kidney fibrosis development. Nature medicine 2015; 21: 37-46. 

20. Greene CS, Krishnan A, Wong AK, et al. Understanding multicellular function and disease with 
human tissue-specific networks. Nat Genet 2015; 47: 569-576. 

21. Krishnan A, Zhang R, Yao V, et al. Genome-wide prediction and functional characterization of 
the genetic basis of autism spectrum disorder. Nat Neurosci 2016; 19: 1454-1462. 

22. Koplev S, Lin K, Dohlman AB, et al. Integration of pan-cancer transcriptomics with RPPA 
proteomics reveals mechanisms of epithelial-mesenchymal transition. PLoS Comput Biol 2018; 
14: e1005911. 

23. Schwanhausser B, Busse D, Li N, et al. Global quantification of mammalian gene expression 
control. Nature 2011; 473: 337-342. 

24. Calizo RC, Bhattacharya S, van Hasselt JGC, et al. Disruption of podocyte cytoskeletal 
biomechanics by dasatinib leads to nephrotoxicity. Nat Commun 2019; 10: 2061. 

25. Xia J, Psychogios N, Young N, et al. MetaboAnalyst: a web server for metabolomic data 
analysis and interpretation. Nucleic Acids Res 2009; 37: W652-660. 

26. Stuart T, Butler A, Hoffman P, et al. Comprehensive Integration of Single-Cell Data. Cell 2019; 
177: 1888-1902.e1821. 

27. McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: Doublet Detection in Single-Cell RNA 
Sequencing Data Using Artificial Nearest Neighbors. Cell Syst 2019; 8: 329-337.e324. 

28. Binder JX, Pletscher-Frankild S, Tsafou K, et al. COMPARTMENTS: unification and 
visualization of protein subcellular localization evidence. Database (Oxford) 2014; 2014: 
bau012. 

29. Satoskar AA, Shapiro JP, Bott CN, et al. Characterization of glomerular diseases using 
proteomic analysis of laser capture microdissected glomeruli. Mod Pathol 2012; 25: 709-721. 

30. Shapiro JP, Biswas S, Merchant AS, et al. A quantitative proteomic workflow for 
characterization of frozen clinical biopsies: laser capture microdissection coupled with label-free 
mass spectrometry. J Proteomics 2012; 77: 433-440. 

31. Winfree S, Khan S, Micanovic R, et al. Quantitative Three-Dimensional Tissue Cytometry to 
Study Kidney Tissue and Resident Immune Cells. J Am Soc Nephrol 2017; 28: 2108-2118. 

32. Goltsev Y, Samusik N, Kennedy-Darling J, et al. Deep Profiling of Mouse Splenic Architecture 
with CODEX Multiplexed Imaging. Cell 2018; 174: 968-981 e915. 

33. Palmer A, Phapale P, Chernyavsky I, et al. FDR-controlled metabolite annotation for high-
resolution imaging mass spectrometry. Nat Methods 2017; 14: 57-60. 

34. Edison Ong, Lucy L. Wang, Jennifer Schaub, John F. O'Toole, Becky Steck, Avi Z. Rosenberg, 
Frederick Dowd, Jens Hansen, Laura Barisoni, Sanjay Jain, Ian H. de Boer, M. Todd Valerius, 
Sushrut S. Waikar, Christopher Park, Dana C. Crawford, Theodore Alexandrov, Christopher R. 
Anderton, Christian Stoeckert, Chunhua Weng, Alexander D. Diehl, Christopher J. Mungall, 
Melissa Haendel, Peter N. Robinson, Jonathan Himmelfarb, Ravi Iyengar, Matthias Kretzler, 
Sean Mooney, Yongqun He and the Kidney Precision Medicine Project. Modeling Kidney 
Disease Using Ontology: Perspectives from the KPMP. Nature Nephrology in press. 

 


	A_Main_text
	B1
	B2_Figure1_caption
	C1
	C2_Figure2_caption
	D1
	D2_Figure3_caption
	E1
	E2_Figure4_caption
	F1
	F2_Figure5_caption
	G1
	G2_Figure6_caption
	H1
	H2_Figure7_caption
	I_Supplementary_information
	J1
	Integration_paper_figures_2020July13_Part8
	Integration_paper_figures_2020July13_Part9
	Integration_paper_figures_2020July13_Part10
	Integration_paper_figures_2020July13_Part11
	Integration_paper_figures_2020July13_Part12

	J2_Supplementary_figure1
	K1
	Integration_paper_figures_2020July13_Part13
	Integration_paper_figures_2020July13_Part14
	Integration_paper_figures_2020July13_Part15
	Integration_paper_figures_2020July13_Part16

	K2_Supplementary_figure2
	L1
	L2_Supplementary_figure3
	M1
	M2_Supplementary_figure4
	O_Supplementary_tables_references

