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Abstract—Online review fraud has evolved in sophistication
by launching intelligent campaigns where a group of coordi-
nated participants work together to deliver deceptive reviews
for the designated targets. Such collusive fraud is considered
much harder to defend against as these campaign participants
are capable of evading detection by shaping their behaviors
collectively so as not to appear suspicious. The present work
complements existing studies by exploring more subtle be-
havioral trails connected with collusive review fraud. A novel
statistical model is proposed to further characterize, recognize,
and forecast collusive fraud in online reviews. The proposed
model is completely unsupervised, which bypasses the difficulty
of manual annotation required for supervised modeling. It
is also highly flexible to incorporate collusion characteristics
available for better modeling and prediction. Experiments
on two real-world datasets demonstrate the effectiveness of
the proposed method and the improvements in learning and
predictive abilities.
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I. INTRODUCTION

As online reviews have become increasingly influential
in helping online shoppers make purchase decisions, review
fraud [1] has emerged as a major threat to this process.
This blackhat practice intends to affect people’s buying
decisions by creating misleading reviews about particular
businesses (e.g., restaurants, hotels). By committing review
fraud, malicious business owners can often achieve sales
increase by posting false positive reviews for themselves or
leaving false negative reviews for their rivals. It has been
estimated that about 16% of Yelp reviews written for the
restaurants in the metropolitan Boston area are fake [2]. To
make the situation even worse, review fraud practitioners
today have evolved in specialization; they were found to
collaborate and form coordinated campaigns [3], [4] such
that richer manpower and trickier tactics can be put into use
to achieve more covert and cost-effective fraud practices.

There are prior attempts at tackling such collusive fraud.
Supervised approaches were proposed for detecting review
fraud campaigns [5], [4]. Although shown to possess high
accuracy, these methods rely heavily on real fake reviews
for model training, which is highly challenging due to
the lack of ground truth in real-world scenarios [6]. To
overcome this problem, [3] pioneered the exploration of a
variety of collective behaviors of reviewers, and proposed an

unsupervised model to rank reviewers in an iterative manner.
[7] studied the network-based characteristics of spammers
under the same campaigns and clustered these spammers
based on their commonly reviewed products. Nevertheless,
a major problem is that these approaches cannot learn
from existing data for making predictions about emerging
collusion. Predictive models are crucial to fraud detection
tasks as they are deployable in real-time scenarios where
emerging fraud practices should be timely detected and
removed so as to minimize the caused damages. Moreover,
being a deterministic model by nature, these approaches
could be sensitive to the variability in the feature data that
can be incurred for different reasons, such as particular
parameter settings and noisy input data.

In this work, we are motivated to fill those gaps by
modeling collusive fraud1 in online reviews. In particular,
we identify the problem of detecting collusive review fraud
from a stochastic perspective, and seek for a statistical
solution that can 1) infer occurred collusion in existing
unlabeled data as unsupervised models, 2) learn to make
collusion forecasts as supervised models, and 3) handle
uncertainty in the measurements of used features. In the
light of such objectives, we propose the Latent Collusion
Model (LCM), a novel statistical model that fulfils all the
above goals. The key perspective of LCM is based on the
appreciation of revealed characteristics that can differentiate
colluders from non-colluders in specific feature space (e.g.,
[3], [4]). Specifically, colluders have been found to exhibit
unique collective behavior patterns that result from their
collaborations. It is then possible for LCM to build a unified
model for both tasks of collusion inference and prediction by
taking a hybrid generative and discriminative probabilistic
approach.

Moreover, to complement existing collusion-oriented fea-
tures and expend the feature space for characterizing col-
lusive review fraud, we propose a suite of homogeneity-
based collusive behavior measures (h-CBMs) to distin-
guish colluders from non-colluders. h-CBMs focus on the
intrinsic connections between colluders by measuring the
similarity between the behaviors of a group of related

1Throughout this paper, we will use the term “colluder” to refer to those
who have collaborated with each other in any collusive fraud attack.



Variable Description
v; V A reviewer v; the set of all reviewers
g; Mg A candidate colluder group; the members of g
Iv; Ig Businesses reviewed by v; Businesses reviewed by g
rv,i Rating given to business i by v
tv,i Timestamp of the review given by v to business i

Table I: Notations for defining h-CBMs.

colluders. Through h-CBMs, we find that to complete the
tasks assigned by a campaign, colluders tend to take very
similar actions such as targeting almost the same businesses,
providing highly consistent review ratings, and reviewing at
proximate times. To avoid detection, even though colluders
can restrict the size of launched campaigns or overwhelm
their targets by review flooding, the operations they need to
finish their tasks are inevitably homogeneous, which renders
them detectable.

II. CHARACTERIZING COLLUSIVE REVIEW FRAUD

As discussed, colluders under the same campaigns can
exhibit unique collective behavior patterns. However, exist-
ing features for this are mainly designed for finding large
campaigns with a non-trivial number of colluders and targets
(e.g., Group Size and Group Support Count in [3]); they
are likely to miss stealthier campaigns with smaller sizes.
Also, there are features regarding colluders as anomaly and
measuring how much their behaviors would deviate from
those of others (e.g., Group Deviation and Group Size Ratio
in [3]). However, colluders could easily turn themselves
into the majority by review-flooding their targets so that the
deviations can be eliminated. To cope with these issues, we
develop the homogeneity-based collusive behavior measures
(h-CBMs) that inspect the homogeneity in collective behav-
iors of colluders, i.e., the similar behaviors exhibited during
their working for the same campaigns.

In particular, to find reviewers who are likely to exhibit
collective behaviors, we borrow the concept of candidate
colluder group2 from [3] to refer to a group of reviewers
who have co-reviewed multiple businesses. The authors use
frequent itemset mining (FIM) to generate groups consisting
of at least two reviewers who have co-reviewed at least
three businesses. In this paper, h-CBMs will also act on
these groups. For terminology, a candidate colluder group, or
group for short, is regarded as malicious and its members as
colluders if its members have exhibited collective behaviors
related to collusive fraud. Otherwise, it is benign. Next, we
introduce the h-CBMs for characterizing collusive review
fraud. Tables I and II give the notations and definitions
respectively.

(1) Target-based h-CBMs. As no campaigns can launch
without specifying the targets, the connections between
colluders can be best revealed by inspecting the businesses
they focus on. Colluders working for the same campaigns

2In [3], the term used is candidate spammer group.

Name Description

Target Consistency (TC) Jaccard Similarity of business sets reviewed by members
of g: #{∩v∈MgIv}/#{∪v∈MgIv}

Rating Consistency (RC) Max. variance of review ratings given by Mg to busi-
nesses in Ig : max

i∈Ig
(var({rv,i|v ∈ Mg}))

Temporal Sync. (TS) Max. variance of timestamps of reviews posted by Mg

to businesses in Ig : max
i∈Ig

(var({tv,i|v ∈ Mg}))

First-review Sync. (FS) Variance of timestamps of the first reviews posted by
members in g: var({min({tv,i|i ∈ Iv})|v ∈ Mg})

Activity Consistency (AC) Variance of the most active moments of members of g.
The most active moment of a reviewer is the date on which
(s)he posts the most reviews: var({tmax

v |v ∈ Mg}),
tmax
v = argmax

t∈Tv

(#{tv,i = t|i ∈ Iv})

Workload Sim. (WS) Variance of the numbers of businesses reviewed by mem-
bers in g: var({|Iv||v ∈ Mg})

Table II: Summary of the h-CBMs.

will be assigned to the same targets. If the members of
a group possess highly consistent reviewing histories, they
are very likely to be involved in collusive fraud (Target
Consistency).

(2) Rating-based h-CBMs. As a major vehicle for ex-
pressing opinions, review ratings may also be subjected
to manipulation. Colluders can easily dominate the overall
opinions about the targets by creating a large number of
high ratings for promotion or low ratings for vilification. If
a group often gives consistently high/low ratings to the rated
businesses, it is likely to be suspicious (Rating Consistency).

(3) Temporal-based h-CBMs. Timing is vital to fraud
campaign services as efficiency usually brings more profits.
Colluders are often required to finish their tasks in time,
leading to their synchronized behaviors being observed
[8]. For this, we compute the variance of the reviewing
timestamps of the members of a group (Temporal Sync.). As
colluders tend to use accounts auto-generated or bought in
batch [9], it is possible to spot another kind of synchronicity
by comparing the times when colluders use their accounts
for the first time (First-review Sync.).

(4) Activity-based h-CBMs. Having to follow the same
campaign schedules and share the overall reviewing work-
load, colluders may exhibit very similar activeness patterns.
For the campaign schedule factor, we measure the similarity
between the most active moments of the members of a group
(Activity Consistency). For the workload sharing factor, one
way to measure the workload would be counting the total
number of reviews posted by a reviewer. To share the overall
workload of a campaign, the workload assigned to each
colluder may be similar (Workload Sim.).

A merit of h-CBMs is that they are parameter-free, which
omits the need for parameter estimation based on held-out
labeled data. Numerically, each h-CBM is standardized using
0-1 scaling and thus has value in [0,1]. The variance-based
h-CBMs (all except TC) are converted to similarity-based
measures by using the formula: snew = 2

1+sold
− 1; a value

closer to 1 suggests a group be more likely to be malicious.



III. LATENT COLLUSION MODEL

In this section, we introduce the Latent Collusion Model
(LCM) for modeling collusive review fraud from a prob-
abilistic view. Given a collection of candidate colluder
groups and their h-CBM measurements, LCM aims, in
an unsupervised way, to infer the occurred collusion and
meanwhile build a collusion predictor for making forecasts.
A principled optimization algorithm is also implemented to
conduct model learning and inference.

A. Problem Formulation

We are given a set of N candidate colluder groups G =
{g1, . . . , gN} in a review site, in which each group gn is
associated with an M -dimensional h-CBM3 vector ϕn =
{ϕ(1)n , . . . , ϕ

(M)
n }, ϕ(m)

n ∈ [0, 1]. Then the set of all h-CBM
vectors Φ = {ϕ1, . . . ,ϕN} constitutes our observed data
about all the groups G. The class label of each group gn is
denoted by a binary variable zn ∈ {0, 1}, specifying whether
it is benign or malicious. As our context is unsupervised, all
the class labels Z = {z1, . . . , zN} of G are unknown.

Now we define the problem of detecting collusive review
fraud from a probabilistic modeling perspective as follows:

Problem 1: Given a set of candidate colluder groups
G with their observed h-CBM vectors Φ, the problem of
detecting collusive fraud in online reviews involves two
subtasks: 1) infer the posterior distribution of the class
labels Z of G, p(Z|Φ), and 2) predict the class label ẑ
for an emerging group ĝ based on the predictive distribution
p(ẑ|ϕ̂,Φ,Z), where ϕ̂ is the h-CBM vector of ĝ.

B. The Model

To solve Problem 1, for the collusion inference task, we
need to compute the posterior distribution p(Z|Φ), while for
the collusion prediction task, we need to derive the predictive
distribution p(ẑ|ϕ̂,Φ,Z). It can be seen that in both cases
the unknown quantity Z plays an important role, and can be
used to connect the two parts in a way that one can benefit
from the other. For this, LCM treats the class labels Z as
latent, and considers the reciprocal relationship between the
unknown class labels Z and the observed h-CBM vectors
Φ from two probabilistic modeling views: generative and
discriminative.
The generative view: occurred collusion inference. The
generative view of LCM considers the class labels as the
hidden factor that causes the h-CBM vectors. As mentioned,
colluders often possess unique collective behavior patterns in
feature space. Once we know the class label of a group, we
can somehow generate its h-CBM vector based on the differ-
ence between the collective behavior patterns (distributions)
of malicious and benign groups, which essentially yields
two distinctive clusters. Then we can take a clustering-based

3Note that other collusion-oriented features can also be used in LCM.
The term “h-CBM” here is for representational purpose only.

generative approach [10] to infer the posterior distribution
p(Z|Φ) so as to solve the inference task of Problem 1.

Specifically, the generative approach for this clustering
postulates a generative process describing how the h-CBM
vectors of a mixture of malicious and benign groups can
be generated by LCM: for each group gn, to generate
its M-dimensional h-CBM vector ϕn, we would first de-
cide its class label zn based on a cluster membership
distribution p(zn), and then for each h-CBM dimension
ϕ
(m)
n , we would draw a value from the cluster-conditional

distribution parametrized as p(ϕ(m)
n |λ(m)

zn ). The parameter
λ
(m)
zn = {λ(m)

0 ,λ
(m)
1 } essentially captures the latent collec-

tive behavior patterns of colluders (λ(m)
1 ) and non-colluders

(λ(m)
0 ) on the mth h-CBM dimension. As each h-CBM

dimension ϕ(m)
n takes values in [0, 1], we substantialize the

cluster-conditional distribution p(ϕ
(m)
n |λ(m)

zn ) as a standard
Beta distribution Beta(ϕ

(m)
n |α(m)

zn , β
(m)
zn ) with parameters

α
(m)
zn and β(m)

zn , such that λ(m)
zn = [α

(m)
zn , β

(m)
zn ]T .

Given this generative process, the likelihood of generating
the observed data Φ based on the model parameter λ =

{λ(m)
0 }Mm=1 ∪ {λ(m)

1 }Mm=1 can be written as:

L(λ|Φ,Z) =

N∏
n=1

M∏
m=1

∑
k∈{0,1}

p(zn = k)·Beta(ϕ(m)
n |α(m)

zn , β(m)
zn )

(1)
Then we are able to compute the posterior distribution

p(Z|Φ,λ) by maximizing the likelihood in Eq. (1) with
respect to the model parameter λ with an EM algorithm [11].
More details will be presented later in Section III-C.
The discriminative view: emerging collusion prediction.
The discriminative view, on the other hand, regards the class
labels as the hidden consequence of the observed h-CBM
vectors. This view is considered more natural since the very
goal of h-CBMs is to discriminate between colluders and
non-colluders; given the h-CBM vector of a group, we can
tell its class label by referring to the semantics of h-CBMs.

To solve the prediction task of Problem 1, i.e., to compute
the predictive distribution p(ẑ|ϕ̂,Φ,Z), we take a discrim-
inative approach [10] where p(zn|ϕn) is directly defined.
Here, we use a logistic function to model this distribution:
p(zn = 1|ϕn,w) = σ(wTϕn), where σ(x) = 1

1+exp(−x) is
the logistic function, w = {w0, · · · ,wM} is an (M + 1)-
dimensional weight vector to be estimated; w0 is the weight
for an additional dummy h-CBM ϕ

(0)
n =1 which is added for

notational compactness. In general, other suitable models for
binary responses could also apply, such as the probit regres-
sion model [12]. Then, predictions for emerging groups can
be made by marginalizing the predictive distribution with
respect to w:

p(ẑ = 1|ϕ̂,Φ,Z) =

∫
p(ẑ = 1|ϕ̂,w)p(w|Φ,Z)dw (2)

However, this marginalization requires the knowledge of all
class labels Z, and as our context is unsupervised, we are



not provided with such information.
The full model. Indeed, as we have already seen the ability
of LCM to perform collusion inference before, we can
instead make use of the class labels inferred concurrently
from the generative process of LCM as the pseudo-ground
truth to derive the predictive distribution using Eq. (2). For
this, we need to combine the generative and discriminative
views of LCM to produce the final model. Specifically, the
two views combine in a way that the joint probability of
all the h-CBM vectors Φ and the class labels Z given the
model parameters {w,λ} is written as:

p(Φ,Z|w,λ) =

N∏
n=1

p(zn|ϕn,w)

M∏
m=1

p(ϕ(m)
n |λ(m)

zn )

=

N∏
n=1

[
1

1 + exp(−wTϕn)

]zn
[

exp(−wTϕn)

1 + exp(−wTϕn)

]1−zn

·
( M∏

m=1

[
Γ(α

(m)
1 + β

(m)
1 )

Γ(α
(m)
1 )Γ(β

(m)
1 )

(ϕ(m)
n )α

(m)
1 −1(1− ϕ(m)

n )β
(m)
1 −1

]zn

·
[
Γ(α

(m)
0 + β

(m)
0 )

Γ(α
(m)
0 )Γ(β

(m)
0 )

(ϕ(m)
n )α

(m)
0 −1(1− ϕ(m)

n )β
(m)
0 −1

]1−zn
)
(3)

C. Learning and Inference
To apply the proposed LCM for modeling collusive review

fraud, we need to compute the posterior distribution of latent
variables and estimate the model parameters. In LCM, the
latent variables Z = {zn}Nn=1 account for the occurrence of
collusion in the input data. The model parameters are {w,λ}
where w enables the learning of a collusion predictor, and
λ = {λ(m)

0 }Mm=1 ∪ {λ(m)
1 }Mm=1 captures collective behavior

patterns of colluders and non-colluders. As LCM is a latent
variable model, we develop an EM algorithm to perform
model learning and inference for LCM.
E-step: We derive the posterior of latent variable Z based
on Bayes’ theorem and Eq. (3) as follows:

q(Z|Φ,w,λ) ∝ p(Φ,Z|w,λ) (4)

=
N∏
n=1

[
σ(wTϕn)

M∏
m=1

Beta(ϕ(m)
n |α(m)

1 , β
(m)
1 )

]zn
·
[
(1− σ(wTϕn))

M∏
m=1

Beta(ϕ(m)
n |α(m)

0 , β
(m)
0 )

]1−zn
For simplicity, it is assumed that each group is indepen-

dent with each other and so is its label. Then, by factorizing
Eq. (4), we obtain the posterior of each zn as:

q(zn = 1|ϕn,w,λ) = σ(wTϕn +△λ) (5)

with △λ defined as:

△λ =

M∑
m=1

log Γ(α
(m)
1 + β

(m)
1 ) + log Γ(α

(m)
0 ) + log Γ(β

(m)
0 )

− log Γ(α
(m)
0 + β

(m)
0 )− log Γ(α

(m)
1 )− log Γ(β

(m)
1 )

+ (α
(m)
1 − α

(m)
0 ) log ϕ(m)

n + (β
(m)
1 − β

(m)
0 ) log(1− ϕ(m)

n )

M-step: We find the estimate for model parameters {w,λ}
so as to maximize the expected value of the complete data
log-likelihood EZ [log p(Φ,Z|w,λ)].

For w, due to the nonlinearity of logistic function, the
optimal solution cannot be found analytically. We appeal to
the Newton-Raphson method where the optimal w∗ can be
estimated iteratively:

wnew = wold −H−1
w gw (6)

with gradient gw=ΦT (qz̄ − pz̄) and Hessian Hw=ΦTQΦ,
where qz̄ is a column vector {Eq[zn]}Nn=1; pz̄ a column
vector {Ep[zn]}Nn=1; Q an N × N diagonal matrix with
elements Qnn = Eq[zn](1− Eq[zn]).

For λ = {α(m)
k , β

(m)
k }Mm=1, k ∈ {0, 1}, the optimal value

{α(m)
k

∗
, β

(m)
k

∗
} for each parameter pair are coupled and

need to be solved simultaneously. Again, we resort to the
Newton-Raphson method where each Beta parameter pair
λ
(m)
k = {α(m)

k , β
(m)
k } can be optimized iteratively:

λ
(m)
k

new
= λ

(m)
k

old
−H−1

λk
gλk (7)

where gradients gλk
= [gαλk

, gβλk
]:

g
α
λk

=
∑
n

q(zn = k){log ϕ(m)
n − [ψ(α

(m)
k ) − ψ(α

(m)
k + β

(m)
k )]}

g
β
λk

=
∑
n

q(zn = k){log(1 − ϕ
(m)
n ) − ψ(β

(m)
k ) − ψ(α

(m)
k + β

(m)
k )]}

and Hessian Hλk
=
∑
n q(zn = k) ·H0 with H0 defined as:

H0 =

[
ψ′(α

(m)
k + β

(m)
k ) − ψ′(α

(m)
k ) ψ′(α

(m)
k + β

(m)
k )

ψ′(α
(m)
k + β

(m)
k ) ψ′(α

(m)
k + β

(m)
k ) − ψ′(β

(m)
k )

]

where ψ(·) is the digamma function; ψ′(·) the trigamma
function.

Finally, the full EM algorithm proceeds as follows. First,
we initialize {λ(m)

k } with uninformative prior [1, 1], and
w randomly. Then the algorithm is performed iteratively
by alternatively executing the E-step and M-step in each
iteration until the log-likelihood log p(Φ,Z|w,λ) converges.

D. Collusion Inference and Prediction
After performing model learning and inference for LCM,

we can finally solve Problem 1.
For the collusion inference task, one can compute the

probability of each group gn being malicious by referring
to the posterior of its class label zn in Eq. (5):

q(zn = 1|ϕn,w∗,λ∗) = σ(w∗Tϕn +△λ∗) (8)

where w∗ and λ∗ are the (local) optimal solution obtained
after the EM algorithm converges.

For the collusion prediction task, based on w∗ and Eq. (2),
the collusion predictive distribution can be derived as:

p(ẑ = 1|ϕ̂,Φ,Z) =

∫
p(ẑ = 1|ϕ̂,w)p(w|Φ,Z)dw

≈
∫

p(ẑ = 1|ϕ̂,w∗)p(w|Φ,Z)dw

= p(ẑ = 1|ϕ̂,w∗) = σ(w∗Tϕn)

(9)



IV. EXPERIMENTS

We now evaluate the proposed LCM and conduct compar-
ison analysis with several baselines based on two real-world
consumer review datasets.

A. Datasets

Our evaluation is conducted on two real-world consumer
review datasets that contain collusive fraud. The first one
(denoted by “DL”) has been used in [4] which contains
1,205,125 reviews posted by 645,072 reviewers for 136,785
products on Amazon.cn. Among DL, a total of 8,915 groups
have been identified (involving 1,937 colluders and 3,118
non-colluders). The second dataset (denoted by “DU”) has
been used in [3], with 7,052 groups obtained from a set of
109,518 consumer reviews posted by 53,469 reviewers for
39,392 products on Amazon.com. As we cannot get access
to the labels of groups in DU, we adopt an unsupervised
evaluation method to experiment with DU.

B. Performance Comparison on DL

In this section, we compare the predictive performance of
LCM to other unsupervised approaches using the annotated
DL. For evaluation purpose, two well-known ranking based
metrics, namely Average Precision (AP) and Area Under
ROC Curve (AUC) are used.
Baselines. The problem studied in [3] is most closely related
to ours where an unsupervised ranking model, GSRank,
is proposed to find malicious reviewer groups. It works
by performing iterative computations on three related en-
tities, i.e., reviewers, groups, and products. Eight Group
Spam Behavior Indicators (GSBIs) are also proposed to
capture suspicious group behaviors of spammers. Another
competitor capable of working in unsupervised mode is
the learning to rank approaches, in which the training
rankings can be generated by sorting groups based on their
h-CBMs/GSBIs in descending order. Two classic learning to
rank algorithms - SVMRank [13] and RankBoost [14] - are
included with default parameter settings. In summary, we
have the following baselines for our comparison analysis:
GSRank (GSBI): As being tightly coupled with GSBIs,
GSRank cannot work with other features such as h-CBMs.
SVMRank & RankBoost: Each of them is performed with
GSBIs, h-CBMs, and both.
LCM: As LCM can work with other features, it is performed
with GSBIs, h-CBMs, and both.

The output of each baseline is a score assigned to each
reviewer in DL which represents his/her possibility of being
colluders. The score of a reviewer is set to the maximum
over the scores assigned to the groups (s)he belongs to (For
LCM, the score assigned to each group is p(ẑ|ϕ̂,Φ,Z) in
Eq. (9)). The experiment is conducted using 5-fold cross-
validation. As not being a trainable model, GSRank is
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Figure 1: Cross validation comparison of LCM with other
baselines. Error bars denote standard error of the mean.

evaluated by using one test folder each time. All the im-
provements of our method over the baselines are significant
at p <.01 with paired t-test.

The results are shown in Figure 1. It can be seen that LCM
generally outperforms other methods in both metrics, with
the best result achieved by using h-CBMs (LCM+h-CBM,
AP=0.864, AUC=0.852). To compare different feature sets,
we inspect the experiments using the same models. It shows
that in all cases the performance can be improved by incor-
porating h-CBMs for training (by comparing X+GSBI with
X+GSBI+h-CBM). The improvements range from 3.5% to
6.5% in AP and 5.8% to 9.3% in AUC. Also, the h-
CBMs are shown to perform better than GSBIs in all cases
(by comparing X+GSBI with X+h-CBM), by a margin of
6.4%-7.9% in AP and 8.1%-13.6% in AUC, which suggests
the importance of characterizing colluders’ homogeneous
collective behaviors in practice. To compare the performance
of different models, we inspect the experiments with the
feature set fixed (X+GSBI). It can be seen that LCM shows
superior performance over other baselines; the performance
improves by 2.78% in AP and 2.59% in AUC compared to
the second-place GSRank. Although the results of GSRank
might be partially attributed to the evaluation paradigm
where only one test folder is used as input (as GSRank is
not trainable), the dominance of LCM over the other two
trainable models (SVMRank and RankBoost) in both AP
(by 10.9% and 10.1% resp.) and AUC (by 5.2% and 4.3%
resp.) shows its competence in predicting collusive fraud.

C. Unsupervised Comparison on DU

As GSRank was experimented with DU [3], we then
compare the collusion inference performance of LCM with
GSRank on DU. Due to the lack of annotation, an unsu-
pervised evaluation method [8] for ranking-based review
fraud detection algorithms is used. Simply put, given a final
ranking of reviewers with malicious ones ranked at the top
and legitimate ones at the bottom, this approach first creates
a pseudo annotated dataset by labeling the reviews posted
by the top k% reviewers as positives and those posted by
the bottom k% reviewers as negatives. Based on this corpus,
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Figure 2: LCM vs. GSRank on DU. As the true number of
colluders is unknown, we set k within [5, 50].

a standard text classification for fake reviews is conducted.
The results will then be seen as an indirect evaluation of
the original ranking algorithm. LCM can yield rankings
by sorting reviewers based on the inference of their class
labels, i.e., q(z) in Eq. (8). Linear SVM is used as the text
classification algorithm. 5-fold cross validation is performed
for each model. The results (F1-score & accuracy) are shown
in Figure 2.

We can observe similar trends in both metrics. In
general, LCM achieves comparable results with GSRank
(LCM+GSBI vs.GSRank), with the maximum differences
from GSRank being 5.4% in F1-score and 5.6% in accuracy
(k=10). This can be contributed by the effectiveness of
GSBIs, which makes colluders well-separated from non-
colluders in DU in terms of their behavior patterns [3]. LCM
can also benefit from this separation; the larger it attains, the
more accurately the collusion can be inferred by LCM. The
utility of h-CBMs on DU can also be observed by inspecting
the experiments involving the same model (LCM+X). It
shows that when k is small (<15), h-CBMs perform the
best. However, as k goes beyond 15, GSBIs begin to
dominate. This shows that h-CBMs can effectively discover
some portion of colluders in DU who have been missed by
GSRank. As the superiority of h-CBMs over GSBIs does not
last long (only with k ∈ [5, 15]), we speculate that DU may
not be heavily attacked by collusive fraud because colludes
in DU can still be treated as minorities or outliers and
can effectively be caught by the anomaly-based features in
GSBIs. Finally, the moderate performance of using GSBI+h-
CBM suggests a compromise be made when combining h-
CBMs with GSBIs.

V. CONCLUSIONS

In this paper, we identify the problem of detecting collu-
sive fraud in online reviews from a stochastic perspective,
and propose a novel statistical model called Latent Collusion
Model (LCM) to model collusive review fraud. Not only can
LCM perform collusion inference as unsupervised models,
but it can also make collusion predictions as supervised

models. Furthermore, multiple homogeneity-based collusive
behavior measures (h-CBMs) are developed to capture the
homophily inside colluders. The h-CBMs are complemen-
tary to existing collusion-oriented features in terms of han-
dling stealthier collusive attacks. Experiments on two real-
world review datasets show the effectiveness of h-CBMs
and the superiority of LCM over state-of-the-art competitors
in terms of collusion inference and predictive abilities. The
source code and datasets used in this paper can be found at
https://sites.google.com/site/homecxu/.
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