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Towards clinical application of image mining: a systematic review
on artificial intelligence and radiomics
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Abstract

Purpose The aim of this systematic reviewwas to analyse literature on artificial intelligence (AI) and radiomics, including all medical

imaging modalities, for oncological and non-oncological applications, in order to assess how far the image mining research stands

from routine medical application. To do this, we applied a trial phases classification inspired from the drug development process.

Methods Among the articles we considered for inclusion from PubMed were multimodality AI and radiomics investigations,

with a validation analysis aimed at relevant clinical objectives. Quality assessment of selected papers was performed according to

the QUADAS-2 criteria. We developed the phases classification criteria for image mining studies.

Results Overall 34,626 articles were retrieved, 300 were selected applying the inclusion/exclusion criteria, and 171 high-quality

papers (QUADAS-2 ≥ 7) were identified and analysed. In 27/171 (16%), 141/171 (82%), and 3/171 (2%) studies the develop-

ment of an AI-based algorithm, radiomics model, and a combined radiomics/AI approach, respectively, was described. A total of

26/27(96%) and 1/27 (4%) AI studies were classified as phase II and III, respectively. Consequently, 13/141 (9%), 10/141 (7%),

111/141 (79%), and 7/141 (5%) radiomics studies were classified as phase 0, I, II, and III, respectively. All three radiomics/AI

studies were categorised as phase II trials.

Conclusions The results of the studies are promising but still not mature enough for image mining tools to be implemented in the

clinical setting and be widely used. The transfer learning from the well-known drug development process, with some specific

adaptations to the image mining discipline could represent the most effective way for radiomics and AI algorithms to become the

standard of care tools.
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Introduction

The BArtificial Intelligence (AI) winter^ [1] is over. AI and

radiomics approaches applied to medical images for the non-

invasive characterisation of diseases (i.e., image mining) have

remarkably increased in recent years. The first reports on AI

and radiomics applied to medical images date back to 1963 [2]

and 1973 [3], respectively, but the enthusiasm of those years

broke off quite soon. Recently, increasing amounts of elec-

tronic medical data, technological improvements, and health

sustainability issues resulted in a renewed interest in both AI

and radiomics applications.

Image mining is claimed to have a potentially huge clinical

relevance with the possibility to non-invasively diagnose,

characterise and predict the outcome in almost all medical

conditions. However, despite the amount of published studies,

some issues including significance, goodness, and strength of

the reported results are still to be addressed. Particularly, it is

not clear how far image mining is from clinical practice.

Therefore, the aim of this systematic review was to an-

alyse literature on AI and radiomics, including all medical

imaging modalities, for oncological and non-oncological

applications, in order to assess how far the image mining
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research stands from routine medical application. To do

this, we applied a trial phases classification inspired from

the drug development process.

Material and methods

This systematic review was performed according to the

PRISMA statement [4]. The PRISMA checklist is provided

in Supplemental material.

Search, eligibility criteria and study selection

The endpoint of the analysis was to assess the potential of AI

applied to medical images and radiomics (i.e., image mining)

to be implemented in clinics. Our search algorithm within the

PubMed/MEDLINE database consisted of the combination of

the following terms: BArtificial intelligence[Mesh]^ OR

BRadiomic^ OR BRadiomics^ AND/OR BRadiography[Mesh]^,

OR BUltrasonography[Mesh]^ OR BTomography[Mesh]^, OR

BImage interpretation, computed-assisted[Mesh]^, OR

BMultimodal imaging[Mesh]^, OR BTomography, emission-

computed[Mesh]^, OR BPhotography[Mesh]^. No start date limit

was used, and the search was extended until September 5th, 2018.

According to the scope of the review, we considered AI (i.e.,

algorithms that take images as inputs) and radiomics investiga-

tions aimed at relevant objectives in clinical practice: biological

characterisation, risk stratification, treatment response predic-

tion, toxicity prediction, and prognostication of a certain dis-

ease. The imaging modalities we considered were ultrasound,

radiography, mammography, endoscopy, skin pictures, ocular

fundus pictures, computed tomography (CT), magnetic reso-

nance imaging (MRI), scintigraphy (either planar images,

SPECT, or SPECT/CT) and positron emission tomography

(PET) or PET/CT. Subsequently, we applied the following ex-

clusion criteria: (a) articles not in the English language; (b)

studies not within the field of interest; (c) guidelines, review

articles and meta-analysis, editorials or letters, comments, and

conference proceedings; (d) Bin vitro^, phantom or animal stud-

ies; (e) case reports or small case series (≤ 10 patients); (f)

studies involving healthy subjects; (g) research articles focused

on methodological aspects (algorithm and/or software develop-

ment and/or comparison; evaluation/comparison of method(s)

for parameters optimization, segmentation and features extrac-

tion; test–retest studies); (h) testing data (not medical images) as

input for AI algorithm(s); (i) radiomics studies evaluating de-

scriptors of shape and size or image intensity histogram only

(i.e., not textural features); (j) lack of validation in a clinical

setting; (k) lack of conventional metrics (i.e., sensitivity, spec-

ificity, accuracy, and/or hazard ratio, and/or recall, and/or AUC,

and/or C-index) for the report of validation results.

Two reviewers (MK and MS) independently performed an

initial screening of the identified titles and abstracts applying

the inclusion/exclusion criteria. The discrepancies were re-

solved by a third reviewer (LA). The decision rule for consen-

sus was simple majority. Then, the reviewers retrieved the

full-text reports of the selected abstracts and, subsequently,

performed an independent second-step selection.

Quality assessment of the literature

Quality assessment of selected papers was performed according

to the QUADAS-2 criteria, assessing 4 domains: (1) patient se-

lection, (2) index test, (3) reference standard, and (4) flow and

timing [5]. The signalling questions for each QUADAS-2 do-

main were tailored for the aim of this review as detailed in

Table 1. This evaluation assigned the risk of bias to a study and

ranked it as low (score = 2), high (score = 1), or indeterminate

(score = 0) for each domain. We calculated the overall

QUADAS-2 score as the sum of the scores. The appropriateness

of statistical analysis was defined considering two aspects. First,

the total number of patients analysed was considered appropriate

if at least five patients/feature (after feature selection, if per-

formed) were included in a radiomics study; while AI studies

withmore than 50 patients were considered as acceptable quality.

The sample size criterion for radiomics studies was used adapting

the conventional rule for multiple regression: the number of data

points (i.e., observations or cases) should be considerably more

than 5–10 times the number of variables [6]. At least ten patients

per feature have been recommended in radiomics studies [7, 8].

Table 1 Description of the QUADAS-2 criteria used for the qualitative assessment

Patient selection Index test Reference standard Flow and timing

Signalling question 1: Was the

statistical management

adequate?

Signalling question 1: Were the imaging

acquisition protocol and the

segmentation method(s) detailed?

Signalling question 1:

Was the reference

standard adequate?

Signalling question 1: Was there an

appropriate interval between index test

and reference standard?

Signalling question 2: Were the

inclusion/exclusion criteria spec-

ified?

Signalling question 2: Was the image

processing approach detailed?

Signalling question 3: Was the type

of study (retrospective or

prospective) specified?

Signalling question 3: Was the validation

independent (i.e., no internal)?
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The sample size criterion for AI studies was established assum-

ing that at least 50 patients are needed to train and validate an

algorithm, minimising the effects of overfitting and improving

the quality of performance metrics, similarly to what is recom-

mended for biomarker discovery [9]. Second, we assessed the

balance in the number of patients between the subgroups (e.g.

number of patients with benign vs malignant lesions in a study

aimed at differential diagnosis); an imbalance of more than 2/3

was considered inappropriate.

Phases classification criteria

We developed the phases classification criteria for image min-

ing studies, inspired by the classification applied to the clinical

trials (Fig. 1). The parameters for phase categorisation includ-

ed: sample size, type of study (retrospective/prospective), type

of validation approach (internal/independent), and the devel-

opment stage (pre-/post-marketing). Figure 1 reports the clas-

sification criteria in detail. We assigned each selected article to

a phase: from 0 to IV.

Statistical analysis

A database was created for the qualitative synthesis of the

papers and the studies’ results. We recorded the results obtain-

ed in the validation set only. In case of multiple aims within

the same article, the primary one was considered. If image

mining was applied to different imaging modalities within

the same article (e.g., PET and CT), results were recorded

for each one. If different approaches were tested within the

same paper (e.g., models derived from random forest and sup-

port vector machine), the best in terms of diagnostic perfor-

mance was analysed. The articles reporting identical or very

similar sample size, research hypothesis, methodology and

results sharing with almost the same authorship—Bsalami^

publishing [10]—were excluded to avoid overlap in the study

population and results redundancy. Accordingly, in case of a

series of articles considered as Bsalami^, the one with the

larger sample size was evaluated and the other(s) excluded.

Papers with a QUADAS-2 ≥ 7 were included in the quantita-

tive analysis. Descriptive statistical measures were used to

summarise the data. Excel ® 2017 (Microsoft®, Redmond,

WA) was used for analysis.

Results

Search, eligibility criteria and study selection

Overall 34,626 articles were retrieved using the search algo-

rithm. Subsequently, 33,997 papers were excluded reviewing

titles and abstracts and applying the inclusion/exclusion

criteria. Five papers, suspected to be a Bsalami^ publishing,

were excluded. Figure 2 summarises the research process.

Table S1 reports a qualitative summary of the selected 300,

including the 171 high quality articles. In recent years, a strik-

ing increase in the number of papers published on image min-

ing occurred. In fact, especially in 2017 and 2018, 66 (22%)

and 131 (44%) articles, respectively, were published. Figure 3

shows the literature trend. The vast majority (more than 80%)

come from the oncology field. However, more than 50% of

the studies included in the qualitative analysis have been

assigned a high risk of bias (Fig. 4). Accordingly, a substantial

proportion 129/300 (43%) studies have been scored as having

a considerable risk of bias, mainly in the Bindex test^ and

Bpatient selection^ domains (QUADAS-2 ≤ 6) (Fig. 5).

Table S2 reports a qualitative summary of the 171 high-

quality (QUADAS ≥7) papers. The temporal trend of the lit-

erature according to the phase of the study is shown in Fig. 6.

Figures 7, 8, and 9 represent the graphical syntheses of the

high-quality articles (QUADAS-2 ≥ 7) considered from three

different points of view: the clinician, the imager, and the

researcher. Quantitative synthesis is summarised in Table 2.

The main results of the phase III studies are reported in

Table 3.

Discussion

The present systematic review is the first assessing the poten-

tial for implementation of image mining tools in clinical prac-

tice, bymeans of classification of the literature in development

phases. Despite the amount of literature on image mining with

a validation analysis, more than 90% of studies were classified

as phase 0, I or II (i.e., retrospective). Collectively, their results

were uncertain in terms of significance, goodness, and

strength and their generalisability weak. Even among the stud-

ies with a QUADAS-2 ≥ 7, only 4.6% were categorised as

phase III studies. As it emerges from the present systematic

review, the results are promising but still not mature enough

for clinical implementation and widespread use of image min-

ing tools. Nonetheless, the study quality has increased in re-

cent years.

Because of the paucity of phase III and IV studies, we did

not proceed to a meta-analysis. Therefore, no definitive con-

clusion can be drawn on which approach among radiomics

and AI should be preferred. AI techniques, in particular

convolutional neural networks, have the advantage over

radiomics of not requiring tumour segmentation, feature cal-

culation and selection. These steps are even more critical in

tiny lesions that have to be submitted to radiomics processing.

On the other hand, vast cohorts are crucial for a robust AI-

based model development that require big efforts to be col-

lected and analysed. Also, an unbiased reference standard, not

always easy to obtain, should be chosen to ensure AI model

reliability. The combined radiomics/AI strategy is at its early
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stages [179–183] and the complementary role of radiomics

and AI techniques should be addressed [184]. Which is the

best image mining approach is still an open question.

Similar to the other Bomics^ domains (e.g., proteomics), few

of the image mining biomarkers reached clinical practice [9]. The

translation of imagemining research in the clinical arena is limited

by the huge variability of the methods used for image analysis,

together with the impasse to reproduce the results when tested in a

different cohort of patients. Validation is a critical issue.

Theoretically, the validation analysis of a successful model should

provide consistent performance measures to those obtained in the

training process. Thereafter, results obtained in the validation co-

hort should be confirmed by the test-independent validation.

Finally, the proposed approach should be effective for the

a

b

Fig. 1 Trial phases. Trials

classification for the drug

development process (a) and for

the proposed image mining tools

development process (b).

PK pharmacokinetics,

PD pharmacodynamics
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indicationwithin the Breal world^ population of patients themod-

el has been developed for. The validation process may be internal

(e.g., cross-validation and bootstrapping) or external (using data

not used for training). Typically, the internal one, used for a pre-

liminary evaluation or for the fine-tuning of the model under

development, overestimate the performance [185]. In fact, the

same cohort is used twice, once to choose the filtered subset

and again to build a classification model resulting in the

overfitting of the algorithm to the data [9]. The external validation

may be performed using three different strategies: (i) temporal

(i.e., data obtained in newly recruited patients), (ii) geographic

(i.e., data collected in a different institution), and (iii) split-

sample (i.e., data split from the entire dataset and kept untouched

for the test). External validation is crucial to verify the

generalisability of the results [185]; and the random patient

selection is an essential prerequisite, as well as the balance in

patient characteristics. Temporal or geographic validations should

be preferred to the split-sample one. Particularly, the geographic

validation, which accounts for technical variability aspects (scan-

ners, acquisition parameters and protocols) [185], is expected to

be more representative of the clinical setting.

We excluded a priori from the present analysis studies test-

ing shape and size as well as histogram-based features since

our aim was to assess the Bmaturity^ of advanced image anal-

ysis at its’ full potential, entailing textural indexes derived

from up to second-order features. Image analysis based on

the gray level histogram only does not provide any informa-

tion about the relative position of pixels/voxels to each other

within the region of interest. Therefore, these features are not

able to describe whether any low/high gray levels are posi-

tioned together, or if they are distributed between high/low-

value gray levels [186].

In order to develop a valid and trustworthy image mining

tool the cohorts in study (training, validation and test) should

be representative of the target population. This means that the

sample size should be big enough to minimise the effects of

overfitting, be comprehensive of the Boutliers^, and, conse-

quently, be reliable when used for the assessment of unseen

patients. We proposed that at least 50 patients should be in-

cluded in AI studies, as also suggested by simulated analyses

[9, 187, 188]. However, especially for deep learning ap-

proaches and complex tasks, much larger populations are

needed. The effect of the sample size on the model perfor-

mance has been already demonstrated. When a limited dataset

(1000 samples) vs the complete dataset (>100,000) was used

for retinopathy classifier development, the weighted error

0
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Fig. 3 Trend of the published

studies on artificial intelligence

(AI), radiomics and the combined

approaches radiomics/AI
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resulted as 12.7% vs 6.6%, respectively [33]. Moreover, the

sample size was not the only criterion used to score papers.

Accordingly, even if the number of patients was relatively

low, only well-designed studies have been scored as having

low risk of bias and included in the quantitative analysis.

In the present work we arbitrarily chose 100 samples as the

threshold for trial phases categorisation (II vs III ad above). This

was a conservative decision. The conventional rule of the neces-

sity to include at least ten patients per tested variable if applied for

phase classification would have led to downgrading of most of

the studies. Considering the fact that generally a feature reduction

strategy was put in place we chose 100 as a reasonable cut-off.

When planning an image mining study, both statistical recom-

mendations (sample size and prospective design) and clinical

conditions’ variability should be considered in order to develop

an algorithm on a dataset that realistically represents the target

patient population. The sample size calculation has been estimat-

ed in only 3 out of the 171 papers [44, 88, 125]. The use of

multiple images taken from the same patient should be limited

since they are prone to be similar (or almost identical) with a

negative impact on the generalisability potential. In fact, even if

this process increases the sample size, the multiplied number of

observations (or cases) not representative of the inter-patient var-

iability, overestimates the model performance. Accordingly, data

1991-1995 1996-2000 2001-2005 2006-2010 2011-2016 2017 2018

Score 8 1 3 6 14 40
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Fig. 5 QUADAS-2 assessment results. Distribution of the articles tabulated by the four QUADAS-2 domains for the 300 studies selected applying the

inclusion/exclusion criteria (a) and for the 171 studies scored ≥7 (b)
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augmentation should be properly used to avoid overfitting, keep-

ing in mind that it cannot completely overcome the requirement

of a proper sample size.

To assess the appropriateness of the statistical analysis, we

considered not only the sample size but also the number of

patients within the subgroups (an imbalance of more than 2/3

was considered inappropriate). Imbalanced cohorts in image

mining studies may lead to constitutively biased results, which

confer higher uncertainty and poor generalisability [189].

Consequently, in the developmental phase, proper study de-

sign and analysis strategy using stratification, matching,

weighting, covariate adjustment, or regression should be

adopted. Therefore, imbalance per se does not prevent the

use of radiomic and AI-based approaches when the prevalence

of a disease or an outcome is very low [190].

The applicability of the image mining framework to rare

diseases is still an issue because of the limited data availability

for model development. Transversal platforms for sharing and

Image Mining 

(n=171) 

GI 

(n=21) 

Muskolosk 

(n=3) 

Skin 

(n=2) 
Oncology 
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Fig. 7 Radiomics and artificial intelligence literature summary by disease and clinical setting
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Fig. 6 Trend of literature on image mining according to trial phases classification, considering 300 selected studies (a) and the 171 high-quality studies (b)
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analysis of images and data, as envisaged by some research

groups [191], could represent a valuable strategy for the in-

vestigations in this field.

Presently, it is unrealistic to justify a medical decision by the

output provided by a neural network or a radiomics feature/

signature. Little or nothing is still known on the biological sig-

nificance of the image-derived parameters. Correlations with

tumour grading [39, 45, 46, 94, 100, 117, 118, 138, 174], in-

flammatory infiltrate [131], gene expression, mutation and mo-

lecular pathways [25, 44, 47–58, 85–87, 101, 121, 122,

139–142, 180] have been reported. Nonetheless, more should

be learned about the functioning ofAI and radiomics approaches

in order to solve the Bblack box^ problem and to understand the

underlying clinical and/or molecular connotation. Imagers

should be able to assess the reliability of image mining ap-

proaches and to manage independently the patient (i.e., the pilot,

plane and passengers during a flight). This innovative attitude,

which implies the acquisition of technical and informatics skills,

will contribute to remove the Bblack box^ uncertainties, and to

promote image mining towards clinical practice.
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Table 2 Quantitative synthesis of the 171 selected articles

Approach Domain Disease Outcome Imaging

modality

Images,

n

Type of

validation

Phase Reference

AI Neurology Alzheimer Diagnosis MRI 834 Internal II [11]

Parkinson Scintigraphy 175 [12]

Cardiovascular CAD Scintigraphy 308 Split-sample II [13]

Dentistry Caries Radiography 3000 II [14]

Teeth 1740 [15]

Endocrinology Acromegaly Photo 1365 II [16]

GI Liver Stage/severity US,CT 894 Geographical (n = 1)

Split-sample (n = 1)

II, III [17, 18]

Polyp Biological

characterization

Endoscopy 1473 Split-sample (n = 1)

Temporal (n = 1)

II [19, 20]

Infection H. pylori Diagnosis Endoscopy 43,689 Split-sample II [21]

Mycosis Photo 50,925 Geographical [22]

Oncology Lung Diagnosis CT 62,492 Split-sample II [23]

Bone Biological

characterization

Radiography 500 [24]

Brain MRI 477 [25]

Cervix Colposcopy 485 [26]

Skin Skin pictures 129,450 [27]

Esophagus Treatment

response

PET 107 Internal II [28]

Ophthalmology DR Diagnosis Fundus pictures 76,885 Geographical II [29]

Biological

characterization

430 Split-sample [30]

Stage/severity 92,961 Internal (n = 1)

Split-sample (n = 1)

[31, 32]

Macular

disease

Biological

characterization

109,312 Split-sample [33]

Stage/severity 133,821 Internal [34]

Orthopedics Fracture Diagnosis Radiography 258,349 Internal (n = 1)

Split-sample (n = 1)

II [35, 36]

Pneumology COPD Outcome CT 10,655 Internal II [37]

Radiomics GI Liver Stage/severity US 144 Split-sample III [38]

Oncology Bladder Biological

characterization

MRI 61 Internal 0 [39]

Stage/severity CT, MRI 221 Temporal II [40, 41]

Brain Diagnosis MRI 215 Internal (n = 1)

Split-sample (n = 1)

0, I [42, 43]

Biological

characterization

3732 Geographical (n = 1)

Internal (n = 4)

Split-sample (n = 11)

Temporal (n = 4)

0 (n = 2), I

(n = 1), II

(n = 17)

[44–63]

Stage/severity 286 Split-sample II [64]

Treatment

response

172 [65]

Outcome 812 Geographical (n = 1)

Internal (n = 3)

Split-sample (n = 2)

Temporal (n = 1)

0 (n = 2), I

(n = 1), II

(n = 4)

[66–72]

Breast Diagnosis Mammography

(n = 5), MRI

(n = 4), US

(n = 3)

2922 Geographical (n = 1)

Internal (n = 9)

Split-sample (n = 1)

Temporal (n = 1)

0 (n = 1), II

(n = 8),

III

(n = 3)

[73–84]

Biological

characterization

MRI 786 Internal (n = 2)

Split-sample (n = 1)

I (n = 1), II

(n = 2)

[85–87]

Stage/severity 309 Split-sample II [88, 89]

220 Internal, Split-sample [90, 91]
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Table 2 (continued)

Approach Domain Disease Outcome Imaging

modality

Images,

n

Type of

validation

Phase Reference

Treatment

response

Outcome MRI, mixed 407 [92, 93]

Uterus Biological

characterization

MRI 160 Internal III [94]

Stage/severity PET 115 Split-sample II [95]

Outcome PET (n = 2), mixed

(n = 2)

408 I (n = 2), II

(n = 2)

[96–99]

Colorectal Biological

characterization

CT 443 Split-sample II [100, 101]

Stage/severity 1791 Temporal [102–104]

Treatment

response

CT (n = 1), MRI

(n = 3)

701 Geographical (n = 1),

Internal (n = 1),

Split-sample (n = 2)

0 (n = 1), II

(n = 3)

[105–108]

Outcome MRI 108 Split-sample II [109]

Esophagus Stage/severity CT (n = 2), MRI

(n = 1)

608 Split-sample (n = 2)

Temporal (n = 1)

II [110–112]

Treatment

response

CT, MRI, PET 195 Internal (n = 2),

Split-sample (n = 1)

0, I, II [113–115]

Outcome CT 239 Split-sample II [116]

GIST Biological

characterization

222 II [117]

Kidney 53 Internal 0 [118]

Liver Stage/severity 304 Split-sample II [119]

H&N Diagnosis US 210 Internal II [120]

Biological

characterization

CT 969 Split-sample (n = 1)

Temporal (n = 2)

I (n = 1), II

(n = 2)

[121–123]

Treatment

response

MRI 120 Internal II [124]

Outcome CT (n = 2), MRI

(n = 2), PET

(n = 1)

1232 Geographical (n = 1)

Split-sample (n = 3)

Temporal (n = 1)

II (n = 4),

III

(n = 1)

[125–129]

Toxicity MRI 93 Geographical I [130]

Mixed

tumors

Biological

characterization

CT 272 Split-sample II [131]

Toxicity 32 Internal 0 [132]

Lung Diagnosis 1692 Internal (n = 2)

Geographical (n = 1)

Split-sample (n = 2)

II [133–137]

Biological

characterization

CT (n = 13), PET

(n = 2)

5235 Internal (n = 3)

Geographical (n = 4)

Split-sample (n = 4)

Temporal (n = 3)

I (n = 1), II

(n = 13)

[138–151]

Stage/severity CT 855 Internal (n = 2)

Split-sample (n = 2)

II [152–155]

Treatment

response

85 Internal 0 [156]

Outcome CT (n = 7), PET

(n = 2), mixed

(n = 2)

3125 Internal (n = 3)

Geographical (n = 2)

Split-sample (n = 5)

Temporal (n = 1)

0 (n = 1), II

(n = 9),

III

(n = 1)

[157–167]

Toxicity CT 192 Internal II [168]

Ocular Diagnosis MRI 157 Split-sample [169]

Ovary US 264 Geographical III [170]

Pancreas CT 103 Internal II [171]

Prostate Biological

characterization

MRI 316 Split-sample [172]

Outcome 120 Geographical [173]
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Additionally, some technical barriers should be faced when

considering implementing imagemining tools into the every-day

practice. These include a time-consuming workflow; uncertain

reproducibility of results among different scanners, acquisition

protocols, and image-processing approaches; regulatory issues

concerning privacy and ethics; and data protection. Common

efforts should be realised to accelerate the research path on these

aspects, and to implement the technological infrastructure and

make the tools easy to use. Privacy and ethics regulations may

restrict data and image sharing for the purpose of research and

every-day clinical practice. A shared strategy needs to be built up

for the management of these aspects. These challenges are an

opportunity to develop a reliable methodology able to provide

controlled data collection and secure infrastructure, instead of

gathering uncertain-quality datasets.

The need to provide reliable results has generated multiple

initiatives and recommendations to achieve methodology

standardisation and reproducibility [7, 185, 191–193]. The in-

creasing awareness among researchers of the urgency to increase

the quality of the investigations determined an increase in the

number of phase III trials in the last 2 years. In the era of

evidence-based medicine, rigorous research with strict rules is

the only way forward to achieve clinical acceptance and become

part of the Bstandard of care^. The research process should aim to

address a clinical need through an adequate statistical strategy,

prospective and multi centre studies, robust reference standards,

and adequate timing. Independent validation is mandatory to-

gether with the clarification of the impact of the technical aspects

on image mining models. These items imply that reproducible,

strong, and, hopefully, excellent results will be achieved through

an adequate research process. In this respect, a closer collabora-

tion should be established among clinical researchers, algorithm

developers and data scientists.

We foresee the transfer learning from the well-known drug

development process, with some specific adaptations, to the im-

agemining discipline as themost effectiveway for radiomics and

AI algorithms to get into routine clinical practice and avoid a new

glacial era of image mining in the next decades.

Table 3 Summary of the results of the phase III trials on image mining (n = 8)

Approach Domain/disease Outcome Imaging modality Images, n Main results Reference

AI GI/Liver Stage/severity US 398 AUC= 0.85 [17]

Radiomics 144 [38]

Oncology/Breast Diagnosis US 147 AUC= 0.93 [80]

Oncology/Cervix Biological characterization MRI 160 Accuracy = 69% [94]

Oncology/H&N Outcome CT 172 C-Index = 0.73 [127]

PET C-Index = 0.71

Oncology/Lung PET 312 C-Index = 0.59 [163]

Oncology/Ovary Diagnosis US 264 Sensitivity = 98% [170]

Specificity = 88%

Pulmonary/COPD CT 162 AUC= 0.89 [178]

AI artificial intelligence, AUC area under the curve, COPD chronic obstructive pulmonary disease, CT computed tomography, H&N head and neck, GI

gastrointestinal, MRI magnetic resonance imaging, PET positron emission tomography, US ultrasonography

Table 2 (continued)

Approach Domain Disease Outcome Imaging

modality

Images,

n

Type of

validation

Phase Reference

Sarcoma Biological

characterization

19 Split-sample I [174]

Outcome CT 150 Temporal II [175]

Skin Diagnosis Skin pictures 162 Geographical [176]

Ophthalmology Macular

disease

Biological

characterization

Fundus pictures 457 Temporal II [177]

Pneumology COPD Diagnosis CT 162 Split-sample III [178]

Combined

AI and

radiomi-

cs

Oncology Breast Diagnosis Mammography 600 Split-sample II [179]

Brain Biological

characterization

MRI 119 Internal II [180]

Outcome 112 Geographical II [181]

AI artificial intelligence, AUC area under the curve, CAD coronary artery disease, COPD chronic obstructive pulmonary disease, CT computed

tomography, H&N head and neck, GI gastrointestinal, GIST gastrointestinal stromal tumors,MRI magnetic resonance imaging, PET positron emission

tomography, US ultrasonography
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