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Abstract—State-of-the-art image retrieval algorithms using local

invariant features mostly rely on a large visual codebook to accel-

erate the feature quantization and matching. This codebook typ-
ically contains millions of visual words, which not only demands

for considerable resources to train offline but also consumes large

amount of memory at the online retrieval stage. This is hardly af-
fordable in resource limited scenarios such as mobile image search

applications. To address this issue, we propose a codebook-free al-

gorithm for large scale mobile image search. In our method, we
first employ a novel scalable cascaded hashing scheme to ensure the

recall rate of local feature matching. Afterwards, we enhance the

matching precision by an efficient verification with the binary sig-
natures of these local features. Consequently, our method achieves

fast and accurate feature matching free of a huge visual codebook.

Moreover, the quantization and binarizing functions in the pro-
posed scheme are independent of small collections of training im-

ages and generalize well for diverse image datasets. Evaluated on

two public datasets with a million distractor images, the proposed
algorithm demonstrates competitive retrieval accuracy and scala-

bility against four recent retrieval methods in literature.

Index Terms—Binary signature, cascaded hashing, matching
verification, mobile image search.

I. INTRODUCTION

W ITH the ever increasing popularity of smart phones and

tablets, billions of people are projected to use mobile

as primary internet access points since 2012. These mobile de-

vices generally equip cameras which become one of the most

natural and convenient portals from the physical space to the

digital world. Thus, the ubiquitous access to both digital photos
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Fig. 1. An illustration of mobile visual search in wireless environment. The

special concerns include the transmission latency and the limited resource in

the mobile device.

and internet sheds bright light on many emerging applications

based on mobile image search. For instances, searching similar

landmark or product images among visual media resource on-

line may allow users to explore valuable information such as

reviews or discounts on the spot. These applications demand

efficient and scalable content-based image retrieval.

Fig. 1 illustrates the mobile visual search scenario in wire-

less environment. Generally, the mobile phone is used as an in-

terface to take photos, transmit the photo data, and receive the

retrieval results from the computing servers via 3G network.

The index file of the image database is stored in the servers

and the searching processing is also conducted in the computing

servers. Considering the data transmission latency, it is desirable

to transit some compact pre-processed data such as quantization

results instead of the raw image data or the extracted features.

Due to the limited memory resource in a mobile phone, it is in-

feasible to a large visual codebook locally and a codebook-free

retrieval paradigm is desired.

Recent years have witnessed significant advances in content-

based image retrieval on large-scale image databases. In par-

ticular, the approaches [1]–[11] that utilize invariant local fea-

tures [12], [13] to represent images and leverage the bag-of-vi-

sual-words (BoW)model [1] to index large-scale image datasets

have demonstrated excellent retrieval precision and scalability.

Further, post-processing techniques, such as spatial verification

[2], [3], [8], [14] and query expansion [4], [15]–[17], have been

explored to boost the retrieval accuracy. In essence, the funda-

mental problem of content-based image search is how to per-

form visual matching between images reliably and efficiently.

In image retrieval algorithms using local invariant features,

the image matching is achieved via local feature matching
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Fig. 2. Mock-up illustration of the issues in the codebook based feature quan-

tization. The feature space is split into multiple small cells, each of which cor-

responds to a visual word. The query feature and candidate database feature are

denoted by a red circle and a green triangle, respectively. (a) Two features at

a small distance are quantized to different visual words; (b) Two features at a

large distance are quantized to the same visual word; (c) Two features close to

the cell boundary are quantized to different visual words.

between images. The most straightforward way is to explic-

itly compare and threshold the distance between two feature

descriptors, which can be hardly generalized beyond pairwise

image matching or registration. Using the conventional BoW

model, feature matching is implicitly determined by whether

two descriptors are quantized to the same visual word [1] in

a codebook, which essentially matches local features by their

hashing values (i.e., the visual word ID) and thus lowers the

complexity of feature matching from quadratic to linear. Fur-

thermore, a large vocabulary tree with millions of leaf nodes

[5], i.e., a hierarchical codebook instead of a flat one, is adopted

to reduce the complexity of feature quantization or hashing

from linear to logarithm. This approach significantly enhances

the scalability of local feature quantization and matching.

However, there are two issues led by a large visual code-

book. First, the codebook requires considerable resources to

train offline and consumes large amount of memory online.

For example, a hierarchical codebook with a million visual

words for 128D SIFT descriptors [12] is generally learned from

tens of million training descriptors, and requires hundreds of

megabytes to store at the runtime. These requirements prohibit

its usage in resource limited scenarios such as visual search in

mobile device. Second, the feature quantization error using a hi-

erarchical vector quantization is not easy to control. Depending

on the training descriptors, a large codebook divides the feature

space to multiple small cells (i.e., the hashing cells) with a

variable coverage. It is not rare to observe such cases shown in

Fig. 2: features at a small distance from each other are quan-

tized to different words in Fig. 2(a); features at a large distance

from each other are quantized to the same word in Fig. 2(b);

or features close to quantization cell boundaries are separated

to different words due to the hard-decision strategy, no matter

how small their distances are, as illustrated in Fig. 2(c). These

cases easily cause the false positive or true negative matches of

local features, leading to less precise retrieval performance.

To avoid the above issues, in this paper we investigate how to

hash local features for near-duplicated image retrieval without

involving any codebook training and vector quantization. We

propose to first ensure the recall rate of feature matching with a

scalable cascaded hashing (SCH) scheme which conducts scalar

quantization on the principle components of local descriptors

in a cascaded manner. Then, we improve the precision rate of

feature matching by verifying the binary signatures of local de-

scriptors, which effectively bounds the quantization error to the

same hashing value. The recall and precision achieved by the

above two steps will eventually boost the retrieval accuracy.

This cascaded hashing scheme plus the binary signature ver-

ification is capable of balancing the needs for the recall and

precision of feature matching. On one hand, the quantization

on the principle components largely assures similar descriptors

fall to the same hashing cell; on the other hand, the verifica-

tion bounds the dissimilarity of local features linked to one in-

verted index, consequently boosting the retrieval accuracy per-

formance. Since the proposed hashing scheme employs no code-

book at all, we bypass the time-consuming codebook training at

the offline stage and avoid the storage of a large codebook in

memory during online retrieval, which is particularly beneficial

to mobile devices with a strict limit on memory usage. Last but

not the least, as both our hashing and binary signature gener-

ation schemes are independent of small collections of training

images, our method readily generalizes to handle diverse image

datasets.

We evaluate the retrieval performance and the scalability

on two public benchmark datasets, i.e., the UKBench dataset

[5] and the DupImage dataset [8], and compare with 4 recent

retrieval methods, including the visual vocabulary tree [5],

Hamming embedding [7], soft assignment [6], and scalar

quantization [18]. The experiments validate that our method

achieves a comparable accuracy with yet a much higher

efficiency than the soft assignment [6], while significantly

outperforms the other three algorithms in terms of the accuracy

on the UKBench dataset. On the DupImage dataset mixed

with one million distractor images, our approach achieves the

highest mAP over all the other 4 comparison algorithms.

The paper is organized as follows. We first review the image

retrieval framework using local features and different feature

quantization and hashing schemes in Section II, then present our

approach in details in Section III. After that, we provide experi-

mental results and comparisons with 4 recent methods in terms

of retrieval accuracy, efficiency and memory cost in Section IV,

followed by the conclusions in Section V.

II. RELATED WORK

Content-based image search or retrieval has been a core

problem in multimedia for years. In recent literature, many

approaches adopt invariant local features to represent images,

which exploit the bag-of-visual-words model [1] and the classic

inverted index structure for scalable image search. Generally,

such an image search framework consists of four necessary

key modules, including feature extraction, feature quantization,

image indexing, and image ranking. For feature extraction,

the most popular and effective local descriptor is the SIFT

[12], which is extracted on key points or regions detected by

Difference of Gaussian (DoG) [12], MSER [19], or Hessian

affine detector [20], etc. Later on, there have been lots of

efforts on designing local descriptors with a higher efficiency

and comparable discriminability, e.g., the SURF [13] and

edge-SIFT [21]. At feature quantization, each local descriptor

is mapped or hashed to one or multiple visual words and then
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an image is represented by a group of visual words [1], [6].

After that, inverted index structures are readily adopted to

index large scale image databases for image search [1]. At the

online retrieval stage, the shared visual words between a query

image and database images can be easily identified by looking

up the inverted index lists. The similarity between the query

and database images is measured by a weighted formulation

[5] based on those shared visual words. Finally, those relevant

database images are ranked by their similarity scores and pre-

sented to users. The initial retrieval results may be re-ranked by

some post-processing techniques, such as the query expansion

[4], [17], feature augmentation [16], or geometric verification

[2], [3], [14].

The feature quantization, essentially a hashing function

of local features, plays a key role in identifying the feature

matching between images, where a visual codebook is usually

trained beforehand by clustering techniques, such as -means

[1], hierarchical -means [5], approximate -means (AKM)

[2], or affinity propagation [22]. A visual codebook may

contain thousands or millions of visual words. Thus, after

feature vectors are quantized to their nearest visual words,

two feature vectors from different images are regarded as a

match if they fall to the same word. Apparently, the vector

quantization with a hard-decision strategy inevitably incurs

some quantization error and leads to missing matches. To

reduce the vector quantization error, the soft-quantization [6],

[23] applies a soft-decision strategy and quantizes a SIFT

descriptor to multiple visual words based on the proximity in

the feature space. Although this method significantly lowers

the chance of missing matches, identifying multiple nearby

visual words from a large visual codebook is computationally

expensive. To address this issue, Zhou et al. proposed a visual

word expansion scheme to identify those nearest visual words

with a pre-computed supporting visual word table [24].

Hamming Embedding [7], [25] enriches the visual word with

more information from its original local descriptor and filters

out false matches by Hamming distance which is efficient in

computation. Spatial context of local features is a natural clue

to reduce the false matches in the feature quantization [7], [26].

So either the geometric contexts and SIFT descriptors are jointly

considered in the quantization [27] or separate codebooks are

trained for quantization of spatial relationship between local

features [28]. The spatial context can generally improve the re-

trieval performance considerably.

Recently, there emerges another trend to perform image

search without codebook training. Zhou et al. [18] proposed

to transform SIFT descriptors to 256-bit binary vectors by a

scalar quantization scheme. Without training a codebook, this

method selects 32 bits from the 256-bit vector as a codeword

for indexing and search. The drawback of this approach is that

the rest 224-bit per feature has to be stored in the inverted

indexes, which casts a heavy memory burden. In [29], Zhang

et al. proposed a novel query-sensitive ranking algorithm to

rank PCA-based binary hash codes to search for -neighbors

for image retrieval, which effectively improves the precision of

feature matching but at the risk of missing some true matches.

The quantization of local descriptors is closely related to

approximate nearest neighbor search. In literature, there are

many hashing algorithms for approximate nearest neighbor

search, e.g., LSH [30], kernelized locality sensitive hashing

[31], semi-supervised hashing method (SSH) [32], spectral

hashing [33], min-Hashing [9], iterative quantization [34].

These hashing methods, however, are mostly applied to global

image features such as GIST or BoW features at the image

level, or to feature retrieval only at the local feature level.

There is few work on image level search based on local feature

hashing [10]. This is mainly due to the fact that those hashing

schemes are capable of achieving a high precision but without

guarantee on the recall rate, which may not benefit the final

retrieval accuracy. To obtain a relatively high recall rate of

feature matching, those hashing schemes have to generate tens

of or hundreds of hashing tables, which will require a heavy

memory cost for each indexed local feature of database images

and meanwhile consume much more time during retrieval.

Inspired by [18], [29], in this paper, we target on codebook-

free mobile image search. After studying the statistics of a large

number of matched local descriptor pairs, we propose an effec-

tive scalable cascaded hashing scheme for feature quantization,

which first assures the recall rate of local feature matching. Then

we verify the binary signatures of SIFT features to improve the

precision. The proposed approach focuses on the feature quan-

tization and hashing step. Therefore, this codebook-free method

can also be flexibly integrated with many other techniques, such

as weak geometric consistency (WGC) [7], fast spatial matching

[2], spatial/geometric coding [3], [8], [14], and query expansion

[4], [15]–[17], contextual weighting [35], or geo-preserving vi-

sual phrase [36], etc., to further boost the performance.

III. OUR APPROACH

Our approach follows the strategy of first ensuring a rel-

atively high recall rate of local feature matching and then

refining the matching to improve the precision rate. We first

conduct a PCA for dimension reduction on SIFT features [12]

in Section III-A. We ensure the recall rate of local feature

matching by cascaded hashing of the principal components

of SIFTs as discussed in Section III-B. Ensuring the recall

rate inevitably incurs some false positive feature matches. To

address this issue, in Section III-C, we propose to verify the

candidate feature matches by compact binary signatures of

SIFT descriptors, which effectively removes a large portion of

false positive matches and greatly improves the precision rate.

Consequently, our method achieves promising retrieval accu-

racy based on reliable feature matching, free of any codebook.

A. Dimension Reduction on SIFT by a PCA

Before conducting the cascaded hashing, we reduce the di-

mension of SIFT feature by a PCA. The major benefit from a

PCA is that the top principal dimensions of PCA preserve

most energy of the original descriptor. Therefore, we can only

focus on those top dimensions instead of all 128 dimensions to

reduce processing complexity. These low dimensional features

facilitate a high recall rate with a limited number of hashing op-

erations. We have collected 5 million SIFT features for the PCA

training. Those training features are randomly sampled from a

50-million feature set, which are extracted from an independent
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Fig. 3. PCA results on 5 million SIFT training samples. (a) The energy (eigenvalues of PCA) corresponding to each principal component; (b) The cumulated

energy distribution over principal components; (c) The entropy of each dimension on the coefficient distribution after the dimension reduction; (d) The coefficient

distributions of the top 20 dimensions in PSIFT.

image database. We denote the dimension-reduced SIFT feature

as PSIFT. Some interesting observations are revealed from the

results shown in Fig. 3.

Not surprisingly, the energy (eigenvalue of PCA) of SIFT

feature is concentrated on a few dimensions, as illustrated in

Fig. 3(a) and (b). Fig. 3(d) shows the coefficient distributions

for the top 20 dimensions. It is worth noting that the coeffi-

cient distribution for the top 1 dimension exhibits a mixture of

two Gaussian-like distributions, while for other dimensions the

coefficient distribution presents a single Gaussian-like distribu-

tion. Besides, the coefficient range in each dimension is also

different from each other. Some existing works, such as [7],

[29], [34], assign one bit independently to quantize each di-

mension of the transformed SIFTs. However, as demonstrated

in Fig. 3(c) and Fig. 3(d), one bit may be far from enough to

encode a dimension if the hashing is conducted independently

for each dimension. For instance, the entropy of dimension 2

is about 8.7, which means at least 8.7 bits are required to en-

code the distribution with small quantization error. Although

some error is allowed, it is too rough to independently describe

such a single Gaussian-like distribution with only one bit. In

other words, these statistics suggest us to assign multiple bits

to each dimension, which means multiple quantization steps for

one dimension in case of a scalar quantization, unless the con-

text among different dimensions are explored as in [18]. Based

on the above observations, in the following section, we propose

a cascaded hashing scheme splitting the value ranges of PSIFT’s

top dimensions, which largely assures the feature matching at

certain given recall rates.

B. Scalable Cascaded Hashing

The general strategy of our approach is to first ensure recall

rate and then improve the precision rate in feature matching. We
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propose a scalable cascaded hashing (SCH) to sequentially per-

form scalar quantization on the principal components of SIFT

such that the accumulative recall rate is relatively high while the

false positive rate is low. Our SCH scheme can be regarded as

an approximate nearest neighbor search method focusing on en-

suring the recall rate of local feature matching. Denote a PSIFT

data point as and a PSIFT query as , then ’s

-neighborhood is given as,

(1)

Since the PCA projection is orthogonal and preserves the

-distance of original SIFT descriptors [29], Eq. (1) is an

approximation of the -neighborhood of the corresponding

feature in the original SIFT space.

Denote as the vector of the top dimensions of and de-

fine for in the same way. We relax Eq. (1) in the following

way denoting the approximate nearest neighbor set,

(2)

where a series of thresholds on each dimension are crit-

ical in our cascaded hashing scheme. We determine the thresh-

olds by extensively empirical study with the constraints on the

recall rate of local feature matching. The threshold for the

-th dimension is sequentially determined with the expected re-

call rate of the candidate results:

(3)

where denotes the probability density function of absolute

coefficient distance between relevant features (truly matched

features under some criteria) for the -th dimension, is the

relative recall rate for the -th dimension defined as,

(4)

The relative false positive rate in the -th dimension is defined

as,

(5)

where denotes the set of all potential feature matches. In the

SCH, we do not explicitly constrain the false positive rate but

focus on the recall rate.

So the overall recall after cascaded quantizing dimensions

( ) is expressed as

(6)

Thus the overall false positive rate after quantizing dimensions

( ) is

(7)

To ensure the overall recall in Eq. (6) large enough, we impose

the constraint on the recall rate of each of the dimensions:

(8)

Therefore, we have . The selection of impacts

both the overall recall rate and the overall false pos-

itive rate . For instance, if we select (which

means 95% true relevant matches are kept from the previous

round of scalar quantization) and = 10, we have

. Meanwhile, the selection of should remove the

vast majority of irrelevant false matches after the sequential fil-

tering. This strategy shares some insights with the face detection

algorithm [37], which filters irrelevant feature samples gradu-

ally in a cascaded manner. Distinguished from other hashing

methods which improve the precision rate but cannot adaptively

control the recall rate, our approach explicitly improves the re-

call rate by learning from the statistical distribution of visual

feature matches.

To select the threshold in Eq. (2) with the predefined con-

straint on the recall rate, we need to explicitly identify the prob-

ability density function in Eq. (3). To achieve the goal,

we pair-wisely select two images from relevant image groups

to generate about 15 K image pairs, leading to 1.54 million rel-

evant feature pairs. Based on those feature pairs, we conduct the

feature transformation by a PCA and build the probability den-

sity function on the absolute coefficient distance between

relevant features for each dimension of PSIFT.

Fig. 4(a) illustrates the probability density function for the

first dimension. The accumulated probability over is

shown in Fig. 4(b). From Fig. 4(b), we observe that about

relevant true matches are kept if we set the difference threshold

as 40. Considering the large range of the coefficient in the

corresponding dimension, the portion of false matches within

the threshold is relatively small. Based on such observations,

if we sequentially cascade dimensions and select a proper

threshold at each dimension to keep a high recall from the

previous round of scalar quantization, both the overall recall

and false positive rate decrease exponentially. Importantly,

the false positive rate decreases much faster, which benefits

narrowing down the search scope of candidate feature samples.

In the following, we present our cascaded hashing scheme

for the indexed features and query feature, respectively. Given

a feature vector , which is the top dimensions from a PSIFT,

its cascaded hashing result, referred as the vector, is de-

fined as the concatenation of scalar quantization result at each

dimension, i.e.,

(9)

where the quantization result in the -th dimension is defined as,

(10)

where denotes the minimum coefficient in the -th dimen-

sion, and denotes the quantization step in the -th dimension.

If the feature vector is from a database image, a hash key

is generated from the cascaded quantization result in Eq. (9)
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Fig. 4. Distribution of the absolute coefficient difference for the top 1 dimen-

sion of the PSIFT on the 1.54 million pairs of relevant feature pairs. (a) Prob-

ability density distribution of the absolute coefficient difference; (b) The accu-

mulated probability integrated based on (a).

Fig. 5. The inverted index structure in our approach.

for indexing based on the inverted index structure, as shown in

Fig. 5. If the feature vector is from a query image, we will take

a different strategy to reduce the quantization error as discussed

below.

Based on Eq. (10), each dimension is uniformly split into

multiple cells. Denote the center of the -th cell in the -th

dimension is , which is a scalar. To tolerate the quantiza-

tion error from the hard-decision strategy in quantization by

Eq. (10), we define the following criterion to identify the can-

didate feature matches of a query feature. Given a PSIFT query

feature , we perform quantization on each dimension

of with a soft-decision strategy, by selecting those cells

close to as follows:

(11)

To ensure the recall performance in Eq. (8), in our implemen-

tation, we define , because, in image search, all fea-

tures of database images have to be quantized to a hash key for

the convenience of index and scalable retrieval. After the fea-

ture indexing, the original features of the database images are

discarded. Therefore, for each indexed feature, we only know

which cell it is located in the -th dimension by the scalar quan-

tization result in Eq. (10), but do not know the precise location

in the corresponding cell. Give a query feature, we relate the

-th dimension with two closest cells. To make sure that the two

closest cells contain all relevant indexed features with the abso-

lute difference in the -th dimension less than , the best choice

is to set to be .

Using Eq. (11), each dimension of the query feature is

assigned the ID of at most 2 cells. That is, there are at most

two alternative quantization results in each dimension for the

query feature. Then the final SCH result of is obtained by

alternatively select one quantization cell in each dimension. So

each query feature is quantized to at most SCH vectors. For a

query feature, all features indexed to any of these SCH vectors

are considered as candidate matches.

C. Matching Verification by Binary Signatures

In Section III-B, we have discussed the cascaded hashing

scheme which guarantees the rate of true positive results but

inevitably leads to some false positive matches. To identify and

remove those false positive results, it is necessary to perform

matching verification on these candidates. To make the verifi-

cation fast enough, it is preferable to transform the feature to

binary code and verify the matching with the efficient Ham-

ming distance measurement. Motivated by this, we propose to

generate some binary signatures for those dimensions in PSIFT

after the top dimensions. In other words, for the PSIFT as

, we select a sub-set of elements in and obtain the

vector , with , considering that the top dimen-

sions have already been used in the scalable cascaded hashing

in Section III-B. Then, we transform the vector to a binary

vector by comparing each coefficient with an

individual threshold [18] as follows,

(12)

where is the median of all dimensions for an individual vector

, as suggested in [18]. Different feature vectors will have dif-

ferent median values, and the median value of each feature is

computed online. The rationale behind Eq. (12) is that the rel-

ative coefficient differences between different dimensions are

assumed to be stable. Unlike [7], [29] where each dimension of

feature vector is considered independently, the context of rel-

ative magnitudes among different dimensions is implicitly and

weakly encoded by Eq. (12).

With the PSIFT features represented by these binary signa-

tures, the comparison between different features can be effi-

ciently conducted by checking the Hamming distance between

their binary signatures. Given the PSIFT query , we re-

gard the candidate feature given by the SCH result of

as a valid match if it satisfies the following criterion,

(13)

where and denote the binary signatures of and ,

respectively, denote the Hamming distance between two

binary vectors, is a threshold. We will study the impact of

parameter and in the experiments in Section IV-A.

D. Index and Retrieval

In this section, we discuss how to perform the indexing and

retrieval based on the proposed scalable cascaded hashing and
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matching verification. Generally, an image search system con-

sists of an offline image indexing stage and an online retrieval

stage. In the offline indexing stage, for each database image, we

first conduct SIFT feature extraction and dimension reduction

by a PCA to generate the PSIFT. Then, for each PSIFT, we per-

form the cascaded hashing and binary signature generation, as

discussed in Section III-B and Section III-C, respectively. Af-

terwards, we identify the hash values of the scalable cascaded

hashing and store the feature information into the inverted in-

dexes, as shown in Fig. 5. For each indexed feature, we store

the ID of the image that this feature belongs to, the binary sig-

nature, and other information such as geometric clues if neces-

sary. After indexing the features of all database images, we can

perform on-line retrieval for a query image.

At the online retrieval stage, given a query image, we con-

duct the same SIFT feature extraction and generate the PSIFT.

Then, for each PSIFT, we perform the cascaded hashing and

calculate the binary signature. We identify those hash keys with

the SCH vectors satisfying Eq. (11) as the candidates. All candi-

date features linked to the inverted indexes of those hash values

are verified with their binary signatures. Only those whose bi-

nary signatures satisfy Eq. (13) are regarded as the validmatches

to the query feature. Then, each matched feature casts a vote

to the corresponding image ID. Finally, the indexed images are

ranked by their voting scores and returned to users as retrieval

results.

The three major technical components in our approach, i.e.,

the PCA, cascaded hashing, and binary signature verification,

are all important and contribute to the success of the final al-

gorithm. The PCA dimension reduction of SIFT descriptors en-

ables the cascaded hashing to focus on fewer dimensions and re-

duce the computational complexity. The cascaded hashing pre-

serves a large portion of true feature matching and removes the

majority of false ones, leading to a relatively high recall rate.

The binary signature verification removes those false positive

feature matches after the cascaded hashing, leading to a high

precision result.

IV. EXPERIMENTS

We evaluate the proposed approach on two public benchmark

datasets, i.e., UKBench dataset [5] and DupImage dataset [8].

In Section IV-A, we study the impact and sensitivity of the key

parameters on the UKBench dataset. Following [5], the average

4 times top-4 accuracy over this dataset is adopted to measure

the retrieval performance, which counts the number of relevant

results in the top 4 returned images.

In Section IV-B, we mix the DupImage dataset [8] with a

distractor dataset, which contains one million images randomly

crawled from the Web. To evaluate the scalability with respect

to the size of dataset, we construct three smaller datasets (50 K,

200 K, and 500 K) by sampling the distractor dataset. From

theDupImage dataset, 108 representative query images are ran-

domly selected for evaluation. Mean average precision (mAP)

is selected to evaluate the retrieval accuracy of all methods. The

retrieval results compared with four recent image retrieval ap-

proaches using different feature quantization schemes are dis-

cussed afterwards.

Fig. 6. The performance of the 4 times top-4 accuracy on the UKBench dataset

with the 64-bit signature using various values of , with .

A. Impact of Key Parameters

There are 4 key parameters in our algorithm, i.e., the recall

threshold , the dimensionality , binary signature length and

Hamming threshold . Since it is difficult to study the impact

of their combinations, in the following, we study the impact of

each parameter to the retrieval accuracy separately.

The recall threshold in Eq. (8) determines the fraction of

relevant feature matches that can be preserved in hashing each

dimension from the previous round. With a specific dimension

number , the overall recall rate is proportional to . As shown

in Fig. 6, when increases, the top-4 accuracy first grows

sharply, then keeps stable and drops sharply. This indicates that

when is relatively small, a high recall is obtained with the

increase of . However, when becomes too large, e.g., over

0.94, we also keep too many false positive feature matches,

leading to an increasing number of false matches that fail to be

removed by the binary signature verification in Eq. (13). As a

result, such false positive results degrade the accuracy perfor-

mance. According to Fig. 6, in the following experiments, we

empirically set as 0.90.

The second key parameter is the dimensionality in Eq. (6).

Since the overall recall of feature matching in SCH is pro-

portional to , given is predefined, increasing gradually

decreases the recall, but not necessarily degrades the retrieval

accuracy. As revealed in Fig. 7, when grows, the retrieval

accuracy first gradually increases and then decreases sharply

after becomes larger than 11. This is because when is

relatively small, increasing degrades the recall performance,

which, however, still passes sufficient true feature matches

to the verification stage. On the other hand, when becomes

too large, the recall performance drops too much that few true

features matches remain after the hashing. In our following

experiments, we select as 10 which generally works well.

The other two parameters and is related to the binary

signature of PSIFT. Since the binary signature is stored in the

inverted index list, its length is expected to be small, so as to

reduce the memory cost. Therefore, in our experiments, we only

test two alternatives of , i.e., 32 and 64. For each type of binary

signature, we test the retrieval performance using different
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Fig. 7. The performance of the 4 times top-4 accuracy on the UKBench dataset

with the 64-bit signature using various values of dimension , with and

.

Fig. 8. The performance of the 4 times top-4 accuracy on the UKBench dataset

with 32-bit or 64-bit signatures using various values of Hamming threshold ,

with and .

selections of the Hamming threshold . From Fig. 8, we ob-

served that for each kind of binary signature, the top-4 accuracy

first increases to a peak and then decreases, when the threshold

grows. This is due to that a smaller threshold removes more

false positives, but also may filter out more relevant matches.

On the other hand, when the threshold becomes larger, more

relevant results survive the verification, but more false positives

live as well, which degrades the retrieval accuracy. It can be de-

duced that the retrieval accuracy will be much poor when the

threshold takes the value of the bit length of the binary sig-

nature, which corresponds to the case that the binary signature

verification is ignored. This fact partially reveals that both the

cascaded hashing and binary signature verification are impor-

tant to the success of the final algorithm. In our following ex-

periments, as a tradeoff we select as 64 and as 10.

The retrieval performance of the top-4 accuracy and the query

efficiency of four other recent algorithms, introduced below, are

shown in Table I. Considering both accuracy and efficiency, our

approach achieves the best overall performance.

B. Performance Evaluation

Comparison algorithms: We compare our approach with

four feature quantization methods for large-scale image search.

TABLE I

COMPARISON IN TERMS OF THE 4 TIMES TOP-4 ACCURACY

AND THE AVERAGE QUERY TIME ON THE UKBENCH DATASET [5]

The baseline method is the BoW approach using a large visual

vocabulary tree [5]. We test various sizes of the visual vocabu-

lary and select the tree with one million ( ) leaf nodes which

yields the best overall performance. Two extensions of the base-

line using soft assignment [6] and Hamming embedding [7] are

also evaluated in the comparison.

Soft assignment [6] represents a local feature by a weighted

combination of three nearest visual words. We implement this

method using the default parameters in [6]. The nearest visual

words for a given feature are found by the -d tree algorithm

[23], [38] in a public library for approximate nearest neighbor

(ANN) searching [39] in our experiments. The error bound pa-

rameter [39] is set as 5 as a tradeoff between the accuracy and

efficiency. We denote this soft assignment method as “SA”.

The Hamming embedding method [7] generates additional

binary codes (64 bits) to filter out candidate features which are

quantized to the same visual word but with a large hamming

distance to the query feature. We denote this method as “HE”.

We have tested different thresholds for the Hamming distance

in the HE and select the one that achieves the best performance.

Since the main focus of this paper is feature quantization, the

weak geometric consistency (WGC) scheme [7] is not involved

in the experiments.

Different from the above three algorithms based on vector

quantization using visual codebook, the 4th algorithm adopts the

scalar quantization [18] to generate a 256-bit binary signature

for each SIFT feature and takes out 32 bits as code word to index

image feature. This method does not involve a codebook neither

which is denoted as “SQ” in the evaluation.

Accuracy: We test the retrieval performance of all algorithms

on theDupImage dataset with different number of distractor im-

ages. As shown in Fig. 9, for each algorithm, the mAP drops

as the database size grows. Our approach consistently achieves

the best mAP performance at different database sizes. On the

one-million image database, the baseline approach [5] achieves

an mAP of 0.38. Hamming Embedding (HE) [7] and soft as-

signment (SA) [6] improve the mAP to 0.43 and 0.48, respec-

tively. The scalar quantization (SQ) approach [18] pushes the

mAP to 0.54. Our approach achieves the mAP 0.60, which im-

proves over the SA by about 25.0%. Another observation from

Fig. 9 is that our approach exhibits a mild decline in mAP as the

database size increases compared with the baseline, HE and SA,

demonstrating a better scalability. This is partly due to the fact

that the discriminative power of a fixed visual codebook gener-

ally decreases along the growth of the image database. Although

a larger visual codebook may alleviate this issue, it may also in-

troduce larger quantization error to the local feature.

Efficiency: We compare the efficiency in both offline in-

dexing and online query. Table II shows that our approach is

comparable with the baseline and HE approach in terms of the

efficiency of offline indexing. The major computational cost of
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Fig. 9. Comparison of the mAP for 5 approaches on the DupImage with dif-

ferent numbers of image database images. SQ: scalar quantization [18]; SA: soft

assignment [6]; HE: Hamming Embedding [7].

TABLE II

COMPARISON OF THE INDEXING TIME IN SECOND OF

1 MILLION SIFT FEATURES AT THE OFFLINE STAGE

our approach in feature quantization is on the PCA projection

and binary signature generation. SQ [18] is very efficient in

indexing one million SIFT features within only 18.9 seconds.

SA [6] is quite time-consuming, about 10 times slower than

our approach, since the soft assignment requires to identify the

three nearest visual words from a large visual codebook with

the -d tree for every feature in database images.

On the one-million image database, the average query time of

all algorithms is compared in Fig. 10. The baseline approach is

very efficient, using about 0.12 second on average. The HE [7]

approach is evenmore efficient, with the average query time less

than 0.1 second. The other three algorithms are more time con-

suming. The average query time of the SA approach [6] and the

SQ is 0.54 second and 0.49 second, respectively. Our approach

requires about 0.69 second per query, mainly due to that the soft

quantization in the cascaded hashing may result in many candi-

date features in the database to be verified by their binary signa-

tures. The retrieval efficiency of our approach can be improved

if the number of hash buckets is reduced. In this paper, we per-

form quantization in each dimension independently. Therefore,

with dimensions, the maximum number of non-empty hash

buckets is . However, if in some dimension the query coeffi-

cient is located close to the cell center, we may only check one

cell instead of two, with minor sacrifice of accuracy. If out of

dimensions in a query feature satisfy the above condition, it is

possible to reduce the bucket number from to , which

causes some minor reduction in accuracy but may greatly im-

prove the efficiency.

MemoryCost:We compare thememory cost in terms of both

the indexed database features and the quantization or hashing

function in all the 5 approaches, as listed in Table III. In terms

of the memory cost per indexed feature, the baseline method

Fig. 10. Comparison on the query time for the 5 approaches on the one-million

image database. The query time does not include the SIFT feature extraction.

TABLE III

MEMORY COST FOR EACH INDEXED FEATURE AND THE QUANTIZATION

FUNCTION FOR THE 5 APPROACHES

[5] needs 4 bytes to store one image ID and another 4 bytes to

store the tf-idf weight. The SA [6] has to store the image ID of

each indexed feature in three visual word lists, therefore it costs

24 bytes, which is three times the memory cost of the baseline

approach. In the HE [7], it allocates 4 bytes on one image ID

and 8 bytes on the 64-bit Hamming code. Similar to the HE, our

approach requires 12 bytes for each indexed feature, including

4 bytes for an image ID and another 8 bytes to store the binary

signature. Compared with the above four methods, the SQ [18]

consumesmore memory, which needs 28 bytes to store a 224-bit

binary feature besides the 4 bytes for an image ID.

Besides the indexed features for database images, the re-

trieval algorithms also need to load the quantization or hashing

function into the memory during online query as the overhead.

A hierarchical visual vocabulary tree with leaf nodes is

required for both the baseline [5] and HE [7], which needs

about 560M bytes to save 1.11M 128D floating-point SIFT

vectors. Besides, the HE method stores additional 64D median

vectors for each leaf node which adds 256M extra storage.

As for the SA [6], based on the 1M visual words (only leaf

nodes of the vocabulary tree), it needs to generate a large -d

tree, which costs about 920 M bytes memory in total in our

implementation. In contrast, our SCH scheme spends much

less memory cost to save the scalar quantization functions. It

just needs to save the quantization step (4 bytes) and coefficient

range (8 bytes) for 10 dimensions, that costs only 120 bytes in

total. The SQ [18] does not involve any explicit quantizer and

has no memory cost for quantization. The light requirement of

the runtime memory enables the codebook-free methods to be

readily applied in resource limited scenarios, such as mobile

phone based visual search.

Transmission data: In the scenario of mobile image search

via wireless network, the quantization can be conducted in

the mobile device locally and the quantization results are

transmitted as pre-processed data to the server for retrieval. In

the four comparison algorithms and our approach, each 128-D
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floating-point SIFT feature is quantized to a visual word ID

or hash code, which can be represented with a 4-byte integer.

That is, for each SIFT feature, only 4-byte data needs to be

transmitted via the wireless network.

V. CONCLUSION

In this paper, we propose a novel codebook-free image

search algorithm. We present a scalable cascaded hashing

scheme for local feature quantization which first ensures the

matching recall rate, followed by a verification step using

compact binary signatures to remove false positive matches.

Therefore, this method achieves a balanced recall and precision

for the feature matching. Thorough study of the parameter sen-

sitivity and the scalability on two public datasets has validated

that this method achieves competitive retrieval performance

against 4 recent image retrieval algorithms. More importantly,

unlike conventional BoW based image search algorithms,

the proposed approach involves neither training large visual

codebooks nor loading them into memory during online query.

Thus, the merits of a high retrieval precision and low memory

footprint make the method a good fit to mobile phone based

image search.

The future work will include investigation of other dimension

reduction schemes to improve the feature matching precision of

the scalable cascaded hashing which may relax the requirement

of the verification step and accelerate the overall retrieval speed.
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