
DOI: 10.1515/awutm -2016-0011 Analele Universităţii de Vest,
Timişoara

Seria Matematică – Informatică
LIV, 2, (2016), 3– 11

Towards Building a Uniform Cloud Database

Representation for Data Interchange

Alina Andreica

Abstract. The paper proposes design principles for data rep-
resentation and simplification in order to design cloud services
for data exchange between various information systems. We use
equivalence algorithms and canonical representation in the cloud
database. The solution we describe brings important advantages
in organizational / entity communication and cooperation, with
important societal benefits and can be provided within cloud ar-
chitectures. The generic design principles we apply bring impor-
tant advantages in the design of the interchange services.

AMS Subject Classification (2000). 68P05 ; 68P20 ; 68W30
Keywords. equivalence and simplification algorithms, data in-
terchange, cloud services, pattern matching, software design

1 Introduction and Working Framework

Software design principles apply systematic techniques to application design,
use abstract patterns for process modeling and implement adequate tools for
problem solving. Within this framework, we propose means of using sim-
plification and equivalence algorithms for modelling data representation in
order to ensure data interchange between information systems by means of
cloud services. Equivalence algorithms can be implemented in an abstract
manner, based on category theory [1]. Applying generic techniques is useful

4 Alina Andreica An. U.V.T.

both for design reasons and for tackling specific problems based on certain
mathematical models [1]. Interoperability is the capability of different sys-
tems to share functionalities or data [2]. System interoperability [3] has
been dealt with by means of various models [3] and has been extensively re-
searched for business processes [5]. In [6] we overview interoperability layers,
principles and tools. Ones of the most relevant are: The Electronic Data
Interchange (EDI) model [7], the XML standard [8], RosettaNet [9], ebXML
[10] standards. Knowledge discovery, inference, logic are enabled by semantic
interoperability. Knowledge sharing over computer information systems is a
major task of the interoperability approach and is based on the Conceptual
Knowledge Processing paradigm [11]. The Open Internet of Things standards
[12] may also be used as an efficient framework for data interchange. Within
section 2 we address means of implementing simplification and equivalence
algorithms on various entities, including hierarchical structures. Section 3
describes the way in which specific pattern matching problems can be solved
by using equivalence algorithms. Section 4 addresses principles of data inter-
change between information systems using a cloud database retaining data
in a canonical representation. Conclusions reveal the most important topics
presented in the paper and future research and development directions.

2 Equivalence Algorithms

Within this section we present means of implementing equivalence algorithms
[13] on various entities, including hierarchical structures. We use the imple-
mentation framework that we have introduced in [1]. An equivalence relation
′ ≈′ verifies reflexivity, symmetry, transitivity properties [13]. Since the data
volume that has to be processed is usually large, the most efficient way of
organizing it is using a relational database, in which entities are retained in
dedicated tables. Database structuring principles for processing equivalent
entities are introduced in [1]. We use as well tables for retaining the entities
on which equivalence algorithms are applied. We process entities belonging
to the dedicated tables that retain those entities:

IsSpecificEntity(d) :=

{
true, d ∈ Tbl entity[id entity]

false, otherwise

Hierarchical data structures are often necessary to be processed in a database;
such structures may be retained in relational databases by means of ascen-
dant / successor pointers in dedicated tables. Principles for retaining and

Vol. LIV (2016) Cloud Database Representation for Data Interchange 5

processing hierarchical structures and a comparison of their processing tech-
niques are presented in [4].We note that such a hierarchical structure can of-
ten be encountered and therefore is useful to be processed. In [1] we present
means of processing hierarchical structures at database level, using a dedi-
cated table for retaining the corresponding entities and a 4 pointers retaining
technique: ascendant, descendant, predecessor (same level), successor (same
level). In [1] we present the case study of equivalent disciplines and in [4] an
example for plant therapy.

In [4] we detail these principles for processing modules of didactic ac-
tivities. The implementation uses stored procedures parameterized with the
level value, data selection operations being performed dynamically, in respect
with this value. The system uses a MS SQL database [9] and the hierarchical
structures which model curricula information are mainly processed by means
of stored procedures (details can be found in [4]).

Postorder type n-ary tree evaluation algorithms based on the above de-
scribed tree representation are implemented in order to parse the hierarchy
of entities. Some efficiency studies we have performed on processing hierar-
chical structures at database level are given in [15]. In a general hierarchical
entity structure, leaf entities are the ones retained in the basic dedicated
tables.

IsLeafEntity(m) :=

{
true,∀d ∈ m : IsSpecificEntity[d]

false, otherwise

For example, in [1], we process hierarchies of modules in which all non-
leaf modules consist only of modules. Let d1, d2 be two entities. We use the
notation ′ ∼′ for describing the equivalence of the two entities d1 ∼ d2; this
relation may have various significances in various case studies see [4], [1]. In
each case, we have to check whether the relation is an equivalence one since
by verifying if it complies reflexivity, symmetry, transitivity properties. The
canonical representative of an entity equivalence class is important since it
will be further used in pattern matching rules see section 3. We implemented
the simplification algorithm for determining the canonical representative [6]
for a given entity. Based on this algorithm, we may also test the equivalence
of two entities by verifying they have the same canonical representative. By
generically denoting with ′ ≈′ an equivalence relation for categories of entities,
we may state that:

e1 ≈ e2⇔ (∀d1 ∈ e1,∃!d2 ∈ e2 : d1 ∼ d2)∧

(∀d2 ∈ e2,∃!d1 ∈ e1 : d1 ∼ d2)

6 Alina Andreica An. U.V.T.

For a leaf category of entities e, we consider Canonic(e) = {Canonic(d)|d ∈
e} the set of canonical representative for the contained entities. It can
be shown that two leaf equivalent entities have the same sets of canonical
representatives. For a category of entities we can recursively compute its
canonical representative set as:

Canonic(e) =

{
{Canonic(d)|d ∈ e}, IsLeafEntity[e]
{Canonic(ed)|ed ⊂ e}, otherwise

Intuitively, the canonical set for a category of entities is obtained by
”flattening” its category sub-tree and computing the union set of all canonical
sets corresponding to its descendant leaf entities. Generically, we may state:

Canonic(e) = {Canonic(d)|d ∈ e}

3 Pattern Matching Principles

We implement pattern matching rules for equivalent entities by reducing the
mapping between two elements, belonging to the two equivalence classes that
are to be mapped, to mapping their canonical representatives, as described
below: Let ei ∈ E where E is a class of equivalent entities, emj ∈ EM where
EM is a class of equivalent mapped entities, e0 the canonical representative
of class E and em0 the canonical representative of class EM . Then we reduce
a mapping of two entities ei, emj belonging respectively to the equivalence
classes E, EM to the mapping between the two canonical representatives
e0 ∈ E, em0 ∈ EM see Figure 1:

ei → emj → e0 → em0, where ei ∈ E, emj ∈ EM .
We may as well use the equivalent mappings: ei → em0 or e0 → emj,

where ei ∈ E, emj ∈ EM.
For the case of equivalence classes with hierarchical representations see

Figure 2 the canonical representatives are the roots of the corresponding
trees (Figure 2). Parsing algorithms for finding the canonical representatives
generally use the ascendant pointer see section 2. We can use the above de-
scribed rules in managing pattern matching problems on equivalence classes
that occur in the design of expert systems.

We note that for the database representation it is important to improve
table access speed table by indexing the tables in respect with the search id,
this principle is very useful to be applied as well in managing hierarchical
representations at database level, which are frequently processed in order to
find the canonical representative.

Vol. LIV (2016) Cloud Database Representation for Data Interchange 7

Figure 1: Pattern Matching scheme for Equivalence classes

Figure 2: Pattern Matching on Hierarchical Structures of Equivalence Classes

8 Alina Andreica An. U.V.T.

4 Principles for Building the Cloud Uniform Database
Representation

In order to enable the exchange of various data between two information
systems, using dedicated databases, with different structures, we will set the
canonical representation on the cloud database. The mapping process will
be user assisted since it requires human input. The data interchange ar-
chitecture [6] provides data exchange services between various information
systems or entities using cloud services and a cloud database for mapping
and handling the exchanged information see Figure 3. Data exchange may
be performed both in XML relational database formats; for XML format,
the corresponding database representation [1] is generated into the cloud
database. The following sequences are pursued: data to be exchanged is
marked in the source database using dedicated columns, mapped into the
cloud database, sent and retained into the cloud database. For the desti-
nation system / database, which sends data requests, a data mapping is
also performed and required data is sent from the cloud database into the
destination one. The data exchange may use multi-criteria agents imple-
mented in the cloud environment both for performing necessary mappings
and for handing communication. The cloud data interchange services are to
be designed for supporting automatic data exchange in various fields, with
important communication efficiency benefits [6].

5 Conclusion and Future Work

The paper proposes data representation and design principles for performing
data exchange between various information systems and databases by means
of cloud services. Simplification and equivalence algorithms are used for en-
suring canonical data representation in the cloud database and ensuring data
correspondence in the data exchange process. The generic manner in which
we implement simplification and equivalence algorithms on various entities,
including hierarchical ones, represented at database level, ensures general-
ity and applicability in various cases. Pattern matching rules and canonical
representatives are used in the cloud database. We reveal the advantages
of applying the algebraic equivalence model and of applying canonical rep-
resentatives properties in solving pattern matching problems and designing

Vol. LIV (2016) Cloud Database Representation for Data Interchange 9

Figure 3: Data Interchange Model Using Cloud Services

data exchange services. The data interchange model we present provides im-
portant practical advantages for increasing organizational competitiveness,
with a significant societal impact on institutional and entities cooperation,
efficient information access and management for various stakeholders. A rel-
evant advantage of the solution is its flexibility and efficiency in information
exchange (only relevant data is exchanged), with minimal resources involved.
The model we describe develops a standardization framework for enabling
data interchange, supports information management and data exchange, us-
ing cloud services and ensuring systems and entities interoperability. Future
work is related to further development and implementation of the above de-
scribed principles.

References

[1] Alina Andreica, Daniel Stuparu, and Calin Miu, Applying Mathematical Mod-
els in Software Design, 2012 IEEE 8th International Conference on Intelligent Com-
puter Communication and Processing, Cluj-Napoca, Romania, Proceedings of ICCP
2012, IEEE, Ed: Ioan Alfred Letia, 2012, 87–90

10 Alina Andreica An. U.V.T.

[2] Daniel Olmedilla, Nobuo Saito, and Bernd Simon, Educational Technology &
Society, Special Issue on Interoperability of Educational Systems, 9, (2006)

[3] Edwin Morris, Linda Levine, Craig Meyers, Pat Place, and
Dan Plakosh, System of Systems Interoperability (SOSI): Final Report,
http://www.sei.cmu.edu/reports/04tr004.pdf , retrieved May 2016, (2004)

[4] Alina Andreica, Daniel Stuparu, and Calin Miu, Design Techniques in Pro-
cessing Hierarchical Structures at Database Level, Proceedings of Iadis Information
Systems 2010, Porto, 18-20 March 2010, IADIS Press, Ed: M Nunes, P Isaias, P
Powell, 2010, 483–488

[5] Jörg Ziemann, Architecture of Interoperable Information Systems - An Enterprise
Model-Based for Describing and Enacting Collaborative Business Processes, Logos
Verlag, Berlin, 2010

[6] Alina Andreica, Florina Covaci, and Josef Küng, A Generic Model for Cloud
Data Interchange, Proceedings of 14h RoEduNet International Conference - IEEE,
Craiova, 24-26 September 2015, IEEE Computer Society, 2015, 138–142

[7] Susie Adams, Dilip Hardas, Aktar Iossein, and Charles Kaiman, BizTalk
Unleashed, Sams Publishing, p. 966, Indianapolis, Indiana, 2002

[8] ***, XML standard, http://www.w3.org/TR/xml11/#charsets, retrieved November
2015

[9] ***, Rosetta Rosettanet Overview: Clusters, Segments, and PIPs
(ver 02.13.00), http://www.rosettanet.org/TheStandards/ RosettaNetStan-
dards/PIPOverview/tabid/3482/Default.aspx, retrieved December 2015, (2011)

[10] ***, OASIS OASIS ebXML Messaging Services Version 3.0: Part 1, Core Fea-
tures, http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/ebms core-3.0-spec.pdf,
retrieved December 2015, (2007)

[11] Gerd Stumme and Rudolf Wille, Begriffliche Wissensverarbeitung / Conceptual
Knowledge Processing, Springer Verlag, 2000

[12] Bruno Buchberger and Loos Rudiger, OpenIoT - Open Internet
of Things architecture, Algebraic Simplification, Computing, Suppl. 4,
(https://github.com/OpenIotOrg/openiot/wiki/OpenIoT-Architecture, retrieved
December 2014B.), 11-43

[13] Alina Andreica, Applying Equivalence Algorithms in Solving Pattern Matching
Problems. Case Study for Expert System Design, Proceedings of the international
Conference in on Theory and Practice in Modern Computing TPMC 2016, July 1-4,
Portugal, (2016), 255–259

[14] Alina Andreica, Daniel Stuparu, and Calin Miu, Design Techniques in Pro-
cessing Hierarchical Structures at Database Level, Proceedings of Iadis Information
Systems 2010, Porto, 18-20 March 2010, Ed: M Nunes, P Isaias, P Powell, (2010),
483–488

[15] Alina Andreica, Daniel Stuparu, and Iulia Mantu, Symbolic Modelling of
Database Representations, International Symposium on Symbolic and Numeric Algo-
rithms for Scientific Computing 2005, (2005), 59–62

Vol. LIV (2016) Cloud Database Representation for Data Interchange 11

Alina Andreica

Faculty of European Studies
Babes-Bolyai University
1, Kogalniceanu Street
Cluj-Napoca
Romania

E-mail: alina.andreica@ubbcluj.ro

Received: 23.07.2016

Accepted: 6.11.2016

