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ABSTRACT

Learning how to model complex scenes in a modular way with recombinable
components is a pre-requisite for higher-order reasoning and acting in the physical
world. However, current generative models lack the ability to capture the inherently
compositional and layered nature of visual scenes. While recent work has made
progress towards unsupervised learning of object-based scene representations, most
models still maintain a global representation space (i.e., objects are not explicitly
separated), and cannot generate scenes with novel object arrangement and depth
ordering. Here, we present an alternative approach which uses an inductive bias
encouraging modularity by training an ensemble of generative models (experts).
During training, experts compete for explaining parts of a scene, and thus specialise
on different object classes, with objects being identified as parts that re-occur
across multiple scenes. Our model allows for controllable sampling of individual
objects and recombination of experts in physically plausible ways. In contrast to
other methods, depth layering and occlusion are handled correctly, moving this
approach closer to a causal generative scene model. Experiments on simple toy data
qualitatively demonstrate the conceptual advantages of the proposed approach.

1 INTRODUCTION

Proposed in the early days of computer vision Grenander (1976); Horn (1977), analysis-by-synthesis
is an approach to the problem of visual scene understanding. The idea is conceptually elegant and
appealing: build a system that is able to synthesize complex scenes (e.g., by rendering), and then
understand analysis (inference) as the inverse of this process that decomposes new scenes into their
constituent components. The main challenges in this approach are the need for generative models of
objects (and their composition into scenes) and the need to perform tractable inference given new
inputs, including the task to decompose scenes into objects in the first place. In this work, we aim to
learn such as system in an unsupervised way from observations of scenes alone.

While models such as VAEs (Kingma & Welling, 2014; Rezende et al., 2014) and GANs (Goodfellow
et al., 2014) constitute significant progress in generative modelling, these models still lack the ability
to capture the compositional nature of reality: they typically generate entire images or scenes at
once, i.e., with a single pass through a large feedforward network. While this approach works well
for objects such as centred faces—and progress has been impressive on those tasks Karras et al.
(2019a;b)—generating natural scenes containing several objects in non-trivial constellations gets
increasingly difficult within this framework due to the combinatorial number of compositions that
need to be represented and reasoned about (Bau et al., 2019).
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Figure 1: Our ECON model learns to decompose
training scenes (A) into layers of inpainted objects.
Representing object classes separately allows con-
trollable sampling of individual objects (B: sam-
ples from different experts) which can be recom-
bined in novel ways (C: compositions sampled by
layering the experts in B in the same order as seen
during training (top), or choosing three (middle) or
four (bottom) objects at random).

Image formation entangles different components
in highly non-linear ways, such as occlusion.
Due to the difficulty of choosing the correct
model and the complexity of inference, the task
to generate complex scenes containing composi-
tions of objects still lacks success stories. More
training data certainly helps, and progress on
generating visually impressive scenes has been
substantial Radford et al. (2015), but we hy-
pothesize that a satisfactory and robust solution
that is not optimized to a relatively well con-
strained IID (independent and identically dis-
tributed) data scenario will require that our mod-
els correctly incorporate the (causal) generative
nature of natural scenes.

Here, we take some first small steps towards
addressing the aforementioned limitations by
proposing ECON, a more physically-plausible
generative scene model with explicitly compo-
sitional structure. Our approach is based on two
main ideas. The first is to consider scenes as lay-
ered compositions of (partially) depth-ordered
objects. The second is to represent object classes
separately using an ensemble of generative mod-
els, or experts.

Our generative scene model consists of a sequen-
tial process which places independent objects in
the scene, operating from the back to the front,
so that objects occurring closer to the viewer can
occlude those further away. During inference,
this process is reversed: at each step, experts compete for explaining part of the remaining scene,
and only the winning expert is further trained on the explained part (Parascandolo et al., 2018). This
competition ideally drives each expert to specialise on representing and generating instances from
one, or a few related, object classes or concepts, and the notion of “objects” should automatically
emerge as contiguous regions that appear in a stable way across a range of training images. By
decomposing scenes in the reverse order of generation, occluded objects can be inpainted within the
already explained regions so that experts can learn to generate full, unoccluded objects which can be
recombined in novel ways.

Learning a modular scene representation via object-specific experts has several benefits. First, each
expert only needs to solve the simpler subtask of representing and generating instances from a single
object class—something which current generative models have been shown to be capable of—while
the composition process is treated separately. Secondly, expert models are useful in their own right as
they can be dropped or added, reused and repurposed for other tasks on an individual level.

We highlight the following contributions.

• We summarise a physically-plausible model of scene generation in §2 and use it to categorise
and contrast related scene models and their shortcomings in §3.

• In §4, we present ECON, a compositional scene model, which, for a single expert, can be
seen as extension of MONET (Burgess et al., 2019) into a proper generative model (§5.1).

• We introduce modular object representations through separate generators and propose a
competition mechanism and objective to drive experts to specialise in §5.2.

• In experiments on synthetic data in §6 we show qualitatively that ECON is able to decompose
simple scenes into objects, represent these separately, and recombine them in a layer-wise
fashion into novel, coherent scenes with arbitrary numbers and depth-orderings of objects.

• We critically discuss our assumptions and propose extensions for future work in §7.
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Figure 2: Assumed data generating process (dead-leaves model). Independent objects xt with shapes
mt (drawn from class kt with properties zt) are placed on the canvas sequentially (reflecting depth
ordering) and appear in the final composition x as dependent, partially occluded regions rt.

2 THE LAYER-BASED MODEL OF VISUAL SCENES

To reflect the fact that 2D images are the result of projections of richer 3D scenes, we assume that
data are generated from the well-known dead leaves model,1 i.e., in a layer-wise fashion, see Figure
2a for an illustration. Starting with an empty canvas x = 0, an image x ∈ [0, 1]D×3 is sequentially
generated in T steps. At each step we sample an object from one of K different classes and place it
on the canvas as follows,

for t = 1, ..., T :

kt ∼ p(kt), object class
zt ∼ p(zt), object properties
mt ∼ p(mt | zt, kt), shape
xt ∼ p(xt | zt, kt), appearance
x←mt � xt + (1−mt)� x, place on canvas

where kt ∈ {1, ...,K} represents the object class drawn at step t; zt ∈ RL is an abstract representation
of the object’s properties; mt ∈ {0, 1}D is a binary image determining shape; xt ∈ [0, 1]D×3 is
a full (unmasked) image containing the object; and � denotes element-wise multiplication. The
corresponding graphical model is shown in Figure 2b.2

This sequential generation process captures the loss of depth information when projecting from 3D to
2D and is a natural way of handling occlusion phenomena. Consequently, sampling from this model
is straightforward. We therefore consider it a more truthful approach to modelling visual scenes than,
e.g., spatial mixture models, in line with Le Roux et al. (2011).

On the other hand, inferring the objects composing a given image x is challenging. We will
distinguish between shapes and regions in the following sense. The unoccluded object shapes mt,
top row in Figure 2a, remain hidden and only appear in x via their corresponding, partially occluded
segmentation regions rt ∈ {0, 1}D, see the final composition in the bottom row of Figure 2a for an
illustration. In particular, a region rt is always subset of the corresponding shape pixels mt.

In addition to the separate treatment of shapes mt and regions rt, we also introduce a scope variable
st to help write the above model in a convenient form. Following Burgess et al. (2019), st ∈ {0, 1}D
is defined recursively as

sT := 1, st := st+1 � (1−mt+1) ∀t < T. (1)

The scope st at time t contains those parts of the image, which have been completely generated after
t steps and will not be occluded in the subsequent T − t steps.

With st, the regions rt can be compactly defined as

rt = r(mt, . . . ,mT ) := st �mt, t = 1, . . . , T. (2)
1the name derives from the analogy of leaves falling onto a canvas, covering whatever is beneath them,
2W.l.o.g., we assume that the background corresponds to m1 � x1 with m1 = 1, see Figure 2a.
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Using these, we can express the final composition as

x =

T∑
t=1

rt � xt. (3)

While (3) may look like a normal spatial mixture model, it is worth noting the following important
point: even though the shapes mt are drawn independently, the resulting segmentation regions rt
become (temporally) dependent due to the layer-wise generation process, i.e., the visible part of
object t depends on all objects subsequently placed on the canvas. This seems very intuitive and is
evident from the fact that the RHS of (2) is a function of mt:T .

3 RELATED WORK

Clustering & spatial mixture models One line of work (Greff et al., 2016; 2017; Van Steenkiste
et al., 2018) approaches the perceptual grouping task of decomposing scenes into components
by viewing separate regions rt as clusters. A scene x is modelled with a spatial mixture model,
parametrised by deep neural networks, in which learning is performed with a procedure akin to
expectation maximisation (EM; Dempster et al., 1977). The recent IODINE model of Greff et al. (2019)
instead uses a refinement network (Marino et al., 2018) to perform iterative amortised variational
inference over independent scene components which are separately decoded and then combined via
a softmax to form the scene. While IODINE is able to decompose a given scene, it cannot generate
coherent samples of new scenes because dependencies between regions rt due to layering are not
explicitly captured in its generative model.

This shortcoming of IODINE has also been pointed out by Engelcke et al. (2019) and addressed in
their GENESIS model, which explicitly models dependencies between regions via an autoregressive
prior over r1:T . While this does enable sampling of coherent scenes which look similar to training
data, GENESIS still assumes an additive, rather than layered, model of scene composition. As a
consequence, the resulting entangled component samples contain holes and partially occluded objects
and cannot be easily layered and recombined as shown in Figure 1 (e.g., to generate samples with
exactly two circles and one triangle).

Sequential models Our work is closely related to sequential or recurrent approaches to image
decomposition and generation (Mnih et al., 2014; Gregor et al., 2015; Eslami et al., 2016; Kosiorek
et al., 2018; Yuan et al., 2019). In particular, we build on the recent MONET model for scene
decomposition of Burgess et al. (2019). MONET combines a recurrent attention network with a VAE
which encodes and reconstructs the input within the selected attention regions rt while unconstrained
to inpaint occluded parts outside rt.

We extend this approach in two main directions. Firstly, we turn MONET into a proper generative
model3 which respects the layer-wise generation of scenes described in §2. Secondly, we explicitly
model the discrete variable k (object class) with an ensemble of class-specific VAEs (the experts)—as
opposed to within a single large encoder-decoder architecture as in IODINE, GENESIS or MONET.
Such specialisation allows to control object constellations in new, but scene-consistent ways.

Competition of experts To achieve specialisation on different object classes in our model, we
build on ideas from previous work using competitive training of experts (Jacobs & Jordan, 1991).
More recently, these ideas have been successfully applied to tasks such as lifelong learning (Aljundi
et al., 2017), learning independent causal mechanisms (Parascandolo et al., 2018), training mixtures
of generative models (Locatello et al., 2018), as well as to dynamical systems via sparsely-interacting
recurrent independent mechanisms (Goyal et al., 2019).

Probabilistic RBM models The work of Le Roux et al. (2011) and Heess (2012) introduced
probabilistic scene models that also reason about occlusion. Le Roux et al. (2011) combine restricted
Boltzmann machines (RBMs) to generate masks and shape separately for every object in the scenes
into a masked RBM (M-RBM) model. Two variants are explored: one that respects a depth ordering
and object occlusions, derived from similar arguments as we have put forward in the introduction;

3in its original form, it is a conditional model which does not admit a canonical way of sampling new scenes
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Table 1: Comparison with related unsupervised scene decomposition and generation models.

MONET IODINE GENESIS M-RBM ECON

decompose scenes into objects and reconstruct 3 3 3 3 3

generate coherent scenes like training data 7 7 3 3 3

controllably recombine objects in novel ways 7 7 7 3 3

efficient (amortised) inference 3 3 3 7 3

and a second model which uses a softmax combination akin to the spatial mixture models used in
IODINE and GENESIS, although the authors argue it makes little sense from a modelling perspective.
Inference is implemented as blocked Gibbs sampling with contrastive divergence as a learning
objective. Inference over depth ordering is done exhaustively, that is, considering every permutation—
as opposed to greedily using competition as in this work. Shortcomings of the model are mainly
the limited expressiveness of RBMs (complexity and extent), as well as the cost of inference. Our
work can be understood as an extension of the M-RBM formulation using VAEs in combination with
attention, or segmentation, models.

Vision as inverse graphics & probabilistic programs Another way to programmatically intro-
duce information about scene composition is through analysis-by-synthesis, see Bever & Poeppel
(2010) for an overview. In this approach, the synthesis (i.e., generative) model is fully specified,
e.g., through a graphics renderer, and inference becomes the inverse task, which poses a challenging
optimisation problem. Probabilistic programming is often advocated as a means to automatically
compile this inference task; for instance, PICTURE has been proposed by Kulkarni et al. (2015),
and combinations with deep learning have been explored by Wu et al. (2017). This approach is
sometimes also understood as an instance of Approximate Bayesian Computation (ABC; Dempster
et al., 1977) or likelihood-free inference. While conceptually appealing, these methods require a
detailed specification of the scene generation process—something that we aim to learn in an unsuper-
vised way. Furthermore, gains achieved by a more accurate scene generation process are generally
paid for by complicated inference, and most methods thus rely on variations of MCMC sampling
schemes (Jampani et al., 2015; Wu et al., 2017).

Supervised approaches There is a body of work on augmenting generative models with ground-
truth segmentation and other supervisory information. Turkoglu et al. (2019) proposed a layer
based model to add objects onto a background, Ashual & Wolf (2019) proposed a scene-generation
method allowing for fine grained user control, Karras et al. (2019a;b) have achieved impressive image
generation results by exclusively training on a single class of objects. The key difference of these
approaches to our work is that we exclusively focus on unsupervised approaches.

4 ENSEMBLE OF COMPETING OBJECT NETS (ECON)

We now introduce ECON (for Ensemble of Competing Object Networks), a causal generative scene
model which explicitly captures the compositional nature of visual scenes. On a high level, the
proposed architecture is an ensemble of generative models, or experts, designed after the layer-based
scene model described in §2. During training, experts compete to sequentially explain a given
scene via attention over image regions, thereby specialising on different object classes. We perform
variational inference (Jordan et al., 1999), amortised within the popular VAE framework (Kingma &
Welling, 2014; Rezende et al., 2014), and use competition to greedily maximise a lower bound to the
conditional likelihood w.r.t. object identity.

4.1 GENERATIVE MODEL

We adopt the generative model p described in §2, parametrise it by θ, and assume that it factorises
over the graphical model in Figure 2b (i.e., assuming that objects at different time steps are drawn
independently of each other). We model p(kt) with a categorical distribution,4 and place a unit-

4though we will generally condition on kt, see §5 for details,
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Figure 3: ECON architecture: ensemble of K competing experts. Each expert consists of (i) an
attention network which selects image regions rt; (ii) an encoder which maps the image within the
attended region to a latent code z; and (iii) a decoder which reconstructs both an object xt and its
unoccluded shape mt. A competition mechanism determines the winning expert at each step.

variance isotropic Gaussian prior over zt,

p(zt) = p(z) = N (0, I) t = 1, . . . , T.

Next, we parametrise p(mt |k, z) and p(xt |k, z) using K decoders f1, . . . , fK : RL → [0, 1]D×3×
[0, 1]D with respective parameters θ1, . . . , θK .5 These compute object means and mask probabilities(
µθk(z), m̃θk(z)

)
= fk(z; θk) which determine pixel-wise distributions over mt and xt via

pθ(mt | z, k) = Bernoulli (m̃θk(z)) , (4)

pθ(xt | z, k) = N
(
xt | µθk(z), σ2

xI
)
, (5)

where t = 1, . . . , T and σ2
x is a constant variance.

We note at this point that, while other handlings of the discrete variable k are possible, we deliberately
opt for K separate decoders: (i) as an inductive bias encouraging modularity; and (ii) to be able to
controllably sample individual objects and recombine them in novel ways.

Finally, we need to specify a distribution over x. Due to its layer-wise generation, this is tricky and
most easily done in terms of the visible regions rt. From (3), (5), and linearity of Gaussians it follows
that, pixel-wise,

pθ(x | r1:T , z1:T , k1:T ) = N
(
x
∣∣∣ T∑
t=1

rt � µθkt (zt), σ
2
xI
)
. (6)

Similarly, one can show from (1), (2), and (4) that rt depends on r(t+1):T only via st, and that

pθ(rt | st, z, k) = Bernoulli (st � m̃θk(z)) , (7)

for t = 1, . . . , T ; see Appendix A for detailed derivations.

The class-conditional joint distribution then factorises as,

pθ(x, r1:T , z1:T |k1:T ) = pθ(x | r1:T , z1:T , k1:T )
T∏
t=1

pθ(rt | st, zt, kt)p(zt). (8)

Conditioning on k1:T is motivated by our inference procedure, see §5. Moreover, we express p in
terms of the segmentation regions rt as only these are visible in the final composition which makes
is easier to specify a distribution over x. Note, however, that while we will perform inference over
regions r1:T , we will learn to generate full shapes m1:T which are consistent with the inferred r1:T
when composed layer-wise as captured in (7), thus respecting the physical data-generating process.

5K is a hyperparameter (K– 1 object classes and background) which has to be chosen domain dependently.
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4.2 APPROXIMATE POSTERIOR

Since exact inference is intractable in our model, we approximate the posterior over z1:T and r1:T
with the following variational distribution q parametrised by φ and ψ,

qφ,ψ(r1:T , z1:T | x, k1:T ) =
T∏
t=1

qψ(rt | x, st, kt)qφ(zt | x, rt, kt).

As for the generative distribution, we model dependence on kt using K modules with separate
parameters {φ1, ψ1}, ..., {φK , ψK}. These inference modules consist of two parts.

Attention nets a1, ..., aK : [0, 1]D×3 × [0, 1]D → [0, 1]D compute region probabilities r̃ψk(x, s) =
ak(x, s;ψk) and amortise inference over regions rt via

qψ(rt | x, st, kt) = Bernoulli (r̃ψk(x, st)) ∀t. (9)

Encoders g1, ..., gK : [0, 1]D×3 × [0, 1]D → RL×2 compute means and log-variances(
µφk(x, rt), log σ

2
φk
(x, rt)

)
= gk(x, rt;φk) which parametrise distributions over zt via

qφ(zt | x, rt, k) = N
(
zt | µφk(x, rt), σ2

φk
(x, rt)I

)
∀t.

We refer to the collection of fk( · ; θk), ak( · ;ψk), and gk( · ;φk) for a given k as an expert as it
implements all computations (generation and inference) for a specific object class—see Figure 3 for
an illustration.

5 INFERENCE

Due to the assumed sequential generative process, the natural order of inference is the reverse
(t = T, . . . , 1), i.e., foreground objects should be explained first and the background last. This is also
captured by the dependence of rt on r(t+1):T via the scope st in qψ .

Such entanglement of scene components across composition steps makes inference over the entire
scene intractable. We therefore choose the following greedy approach. At each inference step
t = T, . . . , 1, we consider explanations from all possible object-classes (kt = 1, . . . ,K)—as
provided by our ensemble of experts via attending, encoding and reconstructing different parts of the
current scene—and then choose the best fitting one. This offers an intuitive foreground to background
decomposition of an image as foreground objects should be easier to reconstruct.

Concretely, we first lower bound the marginal likelihood conditioned on k1:T , pθ(x | k1:T ), and
then use a competition mechanism between experts to determine the best k. We now describe this
inference procedure in more detail.

5.1 OBJECTIVE: CLASS-CONDITIONAL ELBO

First, we lower bound the class-conditional model evidence pθ(x | k1:T ) using the approximate
posterior q as follows (see Appendix A for a detailed derivation):

log pθ(x | k1:T ) ≥ L(θ, ψ, φ | k1:T ) := −
T∑
t=1

Eqψ(st | x,k(t+1):T ) (Lx,t + Lz,t + Lr,t) ,

Lx,t := Eqψ(rt|x,st,kt)qφ(zt | x,rt,kt)
[

rt
2σ2

x

�
(
x− µθkt (zt)

)2]
Lz,t := Eqψ(rt|x,st,kt)DKL

(
qφ(zt|x, rt, kt)

∥∥∥ p(z))
Lr,t := Eqψ(rt|x,st,kt)qφ(zt|x,rt,kt)

[
log

qψ(rt|x, st, kt)
pθ(rt|st, zt, kt)

]
Next, we use the reparametrization trick of Kingma & Welling (2014) to replace expectations w.r.t.
qφ(zt | x, rt, kt) by a Monte Carlo estimate using a single sample drawn as:

z̃t = µφkt (x, rt) + σφkt (x, rt)� ε, ε ∼ N (0, I).

7
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Finally, we approximate expectations w.r.t. qψ(rt | x, st, kt) in Lx,t and Lz,t using the Bernoulli
means r̃ψkt (x, st). We opt for directly using a continuous approximation and against sampling
discrete r’s (e.g., using continuous relaxations to the Bernoulli distribution (Maddison et al., 2017;
Jang et al., 2017)) as our generative model does not require the ability to directly sample regions.
(Instead, we sample z’s and decode them into unoccluded shapes which can be combined layer-wise
to form scenes.)

With these approximations, we obtain the estimates

L̂x,t :=
r̃ψkt (x, st)

2σ2
x

�
(
x− µθkt (z̃t)

)2
, (10)

L̂z,t := DKL

(
qφ
(
zt | x, r̃ψkt (x, st), kt

) ∥∥∥ p(z)), (11)

L̂r,t := DKL

(
qψ(rt | x, st, kt)

∥∥∥ pθ(rt | st, z̃t, kt)), (12)

which we combine to form the learning objective

L̂(θ, ψ, φ | k1:T ) = −
T∑
t=1

(
L̂x,t + βL̂z,t + γL̂r,t

)
, (13)

where β, γ are hyperparameters. Note that for β, γ > 1, (13) still approximates a valid lower bound.

Generative model extension of MONET as a special case For K = 1 (i.e., ignoring different
object classes kt for the moment), our derived objective (13) is similar to that used by Burgess et al.
(2019). However, we note the following crucial difference in (12): in our model, reconstructed
attention regions m̃θk(z) are multiplied by st in the pθ term of the KL, see (7). This implies that the
generated shapes mt are constrained to match the attention region rt only within the current scope
st, so that—unlike in MONET—the decoder is not penalised for generating entire unoccluded object
shapes, allowing inpainting also on the level of masks. With just a single expert, our model can thus
be understood as a generative model extension of MONET.

5.2 COMPETITION MECHANISM

For K > 1, i.e., when explicitly modelling object classes with separate experts, the objective (13)
cannot be optimised directly because it is conditioned on the object identities k1:T . To address this
issue, we use the following competition mechanism between experts.

At each inference step t = T, . . . , 1, we apply all experts (kt = 1, . . . ,K) to the current input (x, st)
and declare that expert the winner which yields the best competition objective (see below).6 We then
use the winning expert k̂t to reconstruct the selected scene component using

xt = µθk̂t

(
z̃t(k̂t)

)
,

where z̃t(k̂t) is encoded from the region r̃ψk̂t
attended by the winning expert k̂t. We then compute

the contribution to (13) from step t assuming fixed k̂t, and use it to update the winning expert with a
gradient step. Finally, we update the scope using the winning expert,

st−1 = st �
(
1− r̃ψk̂t

(x, st)
)
, (14)

to allow for inpainting within the explained region in the following inference (decomposition) steps.7

This competition process can be seen as a greedy approximation to maximising (13) w.r.t. k1:T . While
considering all possible object combinations would require O(KT ) steps, our competition procedure
is linear in the number of object classes and runs in O(K · T ) steps. By choosing an expert at each
step t = T, . . . , 1, we approximate the expectation w.r.t. qψ(st | x, k(t+1):T )—which entangles the
different composition steps and makes inference intractable—using sT = 1 and the updates in (14).

6Applying all K experts can be easily parallelised.
7To ensure that the entire scene is explained in T steps, we use the final scope s1 as attention region for all

experts in the last inference step (t = 1), as also done in GENESIS and MONET.
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Competition objective While model parameters are updated using the learning objective (13)
derived from the ELBO, the choice of competition objective is ours. Since we use competition to
drive specialisation of experts on different object classes and to greedily infer kt, (i.e., the identity
of the current foreground object), the competition objective should reflect such differences between
object classes. Object classes can differ in many ways (shape, color, size, etc) and to different extents,
so the choice of competition objective is data-dependent and may be informed by prior knowledge.

For instance, in the setting depicted in Figure 1 where both color and shape are class-specific, we
found that using a combination of L̂x,t and L̂rt worked well. However, on the same data with
randomised color (as used in the experiments in §6) it did not: due to the greedy optimisation
procedure, the expert which is initially best at reconstructing a particular color continues to win the
competition for explaining regions of that color and thus receives gradient updates to reinforce this
specialisation; such undesired specialisation corresponds to a local minimum in the optimisation
landscape and can be very hard for the model to escape.

We thus found that relying solely on L̂r,t as the competition objective (i.e., the reconstruction of the
attention region) helps to direct specialisation towards objects categories. In this case, experts are
chosen based on how well they can model shape, and only those experts which can easily reconstruct
(the shape of) a selected region within the current scope will do well at any given step, meaning that
the selected region corresponds to a foreground object.

Moreover, we found that using a stochastic, rather than deterministic form of competition, (i.e.,
experts win the competition with the probabilities proportional to their competition objectives at
a given step) helped specialisation. In particular, such approach helps prevent the collapse of the
experts in the initial stages of training.

Formally, the probability of expert k winning the competition is

P (k̂t = k) ∝ exp
{
−
(
λL̂x,t(k) + L̂r,t(k)

)}
,

with L̂x,t(k) and L̂r,t(k) being the terms in (13) at step t for an expert k. The hyper-parameter λ
controls the relative influence of the appearance and shape reconstruction objectives to make the
data-dependent assumptions about the competition mechanism as discussed above.

6 EXPERIMENTAL RESULTS

To explore ECON’s ability to decompose and generate new scenes, we conduct experiments on
synthetic data consisting of colored 2D objects or sprites (triangles, squares and circles) in different
occlusion arrangements. We refer to Appendix C for a detailed account of the used data set, model
architecture, choice of hyperparameters, and experimental setting. Further experiments can be found
in Appendix B.

ECON decomposes scenes and inpaints occluded objects Fig. 4 shows an example of how ECON
decomposes a scene with four objects. At each inference step, the winning expert segments a region
(second col.) within the unexplained part of the image (first col.), and reconstructs the selected object
within the attended region (fourth col.). A distinctive feature of our model is that, despite occlusion,
the full shape (rightmost col.) of every object is imputed (e.g., at step t′ = 4). This ability to infer
complete shapes is a consequence of the assumed layer-wise generative model which manifests itself
in our objective via the unconstrained shape reconstruction term (12).

ECON generalizes to novel scenes Fig. 4 also illustrates that that the model is capable of decom-
posing scenes containing multiple objects of the same category, as well as multiple objects of the
same color in separate steps. It does so for a scene with four objects, despite being trained on scenes
containing only three objects, one from each class.

Single expert as generative extension of MONET We also investigate training a single expert
which we claim to be akin to a generative extension of MONET. When trained on the data from Fig. 1
with ground truth masks provided, the expert learns to inpaint occluded shapes and objects as can be
seen from the samples in Fig. 5. However, all object classes are represented in a shared latent space
so that different classes cannot be sampled controllably.

9
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Figure 4: By explaining away a scene from front to back, ECON can impute occluded components
xt (third column) and—crucially for layered generation and recombination—their shapes mt (fifth
column) within the already explained regions st (first column). Each inference step (t′ = T + 1− t)
shows only the winning expert’s output.

Figure 5: Random samples from a single expert (akin to a generative extension of MONET) trained
on the data from Fig. 1 with ground-truth masks provided. The model learns to separately generate
unoccluded objects and background, but lacks control over which object class is sampled.

Figure 6: Samples from individual experts trained on toy data with random colors (shown in top panel).
Experts (corresponding to rows in the bottom panel) specialise on triangles, circles, background, and
squares, respectively, but such specialisation based-purely on shape is significantly harder when color
is lost as a powerful cue. This is reflected, e.g., in the imperfect separation between squares and
circles, cf. Fig. 1.

10
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Figure 7: Illustration of layer-wise sampling from ECON after training on our toy data with random
colors. Starting with a background sample, subsequent rows correspond to sampling additional
objects by randomly choosing one of the specialised object experts.

Multiple experts specialise on different object classes Fig. 1B shows samples from each of the
four experts trained on a dataset with uniquely colored objects (Fig. 1A). The samples from each
expert contain either the same object in different spatial positions or differently coloured background,
indicating that the experts specialised on the different object classes composing these scenes.

Fig. 6 shows the same plot for a model trained on scenes consisting of randomly colored objects. This
setting is considerably more challenging because experts have to specialise purely based on shape
while also representing color variations. Yet, experts specialise on different object classes: samples in
Fig. 6 are either randomly colored background or objects from mostly one class with different colours
and spatial positions, indicating that the ECON is capable of representing the scenes as compositions
of distinct objects in an unsupervised way.

Controlled and layered generation of new scenes The specialisation of experts allows us to
controllably generate new scenes with specific properties. To do so, we follow the sequential
generation procedure described in §2 by sampling from one of the experts at each time step. The
number of generation steps T , as well as the choices of experts k1:T allow to control the total number
and categories of objects in the generated scene.

Fig. 1C shows samples generated using the experts in Fig. 1B. In Fig. 7 we show another example
where more and more randomly colored objects are sequentially added. Even though the generated
scenes are quite simple, we believe this result is important as the ability to generate scenes in a
controlled way is a distinctive feature of our model, which current generative scene models lack.

7 DISCUSSION

Model assumptions While ECON aims at modelling scene composition in a faithful way, we
make a number of assumptions for the sake of tractable inference, which need to be revisited when
moving to more general environments. We assume a known (maximum) number of object classes
K which may be restrictive for realistic settings, and choosing K too small may force each expert
to represent multiple object classes. Other assumptions are that the pixel values are modelled as
normally distributed, even though they are discrete in the range {0, . . . , 255}, and that pixels are
conditionally independent given shapes and objects.

Shared vs. object-specific representations Recent work on unsupervised representation learning
(Bengio et al., 2013) has largely focused on disentangling factors of variation within a single shared
representation space, e.g., by training a large encoder-decoder architecture with different forms of
regularization (Higgins et al.; Kim & Mnih, 2018; Chen et al., 2018; Locatello et al., 2019). This is
motivated by the observation that certain (continuous) attributes such as position, size, orientation or
color are general concepts which transcend object-class boundaries. However, the range of values

11
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of these attributes, as well as other (discrete) properties such as shape, can strongly depend on
object class. In this work, we investigate the other extreme of this spectrum by learning entirely
object-specific representations. Exploring the more plausible middle ground combining both shared
and object-specific representations is an attractive direction for further research.

Extensions and future work The goal of decomposing visual scenes into their constituents in
an unsupervised manner from images alone will likely remain a long standing goal of visual rep-
resentation learning. We have presented a model that recombines earlier ideas on layered scene
compositions, with more recent models of larger representational power, and unsupervised attention
models. The focus of this work is to establish physically plausible compositional models for an easy
class of images and to propose a model that naturally captures object-specific specialization.

With ECON and other models as starting point, a number of extensions are possible. One direction
of future work deals with incorporating additional information about scenes. Here, we consider
static, semantically-free images. Optical flow and depth information can be cues to an attention
process, facilitating segmentation and specialization. First results in the direction of video data have
been shown by Xu et al. (2019). Natural images typically carry semantic meaning and objects are
not ordered in arbitrary configurations. Capturing dependencies between objects (e.g., using an
auto-regressive prior over depth ordering as in GENESIS), albeit challenging, could help disambiguate
between scene components. Another direction of future work is to relax the unsupervised assumption,
e.g., by exploring a semi-supervised approach, which might help improve stability.

On the modelling side, extensions to recurrent architectures and iterative refinement as in IODINE
appear promising. Our model entirely separates experts from each other but, depending on object
similarity, one can also include shared representations which will help transfer already learned
knowledge to new experts in a continual learning scenario.

8 CONCLUSION

While the scenes studied here and in the recent works of Burgess et al. (2019); Greff et al. (2019);
Engelcke et al. (2019) are still in stark contrast to the impressive results that holistic generative models
are able to achieve, we believe it is the right time to revisit the unsupervised scene composition
problem. Our goal is to build re-combineable systems, where different components can be used for
new scene inference tasks. In the spirit of the analysis-by-synthesis approach, this requires the ability
to re-create physically plausible visual scenes. Disentangling the scene formation process from the
objects is one crucial component thereof, and the vast number of object types will require the ability
of unsupervised learning from visual input alone.
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A DERIVATIONS

A.1 DERIVATION OF ELBO

We now provide a detailed derivation of the evidence lower bound (ELBO) used in the main paper.
For ease of notation we use vector notation and omit explicitly summing over pixel- and latent
dimensions (as done in the implementation).

We start by writing pθ(x|k1:T ) as an expectation w.r.t. q using importance sampling as follows:

pθ(x|k1:T ) = Epθ(r1:T ,z1:T |k1:T )

[
pθ(x|r1:T , z1:T , k1:T )

]
= Eqφ,ψ(r1:T ,z1:T |x,k1:T )

[
pθ(x, r1:T , z1:T |k1:T )
qφ,ψ(r1:T , z1:T |x, k1:T )

]
.

Applying the concave function log( · ) and using Jensen’s inequality we obtain

log pθ(x|k1:T ) ≥ Eqφ,ψ(r1:T ,z1:T |x,k1:T )

[
log

pθ(x, r1:T , z1:T |k1:T )
qφ,ψ(r1:T , z1:T |x, k1:T )

]
. (A.1)

Using the chain rule of probability and properties of log( · ), we can rearrange the integrand on the
RHS of (A.1) as

log pθ(x|r1:T , z1:T , k1:T )− log
qψ(r1:T |x, k1:T )
pθ(r1:T |z1:T , k1:T )

− log
qφ(z1:T |x, r1:T , k1:T )

pθ(z1:T |k1:T )
. (A.2)

We will consider the three terms in (A.2) separately and define their expectations w.r.t. the approximate
posterior as

Lx(θ, ψ, φ|k1:T ) := Eqφ,ψ(r1:T ,z1:T |x,k1:T )

[
log pθ(x|r1:T , z1:T , k1:T )

]
,

Lr(θ, ψ, φ|k1:T ) := Eqφ,ψ(r1:T ,z1:T |x,k1:T )

[
− log

qψ(r1:T |x, k1:T )
pθ(r1:T |z1:T , k1:T )

]
,

Lz(θ, ψ, φ|k1:T ) := Eqφ,ψ(r1:T ,z1:T |x,k1:T )

[
− log

qφ(z1:T |x, r1:T , k1:T )
pθ(z1:T |k1:T )

]
.

Next, we use our modelling assumptions stated in the paper to simplify these terms, starting with Lz.

Using the assumed factorisation of the approximate posterior, in particular qψ(rt|x, r(t+1):T , kt) =
qψ(rt|x, st, kt), as well as the fact that pθ(zt|kt) = p(z), splitting the expectation into two parts, and
using linearity of the expectation operator, we find that Lz can be written as follows:

Lz(ψ, φ|k1:T ) = Eqψ(r1:T |x,k1:T )

[
Eqφ(z1:T |x,r1:T ,k1:T )

[
−

T∑
t=1

log
qφ(zt|x, rt, kt)

p(z)

]]

= −
T∑
t=1

Eqψ(rt:T |x,kt:T )

[
Eqφ(zt|x,rt,kt)

[
log

qφ(zt|x, rt, kt)
p(z)

]]

= −
T∑
t=1

Eqψ(st|x,k(t+1):T )Eqψ(rt|x,st,kt)

[
DKL

(
qφ(zt|x, rt, kt)

∥∥∥ p(z))].
Next, we consider Lr. Using a similar argument as for Lz, we find that

Lr(θ, ψ, φ|k1:T ) = Eqψ(r1:T |x,k1:T )

[
Eqφ(z1:T |x,r1:T ,k1:T )

[
−

T∑
t=1

log
qψ(rt|x, st, kt)
pθ(rt|st, zt, kt)

]]

= −
T∑
t=1

Eqψ(st|x,k(t+1):T )Eqψ(rt|x,st,kt)

[
Eqφ(zt|x,rt,kt)

[
log

qψ(rt|x, st, kt)
pθ(rt|st, zt, kt)

]]
.
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Finally, we consider Lx. Substituting the Gaussian likelihood for pθ(x|r1:T , z1:T , k1:T ), ignoring
constants which do not depend on any learnable parameters, and using the fact that rt is binary and∑T
t=1 rt = 1, we obtain

Lx(θ, ψ, φ|k1:T ) = Eqψ(r1:T |x,k1:T )

[
Eqφ(z1:T |x,r1:T ,k1:T )

[
− 1

2σ2
x

∥∥∥x− T∑
t=1

rt � µθkt (zt)
∥∥∥2]]

= − 1

2σ2
x

Eqψ(r1:T |x,k1:T )

[
Eqφ(z1:T |x,r1:T ,k1:T )

[ T∑
t=1

rt �
∥∥x− µθkt (zt)∥∥2]

]

= −
T∑
t=1

1

2σ2
x

Eqψ(st|x,k(t+1):T )Eqψ(rt|x,st,kt)

[
rt � Eqφ(zt|x,rt,kt)

[∥∥x− µθkt (zt)∥∥2]
]
,

where ‖ · ‖2 denotes the pixel-wise L2-norm between two RGB vectors. (Recall that Lx, Lr, and Lz

are defined as quantities in RD, RD, and RL, respectively, and that summation over these dimensions
yields the desired scalar objective.)

We observe that Lx, Lr, and Lz can all be written as sums over the T composition steps.

We thus define:

Lx,t(θ, ψ, φ|kt) :=
1

2σ2
x

Eqψ(rt|x,st,kt)

[
rt � Eqφ(zt|x,rt,kt)

[∥∥x− µθkt (zt)∥∥2]
]
,

Lr,t(θ, ψ, φ|kt) := Eqψ(rt|x,st,kt)

[
Eqφ(zt|x,rt,kt)

[
log

qψ(rt|x, st, kt)
pθ(rt|st, zt, kt)

]]
,

Lz,t(ψ, φ|kt) := Eqψ(rt|x,st,kt)

[
DKL

(
qφ(zt|x, rt, kt)

∥∥∥ p(z))],
Lt(θ, ψ, φ|kt) := −Eqψ(st|x,k(t+1):T )

(
Lx,t(θ, ψ, φ|kt) + Lz,t(ψ, φ|kt) + Lr,t(θ, ψ, φ|kt)

)
Finally, it then follows that

L(θ, ψ, φ|k1:T ) :=
T∑
t=1

Lt(θ, ψ, φ|kt) ≤ log pθ(x|k1:T )

A.2 DERIVATION OF GENERATIVE REGION DISTRIBUTION

We now derive the distribution in (7). We will use the fact that rt = mt � st, and thatst can be
written as st = 1−

∑T
t′=t+1 r

′
t, as well as the conditional independencies implied by our model, see

Figure 2b. Considering the pixel-wise distribution and marginalising over mt, we obtain:

pθ
(
rt = 1|kt, zt, r(t+1):T

)
=

1∑
mt=0

pθ
(
rt = 1|mt, kt, zt, r(t+1):T

)
pθ
(
mt|kt, zt, r(t+1):T

)
=

1∑
mt=0

pθ (rt = 1|mt, st) pθ (mt|kt, zt)

= 0 + pθ (rt = 1|mt = 1, st) pθ (mt = 1|kt, zt)
= st � m̃θkt

(zt).

Since rt is binary, this fully determines its distribution.
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B ADDITIONAL EXPERIMENTAL RESULTS

Figure 8 shows four additional examples of ECON decomposing scenes consisting of multiple
randomly coloured shapes. The model was trained on the data from Fig. 6, but is able to decompose
scenes with five objects (a), multiple occluding objects from the same class (b, c), and objects of
similar color to the background (d). Moreover, (b) suggests that additional timesteps (t′ = 6) are
simply ignored if they are not needed.
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Figure 8: Additional decomposition plots for o.o.d. data. The model was trained with four experts on
scenes containing three objcets (one triangle, square, and circle each) arranged in random order.
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C EXPERIMENTAL DETAILS

C.1 DATASETS

Synthetic dataset: uniquely colored objects The dataset consists of images of circles, squares and
triangles on a randomly and uniformly colored background, such that there is a unique correspondence
between object color and class identites (red circles, green squares, blue triangles). The background
color is randomly chosen to be an RGB value with each channel being a random integer between
0 and 127, while the RGB values of the object colors are (255,0,0), (0,255,0), (0,0,255) for circles,
squares and triangles respectively. The spatial positions of the objects are randomly chosen such that
each of the objects entirely fits into an image without crossing the image boundary.

The models shown in Fig. 1 and 5 have been trained on a version of such dataset containing images
with exactly three objects per image (one of each class) in random depth orders (Fig. 1, top row). The
training and validation splits include 50 000 and 100 such images respectively.

Synthetic dataset: randomly colored objects This dataset is the same as the one described above
with the difference that the objects (circles, squares and triangles) are randomly colored with the
corresponding RGB values being random integers between 128 and 255.

The models shown in Fig. 4, 6 and 8 have been trained on a version of such dataset containing images
with exactly three objects per image (one of each class) in random depth orders (Fig. 6, top row). The
training and validation splits include 50000 and 100 such images respectively.

C.2 ARCHITECTURE DETAILS

Each expert in our model consists of attention network computing the segmentation regions as a
function of the input image and the scope at a given time step, and a VAE reconstructing the image
appearance within the segmentation region and inpainting the unoccluded shape of object. Below we
describe the details of architectures we used for each of the expert networks.

C.2.1 EXPERT VAES

Encoder The VAE encoder consists of multiple blocks, each of which is composed of 3 × 3
convolutional layer, ReLU non-linearity, and 2 × 2 max pooling. The output of the final block is
flattened and transformed into a latent space vector by means of two fully connected layers. The
output of the first fully-connected layer has 4 times the number of latent dimensions activations,
which are passed through the ReLU activation, and finally linearly mapped to the latent vector by a
second fully-connected layer.

Decoder Following Burgess et al. (2019), we use spatial a broadcast decoder. First, the latent
vector is repeated on a spatial grid of the size of an input image, resulting in a 3D tensor with spatial
dimensions being that of an input, and as many feature maps as there are dimensions in the latent
space. Second, we concatenate the two coordinate grids (for x− and y−coordinates) to this tensor.
Next, this tensor is processed by a decoding network consisting of as many blocks as the encoder,
with each block including a 3× 3 convolutional layer and ReLU non-linearity. Finally, we apply a
1× 1 convolutional layer with sigmoid activation to the output of the decoding network resulting in
an output of 4 channel (RGB + shape reconstruction).

C.2.2 ATTENTION NETWORK

We use the same attention network architecture as in Burgess et al. (2019) and the implementation
provided by Engelcke et al. (2019). It consists of U-Net (Ronneberger et al., 2015) with 4 down and
up blocks consisting of a 3 × 3 convolutional layer, instance normalisation, ReLU activation and
down- or up-sampling by a factor of two. The numbers of channels of the block outputs in the down
part (the up part is symmetric) of the network are: 4 - 32 - 64 - 64 - 64.
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C.3 TRAINING DETAILS

We implemented the model in PyTorch (Paszke et al., 2019). We use the batch size of 32, Adam
optimiser (Kingma & Ba, 2014), and initial learning rate of 5 · 10−4. We compute the validation
loss every 100 iterations, and if the validation loss doesn’t improve for 5 consecutive evaluations, we
decrease the learning rate by a factor of

√
10. We stop the training after 5 learning rate decrease step.

C.4 CROSS-VALIDATION

Synthetic dataset: uniquely colored objects The results in Fig. 1 were obtained by cross-
validating 512 randomly sampled architectures with the following ranges of parameters:

Parameter Range
Latent dimension 2 to 3
Number of layers in encoder and decoder 2 to 4
Number of features per layer in encoder and decoder 4 to 32
β (KL term weight in (12)) 0.5 to 2
γ (shape reconstruction weight in (12)) 0.1 to 10
Number of experts 4 (three objects + background)
Number of time steps 4 (three objects + background)

The best performing model in terms of the validation loss (which is shown in Fig. 1) has the latent
dimension of 2, 4 layers in encoder and decoder, 32 features per layer, β = 9.54 and γ = 0.52.

The results in Fig. 5 were obtained using the same model as above but with one expert.

Synthetic dataset: randomly colored objects The results in Figs. 4, 6, and 7 were obtained by
cross-validating 512 randomly sampled architectures with the following ranges of parameters:

Parameter Range
Latent dimension 4 to 5
Number of layers in encoder and decoder 3 to 4
Number of features per layer in encoder and decoder 16 to 32
β (KL term weight in (12)) 1
γ (shape reconstruction weight in (12)) 0.5 to 5
Number of experts 4 (three objects + background)
Number of time steps 4 (three objects + background)

The best performing model in terms of the validation loss (which is shown in Fig. 1) has the latent
dimension of 5, 3 layers in encoder and decoder, 32 features per layer, β = 1 and γ = 3.26.
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