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*e current stage of technology development is characterized by an increase in the complexity of the created anthropogenic
systems, a constant expansion of the scope of information technologies, an increase in the intelligence level of the created systems,
and the appearance of new paradigms for building information-oriented systems such as cyber-physical systems, the Internet of
things, and cloud and fog systems. Modern information-oriented systems very often have dynamic structure, implement complex
adaptive behavior, and can be considered as systems with agile architecture. *e article discusses one of the possible approaches
for building cyberphysical systems with agile architecture on fog platforms. *e idea of the proposed approach is to accumulate
knowledge about the current state of the observed cyberphysical systems in the form of knowledge graphs. As a model, it is
proposed to use multilevel relatively finite state operating automaton at the upper level and knowledge graphs at the lower level. A
distinctive feature of the developed approach is that models that describe the current state of the observed system can be
built automatically.

1. Introduction

*e progress of engineering and information technologies
makes it possible to create very complex anthropogenic
systems. *e complexity of such new generation of systems
results from the increasing of the number of elements, the
number of internal and external links, the complexity of
behaviour, and the variability of the structure and behaviour
of such systems in time.

Modern anthropogenic systems can be defined as
complex, multilevel, heterogeneous, distributed, network-
centric and data-centric, and intelligent systems. *e
implementation of these qualities requires the presence of an
information processing component, including large-volume
information storage and powerful computers. Tallows

consider modern anthropogenic systems as Software In-
tensive Systems (SwIS) [1].

Modern systems consist of elements of different nature,
such as mechanical and electromechanical elements; it can
also be natural entities, biological and human entities.

Nowadays, one can observe appearance of such new
classes of systems as cyberphysical systems (CPS) and
sociocyber systems[2, 3].

In other words, one can say that a significant part of
complex anthropogenic systems has the property of
changing their structure and behaviour depending on the
external or internal contexts. Such systems can be defined as
variability-intensive systems (VIS) [4, 5]. General trends in
the development of anthropogenic systems allow assuming
that the systems of next generation will be also VIS.
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Solving the problem of variability management for
complex, multilevel heterogeneous distributed systems is a
nontrivial task, especially when reconfiguration decisions
are made autonomously at several levels in different sub-
systems of a distributed system.

*is article discusses one of the possible approaches for
solving the problem of managing variability at the archi-
tectural level by using the agile architecture approach
(AAA). *e investigation is conducted in relation to CPS
built on fog platforms [6], which are actively used in the
construction of modern large-scale systems.

*e proposed article includes 13 sections. Section 2
defines such concepts as variability, agility, agile architecture
(AA), and their relationship. Section 3 contains the problem
statement of the study. Section 4 discusses the current state
of the agile architecture systems (AAS) construction tech-
nology. Section 5 describes the suggested approach. Section
6 discusses the problem of building an Agile Architecture
CPS (AA CPS). Section 7 discusses the main tasks to be
solved to support agility in CPS. In Section 8, it is proposed
to use the automata representation to describe the mecha-
nisms of agility. Section 9 describes the Agility Support
Models (ASM). In Section 10, it is proposed to define 5
maturity levels when building AACPS. Section 11 discusses
possible approaches for implementing AACPS. Section 12
provides an example of using AAA. Section 13 contains
conclusions on the article.

2. Variability, Agility, and Agile Architecture

Nowadays, many different terms are used to describe the
variability of the structure and behaviour of the systems. In
relation to information system, for SwIS and for CPS, such
terms as adaptive, flexible, reconfigurable, dynamic, and
agile are widely used [4, 5, 7].

*e term agility inWikipedia is defined as “the ability to
change the body’s position efficiently” (https://en.
wikipedia.org/wiki/Agility). In the IT sphere, this term is
also actively used. In relation to SwIS, the term agility can
be defined as the ability of a system to adapt to a certain
context [5].

*ere are three main variants of the term agility use: (i)
the use in a broad sense as a synonym of such terms as
flexibility and adaptability [7], (ii) relation to the SwIS design
process [8], and (3) relation to SwIS architectures [4, 5]. It
should be noted that the concepts of Agile Process (AP)
[8, 9] and AA are correlated to each other, although the
mechanisms used are different. AP is a process that is fo-
cused on working with constantly changing requirements
and belongs to the design stage. AAS are systems which are
able to adapt to changes in the runtime context.

Recently, instead of the term agility, the term variability
is sometimes used [4, 5, 9]. However, according to the
authors of the article, these are different concepts. Variability
can be defined as the ability of a system to change its state,
and agility can be defined as the ability of a system to re-
spond to a change in state or context.

It should be noted that majority of modern complex
systems implement the mechanisms of agility [10, 11].

*e subject of consideration in this article is AACPS
implemented on fog platforms.

3. Problem Statement

*ere are several reasons why we deal with the variability of
structure and behavior, the main of which are the following:
(i) increase in performance by means of system scaling, (ii)
increase in reliability (availability) indicators due to the
implementation of the self-healing procedure, (iii) support
for intelligent interfaces, (iv) restructuring in order to op-
timize the functioning, and (v) modernization of the system.

*e problem of variability management can be formu-
lated as follows. It is necessary to findmechanisms that allow
determining the current state of a CPS, to present infor-
mation in the required form to stakeholders and (or) to form
reaction to a change in the structure, behavior of the ob-
served (managed) system (OMS), or a change in the context.

*e proposed article considers a possible approach for
solving the problem of managing variability at the archi-
tectural level for multilevel complex distributed heteroge-
neous CPS.

4. The State-of-the-Art Agile
Architecture Systems

Publications related to AAS can be divided into two groups:
publications related to agile architecture systems themselves
and publications related to the study of mechanisms that can
be useful in implementing AAS. *e first group includes
early publications on dynamic computers such as [12],
publications related to various aspects of adaptation, early
publications related to AA [4], and recent publications on
the topic [5, 11].

All these works are devoted to the consideration of the
general principles of AAS building but contain few infor-
mation about possible approaches to the agility mechanisms
realization. *e second group includes studies of general
mechanisms that can be useful for AAS building: studies of
adaptation mechanisms [7], variability [4, 5], synthesis of
automata [13, 14], programs, [15–17] and business processes
(BP) [18].

Despite the fact that the concept of AA itself was in-
troduced quite a long time ago, the authors are not aware of
works that offer AA models and frameworks.

*is article is a further development and generalization
of the results of the authors research in the fields of the
synthesis of relatively finite automata, the synthesis of
knowledge graphs [19, 20], and data acquisition systems in
distributed heterogeneous CPS [21].

5. Suggested Approach

*e developed AAA is based on the following principles.

(1) *e proposed AAA assumes the construction of a
multilevel system of models operating in discrete
time in terms of discrete states. Each element of the
model is a dynamic model of the corresponding
architectural element of the model and can be
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considered as digital shadow (DSH) of the OMS
element.

(2) *e proposed AAA is focused on use in VIS CPS.
(3) AAA is considered as one of the possible imple-

mentations of the Model-Based System Architecture
(MBSA) approach [22].

(4) Models are considered as an independent element of
the software architecture. *e model is considered as
an object with which any actions that can be per-
formed with other objects are allowed. Models can be
used at all stages of the life cycle. *is article dis-
cusses the use of run time models.

(5) ASM can be implemented as objects, services,
components, libraries, and loadable modules and in
any other way.

(6) *e AAA approach is based on the use of ASM,
which are built and maintained up to date
automatically.

(7) All requests to collect data or change the state of the
OMS from potential stakeholders go to the ASM and
not directly to the OMS. *e model contains all the
necessary Data, Information, and Knowledge (DIK)
to answer all the requests of all potential stake-
holders, which can include both users and subsys-
tems, for example, the agility management
subsystem.

*e need to move the OMS to a new architectural state
(Ast) may be required in the following cases: internal
events can occur, such as changes in the structure because
of the failure of individual subsystems, the appearance of
new subsystems, or suboptimal functioning of the system,
when it is necessary, for example, to perform load
balancing.

AACPS can be considered as a Context Aware System
(CAS) [23]. At the same time, it is necessary to distinguish
between static and dynamic agilities. At the development
stage, development time agility is implemented, and at the
operation stage run time agility is realized.

It should be noted that the proposed approach is close to
the Digital Twins approach [24]. It can also be considered as
an implementation of the VIS [5] and evolutionary archi-
tecture concepts [25] applied to CPS.

6. Agile Architecture CPS

In recent years, CPS has found increasing practical usage
and CPS can be considered as one of the possible areas of
application of the proposed approach. It should be noted
that CPS can be considered as a design paradigm that is
based on the architectural approach to design [26]. To date,
significant parts of the existing and projected SwIS are
systems consisting of components of different physical
nature, i.e., CPS. At the same time, it should be noted that
the increase of the level of intelligence of created CPS and
the increase of usage of ambient intelligence systems
(AMIS) [27] are observed.

+e Generalized Structure of the CPS. In the most
general sense, modern CPS can be defined as multilevel
(multilayer) systems, which are systems of the sur-
rounding intelligence. It should be noted that modern
CPS can include many thousands of elements.
*e generalized structure of the CPS is shown in
Figure 1.
In general case, CPS consists of 6 levels (layers): sensor
level, fog computing level, cloud computing level, CPS
level, CPS systems level, and AmIS. *e sensor layer,
fog layer, and cloud layer correspond to the levels of the
IoTreferencemodel [28]. Many CPS are built on the fog
[18] platform, and, for CPS fog, the platform is rep-
resented as a set of services. *e system can consist of
an arbitrary number of CPS that can be integrated at
different levels (data, applications, and user interfaces).
At each level, the models are described using special-
ized dictionary. Stakeholders interact with the system
through the distributed human machine interface
subsystems, which support AMI interface [27]. It is
necessary to mention that different groups of stake-
holders use different Domain Specific Languages (DSL)
[29] to interact with CPS and can have concerns
correlated with different levels.
+e Main Types of Variability that Occur in CPS.
Obviously, when using models in run time mode, it is
necessary to track changes in the CPS state. *e main
types of variability in structure, behavior, and context
that may need to be monitored when using the model
approach are shown in Figure 2. *is variability clas-
sification can be conceded as adaptation of [30] to CPS
and run time agility.
Variability can manifest itself both in the structure and
in the behavior of an OMS. Changes in the structure
and/or behavior can occur for a number of reasons.
When using dynamic architectures, this is a normal
process. Changes in the structure and behavior of the
OMS can be associated with the implementation of
contextual or content adaptation in order to optimize
functioning. Changes in the structure may be due to
malfunctions or modernization of the system, in par-
ticular, switching on or off the equipment.

*us, we can assume that models can be used to solve
tracking changes in the structure of the OMS, behavior
changes, and tasks of tracking user activities.

7. Main Tasks to Be Solved to Support
Agility in CPS

*e implementation of the proposed approach is reduced for
solving the following main tasks: (i) building and main-
taining a multilevel model in an adequate state, (ii) building
a script that implements the procedure for collecting data
about the current state of an OMS, (iii) support DSLs using
which different categories of stakeholders can communicate
with OMS, and (iv) bringing the OMS in line with the model.
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8. Automata Representation of AACPS

Formally, AACPS can be defined as: AACPS� <OMS,
OMSMM, SH, I1, I2, I3, I4>, where OMS is an observable
and managed system, OMSMM is agility management
module (subsystem), and SH is a set of stakeholder groups
(not necessarily people) and 4 interfaces. I1 is the interface
for maintaining the relevance of the OMS, I2 is the interface
for supporting the correspondence of the architectural state
of the model and the OMS, I3 is the interface for querying
the state of the OMS, and I4 is the interface for managing the
OMS (Figure 3).

*e following main special cases can be distinguished: (i)
the structure and behavior of the OMS being static, (ii) when
it is only necessary to monitor the state of the OMS, and (iii)
when there is only one user group. In the case when the
variability of the structure and behavior is absent or min-
imal, there is no need to use dynamic models. In this case,
models can be built in statics at the design stage based on
Model Driven Architecture (MDA) models.

If stakeholders only want to receive data about the state
of the OMS, then we are dealing with a DSH [31]. In this
case, the control can be carried out via other channels, for
example, in manual mode. If there is only one group of
stakeholders with the OMS, then models can be built in

terms of the corresponding subject area. If there are several
different groups of stakeholders who have different con-
cerns, then the task of presenting the model becomes more
complicated.

Formally, the interaction of OMS and OMSMM can be
represented as interacting automata.

*e OMS automaton can be defined as
OMSA�<InOMSA, OutOMSA, STOMSA, TROMSA>,
where InOMSA is a set of input signals, OutOMSA is a set of
output signals, STOMSA is a set of internal states, and
TROMSA is a function of transitions and outputs. InOMSA
is information about events that initiate the transition to a
new state. *ese can be internal events, external events, or
commands to change the state (reconfiguration). OutOMSA

Types of variability

The root cause Variability of the
structure

Variability of
behavior

Using dynamic
architectures

Reconfiguration
for the purpose of

adaptation

Malfunction

Modernization

Adding (removing)
elements

Parameters changing Changing of link
parameters

Adding (removing)
links

LC stage

Development

Execution

Modernization

Figure 2: Main types of variability.

OMS OMSMM

I1

I2 I4

I3

Stakeholder groups

Figure 3: Agile management subsystem.

AMI support subsystem

SoCPS

CPS

Cloud

Fog

Sensors

Figure 1: *e generalized structure of the CPS.
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is, for the most part, logs. STOMSA is a set of states of the
elements that make up the OMS, and these can be elements
of different physical nature. TROMSA are the rules,
according to which a decision is made to switch to a new
state. *e rules define FF and they can be of any complexity.

*e OMSMM automaton can be described as
OMSMM�<InMMA, OutMMA, STMMA, TRMMA>,
where INMMA are logs coming from OMSA or commands
from users. OutMMA is basically the results that are given
out according to user requests. STMMA is a set of internal
states of an abstract automaton. TRMMA is a function
(table) describing transitions between OMSMM states. *is
function can be quite complex. *e output signals can be
associated with both states and transitions. *e output
signals represent the results on the DSL [29].

In general, OMSMM is a distributed system consisting of
a set of interconnected nodes (OMSMMN), each of which
can be described as OMSMMN�<SE, AM, I, Srv> where SE
is the entity being modeled, AM is a model, I is an interface
with the OMS, and Srv are model access services. Interfaces
are intended for communication with the underlying layers,
and services are intended for communication with the
overlying layers.

*e simulated entity can have any nature. With rare
exceptions, the model is a virtual entity. I is interface for
communication with the observed object; Srv are supported
services. *e interface I can be defined as I�<RQ, ES>,
where RQ is a set of requests for data collection, and ES is
event streams.

*e typical structure of the agility support node is shown
in Figure 4.*e agility support node is a virtual machine that
includes the following main elements: (i) Agility Support
Models (AM) repository, (ii) AM processor, (iii) DSL
processor, (iv) events processor, (v) log request processor,
and (vi) control signals generation processor.

*e AM repository is designed to store AM files that can
be presented in different forms. AM processor is responsible
for working with models. Events processor is responsible for
processing the flow of events, which are presented in the
form of logs (L). Log request processor is responsible for the
formation and execution of scripts that implement the
collection of data necessary for building an AM. *is pro-
cessor sends requests to receive logs (L). Control signals
generation processor is responsible for generating man-
agement actions for OMS reconfiguration.

*e functioning of the agility support node can be
organized in different ways [21]: (i) the user request
processing is implemented within a single process; with
each request, the AM is built from scratch; (ii) there is a
separate process responsible for keeping the AM up to
date; for each specific moment of time there is an up-to-
date AM; (iii) a mixed strategy is used; for example, at the
upper level, the AM is built in the background mode, and,
at the lower level, the model is completed when a specific
request appears.

*e third option is of real practical interest, since it is
quite difficult to store and keep up-to-date complete model
of a large CPS. *us, two parallel processes are implemented
in the agility support node: the process of keeping the model

up to date and the process which is responsible to realize
stakeholder requests.

*e algorithm for keeping the model up to date:

(1) Start the OMS monitoring procedure
(2) Receive logs
(3) Clean and sort logs
(4) If AM correction is required, then continue; oth-

erwise go to item 2
(5) AM correction and go to item 2

Algorithm for processing user requests:

(1) Wait for a request from a user
(2) Request acceptance and transformation

DSL⟶MQL (Model Query Language, the language
of the request to the model)

(3) Request to the model using MQL
(4) If the response is not received, then continue; oth-

erwise MQL⟶ DS transformation and go to item 1
(5) Script synthesis
(6) Script execution
(7) Construction of the required AM of OMS
(8) Request for a new model
(9) MQL⟶ DSL and the transition of the item 1

*e task of matching the state of the OMS with AM can
be defined as the task of obtaining the OMS with the re-
quired ASt according to the model, which is AM. If we take
into account that each ASti corresponds to exactly one AMi,
then the automaton describing the dynamic structure and
behavior, which will be discussed below, can be conceded as
a Digital Twins (DT). In this case, each transition is addi-
tionally loaded with the reference (Ctr) to the script that is to
be executed for transition to this ASt. If for each architec-
tural element of the OMS a kind of a set function is available
that can set the element to any valid state and the order of
execution does not matter, then the task becomes trivial.

9. Agility Support Models

As a system of models that meet the requirements for ASM, a
two-level model M�<MA, MSB> can be proposed, MA is a
model of the upper (architectural) level, andMSB is a model
of the lower (structural-behavioral) level. MA describes the
OMS in terms of architectural states and MSB in terms of
structure and behavior. An MSB can contain an arbitrary
number of nesting levels.

+e Top-Level Model. *is model describes the behavior of an
OMS in terms of the change of ASt under the influence of
external or internal events (Ev) and control actions (Ctr),
which sets the OMS into this state. Using this model, it is
possible to describe the AA [7, 8] in terms of changes in ar-
chitectural states (Figure 5). *e transitions between archi-
tectural states can be matched with Fitness Function (FF) [25].

*e concept of agility assumes that for one system there
are several architectures; in the other words, AA system may
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have several architectural states. *e transition between ASt
occurs under the influence of both internal and external
factors. In the first case, we can talk about the imple-
mentation of self ∗ mechanisms (self-testing, self-healing,
etc.), and, in the second case, we can talk about CAS [23].

As a model describing the functioning, an AA system it is
proposed to use a multilevel relative finite state operational
automaton (MLRFSA) [15, 16], which describes the imple-
mentation of agility mechanisms in terms of transitions be-
tween architectural states (In the Figure 5, Ev denotes events
and Ctr denotes the reconfiguration control signals).

*e event can be either internal or external. It should be
noted that only in the simplest cases the structure of the
considered automaton is fully known; most often there is

some incomplete knowledge about the structure of the
automaton. In this case, it is necessary to solve the problem
of an automaton constructing (synthesis). Algorithms of
MLRFSA synthesis are described in sufficient detail in the
publications of the authors [15, 16].

*e automaton according to Figure 5 is a MLRFSA
operating in discrete space and discrete time [13, 32]. *is is
a class of automata in which the sets of acceptable pa-
rameters are, in general, finite only at the interval of one step
of behavior. At the same time, it is possible to change the set
of valid input, internal, and output states of the automaton,
as well as the set of valid functions of transitions and outputs
of the automaton; i.e., completely rebuild the automaton.

A MLRFSA state can be described by 10 parameters

MLRFSr � dar
, dbr

, dcr
, F

b
r, F

c
r, DA dbr−1

 , DB dbr−1
 , DC dbr−1

 , FB dbr−1
 , FC dbr−1

  , (1)

where dar
is an input parameter vector; dbr

is an internal state
parameter vector; dcr

is an output parameter vector. Func-
tions Fb

r are the functions that describe conditions of the
changing automaton internal state and Fc

r are the output
functions. *e automaton behavior can be described as
follows:

dbr+1
� F

b
r dar

, dbr
 ,

dcr
� F

c
r dar

, dbr
 .

(2)

States dbr
, dcr

, and dar
and functions Fb

r and Fc
r describe

automaton at the r-th moment of time and must satisfy the
following conditions:

dar
∈ DA dbr−1

 ,

dbr
∈ DB dbr−1

 ,

dcr
∈ DC dbr−1

 ,

F
b
r ∈ FB dbr−1

 ,

F
c
r ∈ FC dbr−1

 .

(3)

Events
processor

AM repository

AM
processor

DSL
processor

Log request
processor

OMS

R

L

Control signals
generation processor

C

Figure 4: Agility support node.

ASt0

ASt1 ASt2

ASt3

Ev/Ctr

Ev/Ctr

Ev/Ctr
Ev/Ctr

Figure 5: Transitions between ASt.
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*e state of the inputs of the automaton at the r-th
moment of time is limited by the set DA(dbr−1

) of valid states
defined relatively to the r− 1 moment of time. *e internal
state of the automaton at the r-th moment of time must refer
to the set DB(dbr−1

) of its permissible internal states. *e
possible states of the outputs of the automatonmust relate to
the set DC(dbr−1

). *e transition function Fb
r implemented

by the automaton at the r-th moment must be included in
the set of valid functions defined with respect to the r− 1
moment of time. *e set of transition functions FB(dbr−1

)

reflects the system of valid transitions of the automaton at
the r-th moment of time.*e function Fc

r of outputs at the r-
th moment of time must belong to the set FC(dbr−1

) of valid
functions that are active relatively to the r− 1 moment of
time.

*e transition from the automaton MLRFSAr to the
automaton MLRFSAr+1 at r+ 1 moment can be defined as

F
b
r : OKAr, dar

⟶ OKAr+1. (4)

*e functions of the automaton transitions from one
state to another can be also represented as

F
b
r dar

, dbr
 ⟶ dbr+1

. (5)

If many functions are used in the transitions, then the
transitions are described as follows:

Fzv dzve
; e � 1, Ez ⟶ dzva

; z � 1, Z; v � 1, Vz, (6)

where z and v define the type of functions used in transitions.
To each of the conditions, their statuses can be assigned:

main condition, precondition, and postcondition. For
preconditions, numbers of key terms under which they are
true can be determined, and postconditions define terms on
which they are false. If you set all the elements in the
conditions to their corresponding predicates Pzv0(Fzv0(g))

and Pzv1(dzv1), . . . , Pzva(dzva), which take the value 1 when
the variables are defined (true) and 0 otherwise, taking into
account the considered relations, the automaton model of
the observed object can be described in the form of a
structure:

MLRFSr � Fzv dzve
; e � 1, Ez ⟶ dzva

; dS ; dw ; z � 1, Z; v � 1, Vz , (7)

linking dS  and dw .
For practical implementation, described MLRFSA are

required to have relevant information about the current state
of the system, the changes taking place in the structure of the
system, and the context; on the basis of this information, a
decision on the transition of the system to another archi-
tectural state is made.

*e MLRFSA synthesis algorithms are considered in
detail in [13, 14, 32].

Lower-Level Models. *e lower-level models are domain-
oriented architectural models and can include several points

of view [33]. *e type of model used is determined by what
DIK stakeholders want to get about the OMS. It should be
noted that large CPS are characterized by the presence of
several groups of stakeholders with different concerns.

*e functioning of SwIS is usually described in terms of
structure and behavior [22]. *e Structural-Functional
Model (SFM) can be used for this purpose. *is model is
designed to generate models describing the OMS in terms of
the structure and implemented behavior in the form of BP.
*e proposed SFM is a bipartite colored graph and is defined
as

SPR � <OP, L, COL, GO, SEMO, STRM, tk, TK0, CSG, RMS> , (8)

where OP is the set of operators, L is the set of arcs, COL is
the coloring of arcs, GO are the rules for starting operators,
SEMO is the semantics of executing operators, STRM is the
strategy mask, tk is the set of tokens, TK0 is the initial
markup, CSG is the control signal generator, and RMS is the
resource monitoring system.

OP operators are operators of any level of complexity;
the operators are connected by arcs L, which can be colored
in one of 4 colors: arcs, through which Ld data is transmitted,
Lc arcs, through which control signals are transmitted that
allow the execution of OP, Lz arcs, through which requests
for the execution of operators are transmitted, signals, and
Lr arcs, through which signals about the availability of re-
sources are distributed.

GO are rules for launching operators:

GO � TK dT̂KcT̂KzT̂Kr,

TKi � tkiŜTRMi,
(9)

where tki is the presence of a type i token at the operator
input and STRMi is the i-th bit of the STRM mask.

*us, depending on the mask used, there are 16 different
ways to check the readiness of operators for execution. *is
model can be used as a metamodel. On its basis, it is possible
to build various kinds of private models that can describe the
OMS in terms of both structure and behavior. A more
detailed description of this model and how to build it based
on log files is contained in [21]. For automatic construction
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of the SFM model, one can use modified Process Mining
algorithms [18]. *is model is one of the possible models. It
should be noted that different models can be used at different
levels.

*e top-level models are models in terms of which the
agility mechanism is implemented, and the lower-level
models are, on the one hand, a way to store information
about the current state of the OMS and, on the other hand, a
source of information for the formation of SFM.

10. AAA Maturity Levels

When solving real life problems, the proposed AAA is not
necessarily used in full. One can define 4 levels of AAA
maturity.

Level 0. Systems with a Fixed Architecture. *e OMS has
a fixed architecture, which is created at the design stage.
Reconfiguration at the architectural level is not planned
at the design stage.
Level 1. Manual (External) Management of OMS
Variability. At the design stage, the possibility of
reconfiguring the OMS at the architectural level in
manual mode is laid. A small number of types of
variability are supported.
Level 2. Adaptive Architectures. *e OMS is designed
according to the principle of a family of architectures.
*e transition between ASt can be carried out auto-
matically. However, all the ASt are known at the design
stage. An architectural automaton can be built in statics
at the design stage.
Level 3. Evolutionary Architectures. *e OMS is
designed according to the principle of an evolutionary
architecture. *e transition between ASts can be car-
ried out automatically. At the design stage, all the ASts
are not known. In this case, both ASts themselves and
individual elements may be unknown. *e architec-
tural automaton (OMSMM) is built in dynamics.

11. Possible Approaches to Implementation

In general, a large-scale CPS model is a system of model
systems (SoM), which can be considered as system of sys-
tems [22]. Depending on the type of OMS, models can be
organized into the SoM in different ways. Different ways of
representing ASM can be used at different levels.

Figure 6 shows two edge variants of building a SoM.
Figure 6 shows a variant when all interactions between the
system elements are implemented through the use of ASM,
and Figure 6, b shows a variant when deferred processing is
implemented and the OMS and ASM interact through a
telemetric communication channel and through a database
(DB). In reality, there may be a large number of intermediate
variants that are most often used in practice.

In Figure 6, the following designations are adopted: P is a
physical entity, Li is the i-th level of the OMS, Mi is the i-th
level model, and DSL is the interpreter of a domain-oriented
language.

One can define three main approaches to the imple-
mentation of AM: (i) the implementation of the model, i.e.,
using JAVA in the form of an object model, (ii) based on using
ontologies [34], and (iii) based on using knowledge graphs
[19, 20, 35, 36]. Using JAVA to build models allows get
minimal delays, but it is very expensive in terms of pro-
gramming. *e use of ontologies and knowledge graphs gives
slower solutions but allows using existing tools, such as
SPARQL [37]. Since the models are quite complex, it is ad-
visable to implement them as cloud services. Individual do-
main-oriented model fragments can be placed in the fog layer.

Nowadays, it is preferable to build ASM in terms of
knowledge, in particular, using ontologies and knowledge
graphs. *e issues of automatic ASM construction in terms
of knowledge graphs are considered in [19, 20].

12. Case Study

As an example, which illustrates the possibilities of using the
proposed AAA in practice, one can consider the crane
complexes, which is an element of a flexible production
system of an automated assembly and welding site. *is
system, in turn, is a part of a manufacturing enterprise with a
high level of automation, planning to implement the concept
of Industry 4.0 [38–41].

*e existing system is designed to collect and process
data from crane systems and is designed for use on pro-
duction sites, each of which consists of several shop-floors,
in which bridge and semicrane cranes work. *e cranes are
equipped with analog and digital sensors. Analog sensors are
used to measure distances between cranes, between trolleys
(for double-bed cranes), and between the trolley and the
edge of the crane, weight of the load, ambient temperature,
motors, temperature of frequency converters, voltage, and
current of the power supply network. *e discrete sensors
include sensors that determine the extreme upper and lower
positions of the hook, the condition of the repair gates, the
position of the hatch in the cabin, and all fuses in the switch
cabinet. Data is collected from all sensors at 250ms intervals.
*e total number of measured parameters on each tap is
about 560. *e total amount of data received from each tap
per month is approximately 2 TB.

Based on the data received from the sensors, the tasks of
assessing the condition of the cranes and ensuring their
operability are solved. In operatingmode, different data such
as data on the state of the fuses must be collected at a
frequency of at least 2GHz, from the load mass sensors of at
least 2Hz, and from the engine temperature sensors of at
least 1Hz. In the idle mode of the crane, it is necessary to
collect information only about the state of the power supply
and the ambient temperature. When collecting data, it is
necessary to ensure that a delay in data transmission from
the cranes to the workplace of the chief mechanic is no more
than 5 seconds.

*e structure of a preexisting CPS is shown in Figure 7. It
is a distributed system that includes equipment installed on
cranes, workshop equipment, and main (plant) server. *e
equipment installed on the cranes includes sensors and
actuators (S&A). For data acquisition (DA) subsystem
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(DASS), a local controller (LC) and a local database (LDB)
are used. *e data acquisition process is divided into two
stages: data collection from sensors, which is carried out on
the crane, and data transfer from the crane to the central
server. *e list of data to be collected is fixed.

Data are collected from the sensors in real time. MIT-
SUBISHI MELSEC-Q series industrial controllers installed
on the crane are used, providing control of the crane, as well
as being a buffer for data collected from sensors.*e internal
memory of the controllers is accessed via the Seamless
Message Protocol. *e crane also hosts a single-board
ODROID computer for data transfer from LC to ODROID;
an Ethernet communication channel with a bandwidth of
100Mbit/s is used.*is channel also transmits commands to
the control mechanisms of the crane. *e channel provides
high quality communication but has limited bandwidth.
Overloading the channel can lead to the loss of control
commands and cause failures in the operation of the crane.
*e data are collected by theODROIDC3 single-board
computer. ODROID C3 has sufficient computing power to
poll the registers at the required frequency. *e collected
data are placed in the LDB installed on the crane.

Data transfer from the LDB database to the central server
can be carried out via a Wi-Fi communication channel or by
an operator.*e use of theWi-Fi channel is problematic due

to the high level of electromagnetic interference from
welding and AC sources installed in the shop-floor. On
average, the ratio of the number of lost and transmitted
packets is 1 : 5. Data collection by the operator involves the
use of the operator’s tablet. *e software installed on the
tablet allows receiving data from the LDB over the radio
channel and caching it on the tablet. *e range of the radio
channels does not exceed 20 meters, which requires the
operator to be located near the crane.

*is system can be attributed to the maturity level 0,
since it is actually a system with a fixed architecture.

12.1. Problems. *is CPS was in trial operation for some
time, according to the results of which the owners formu-
lated the following problems: (i) insufficient amount of
collected data, (ii) long delays in obtaining the data by
decision-makers, (iii) low data quality, and (iv) high total
cost of ownership (TCO).

*e enterprise owners have plans to implement a system
that meets the industry 4.0 standards, including usage
Digital Twins (DT) technologies. But, nowadays, the list of
features which are to be realized is absent. *e analysis
showed that in order to realize Industry 4.0 ideas it is
necessary to achieve at least agility level 3.
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In addition, the owners of the system have plans for
building and using the corporate knowledge graph, which is
also needed to be taken into account when working on the
modernization of the system.

A more detailed analysis of these problems showed the
following.

*e insufficient amount of data is collected due to the
following reasons: (i) user requirements for the composition
and quality of the data collected are constantly changing; (ii)
users cannot say with certainty what data they need in the
future.

*e reasons for the three remaining problems are the
very high level of electromagnetic interference caused by the
presence of powerful welding equipment, which does not
allow realizing an effective data exchange between the
mobile crane and the workshop server. In the existing
system, an operator with a tablet goes to the crane and takes
data via Wi-Fi. Using this mode leads to unpleasant con-
sequences: (i) there will be large delays in receiving data,
while some of the data may become outdated, and (ii) a part
of data may be lost due to buffer overflows if the operator
with the tablet does not have time to pick up them.

If you want to increase the amount of data being cap-
tured, it is necessary to increase the buffer size. *e re-
quirement to have a human operator responsible for data
collection increases the TCO.

*e analyses of these problems have shown that the root
cause of the problems is a lack of agility.

*us, the solution of the problem of improving the
efficiency of the system operation was reduced to solving 2
problems: (i) the problem of an agile system organization
and (ii) the problem of implementing effective interaction
between the crane controller and the workshop server.

To solve these problems, the following main decisions
were made: (i) to increase the level of agility, it is proposed to
use the model approach described above, (ii) it is proposed
to modify the structure of this system and use the concept of
edge (fog) computing, and (iii) to solve the problem of
excluding the human operator from the data transfer process
with a tablet, it is proposed to use clustering mechanisms.

12.2. Suggested Solution. For DA on the crane, an additional
intermediate link (fog node) “ARM CPU” was developed,
which provides data collection management (Figure 7). *e
crane additionally houses a controller based on the APM
processor, which performs the functions of a fog node. In the
repair shop, controllers are also placed, which perform the
functions of fog nodes. In order to reduce the volume of
collected and stored data, fog nodes use a priori information
from the low-level model (LLM) about the object from
which the information is collected, the types of sensors are
installed on it, and the dynamics of changes in the measured
values, i.e., models of the observed objects, are stored. We
can assume that the controllers placed on the cranes form
the mist level and the controllers placed in the repair areas
form the fog level.

*e initial scheme assumed measurement of parameter
values with a certain sampling step, representation of data in

binary form, and their storage in the database. To reduce the
data stored in the database, the new scheme detects changes
in values, identifies ascending and descending edges, and
records the time when these events occur. When collecting
data using analog sensors, dynamic changes in the sampling
rate are provided depending on the state of the crane. *e
sampling rate is reduced after the system analyses the rate of
change of the measured values over a fixed period of time.

12.3. A Cluster-Oriented Model for Collecting Data from
Cranes. To solve the problem of reducing the response time,
it is proposed to use the cluster model [42].

*e traditional data collection scheme involves direct
data transmission using Wi-Fi. *e Wi-Fi communication
channel in the workshops has low reliability due to the high
level of interference. *e data transfer rate is inversely
proportional to the distance to the access point. Data
transfer to the server starts when the threshold value of the
accumulated data is reached. With this scheme, the data
transfer rate is calculated as c (l)� k/l, where k is the gain-
transfer rate.

*e structure of fog DCS is shown in Figure 8. To ensure
fast and reliable DA without the involvement of an operator,
a cluster scheme for collecting data from cranes was de-
veloped. In each shop-floor, Wi-Fi access points are installed
in the repair areas, which act as relay nodes. When a certain
amount of collected data is reached on the tap (250MB),
data is transferred from the tap to the head element of the
cluster (the crane having the minimum distance to the access
point). If there is no possibility of communication with the
head element of the cluster (no line of sight), data trans-
mission is carried out through nodes (cranes) located in the
visibility zone. Access points are connected to the in-shop
network via Ethernet. When the crane is moved to the repair
area, the crane data is transmitted to the relay node (Wi-Fi
access point). High-level models are realized as distributed
knowledge graphs and are located on repair areas, on
workshop servers, and on the main server.

As a result of the use of the model approach and the
transition to the fog structure, the following problems were
solved: (i) providing the ability of expanding the list of
collected parameters through the use of high-level model
and (ii) the use of low-level model which has halved the
amount of data collected.

*e use of clustering mechanisms allows solving two
problems: (i) reducing the response time for data collection
from tens of minutes to units of seconds and (ii) excluding a
human operator from the DA process.

*e use of these solutions allowed achieving level 2 of the
maturity model because only a limited number of models are
available.

In the described above example, the benefits obtained are
the reduced data access time (reduced response time) and
the reduced TCO, since the transition to new equipment is
simplified and opportunities for the transition to systems
corresponding to the ideas of Industry 4.0 open up.

*e further direction of development is associated with
the transition to DT technologies [40, 41], while it is planned
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to actively use the createdmodels. It should be noted that the
joint use of Industrial Internet of *ings paradigms leads to
the need to create dynamic DT, but it is a subject of separate
investigations.

13. Conclusion

Using the proposed AAA to CPS implementation allows
solving a number of important problems, such as reaching a
new level of complexity of the created anthropogenic sys-
tems and solving problems of increasing the level of service
availability. It should be noted that the paper considers the
application of AAA to the construction of the large-scale VIS
CPS, while this class of systems is considered as an example
of complex heterogeneous systems.

*e idea of the proposed approach is that the system has
several architectures (architectural states) and it is possible
to switch between architectural states. *is is a core idea of
all agile architecture approaches. Our contribution is that we
show how it can be done.

Our approach can also be considered as one of the
possible implementations of the DevOps approach to design.
*us, there is an opportunity to get benefits in the TCO
terms. Performance gains can be obtained if we consider
agility as an approach to reconfiguration. In this case, the
gain can be obtained through contextual and (or) content
adaptation. *e possibility of implementing adaptation
mechanisms makes it possible to increase the level of
reliability.

A necessary and sufficient condition for using the
proposedmodel approach is a sufficiently high complexity of
the structure and behaviour of OMS that have high struc-
tural dynamics and adaptive behaviour.

Under these conditions, the use of the model approach
reduces the response time to a request for the status of the
OMS. In addition, the presence of model knowledge about
the past states of the system allows determining the root

causes of events and predicting future states of the system to
implement proactive management. In addition, the avail-
ability of knowledge about past states allows using learning
mechanisms.

As the main subject of our future R&D, we see the
problem of agile architecture cyberphysical systems security.
Nowadays, it is not possible to state unequivocally that agile
architecture systems provide a higher level of security
compared to traditional architectures. In principle, it is
possible to consider the possibility of transition to an ar-
chitectural state that provides a higher level of security, but
this requires assessing the level of security in terms of ar-
chitecture and building a security model for each archi-
tectural state. *e authors failed to find adequate approaches
in the available sources. We plan to investigate the agile
architecture system security and develop architectural tactics
for improving security.

Data Availability

*e data are gathered from crane complexes, which are an
element of a flexible production system of an automated
assembly and welding site. Provided data files contain
volume of data in GB produced by each of the cranes. *e
data used to support the findings of this study have been
deposited in the repository (https://zenodo.org/record/
5109526#.YPfeXXUzY5k).
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