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900 de la Gauchetiere west, Box 644, Montreal, Qu´ebec, Canada, H5A 1C6

ABSTRACT

Usually, speaker recognition systems do not take into account the
dependence between the vocal source and the vocal tract. A feasi-
bility study that retains this dependence is presented here. A model
of joint probability functions of the pitch and the feature vectors
is proposed. Three strategies are designed and compared for all
female speakers taken from the SPIDRE corpus. The first oper-
ates on all voiced and unvoiced speech segments (baseline strat-
egy). The second strategy considers only the voiced speech seg-
ments and the last includes the pitch information along with the
standard MFCC. We use two pattern recognizers: LVQ–SLP and
GMM. In all cases, we observe an increase of the identification
rates and more specifically when using a time duration of 500ms
(6% higher).

1. INTRODUCTION

The vibration frequency of the vocal folds is known to be an im-
portant feature to characterize speech and has been found effective
for automatic speech and speaker recognition [1] [6]. An impor-
tant characteristic of pitch is its robustness to noise and channel
distortions. Many parametrizations of pitch such as pitch value,
averaged pitch, pitch contour, pitch jitter and location [1] [4] have
been proposed for speaker verification or identification. Speaker
recognition systems exclusively based on pitch do well when the
number of speakers [1] is small. However, performance decreases
significantly when the number of speakers increases, but pitch in-
formation can be reliably used to distinguish the sex of speak-
ers [5]. In spite of the weak contribution of pitch to contempo-
rary speaker identification, it remains true that the mechanisms in-
volved in speech production are complex, and imply dependence
of articulators and vocal folds, which can be useful for speaker
verification or identification.

The most popular way used to model pitch is by a Gaussian
density or a mixture of Gaussians. Statistical independence of the
glottis and the vocal tract is assumed by these models. In this pa-
per, we propose to take into account the correlation between the
glottis and the vocal tract. We study the influence of this depen-
dence in the context of a text–independent Speaker Identification
System (SIS). We use a joint probability function to take into ac-
count the correlation between source and vocal tract. The proposed
approach consists of generating models of the feature vectors for
each pitch range.
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The next section describes the motivation for this research.
The baseline and the proposed systems are described in sections 5
and 7. Sections 8 and 9 present the results, discussion and conclu-
sion.

2. MOTIVATION

Most systems use parameters that encode vocal tract features, but
contributions of the glottis are largely ignored. Even if MFCC are
theoretically known to deconvolve the source and the vocal tract, in
practice, cepstrum coefficients are affected by high pitched voices
(women and infants). One can illustrate the role of pitch when
dependence of the source and the vocal tract are maintained. Fig-
ure 1 exhibits four spectrograms and pitch histograms, each col-
umn corresponds to a different male speaker, obtained from the
YOHO database. All speakers pronounced the same digit utter-
ance ‘twenty six’. The pitch range is divided into 56 linearly bins
of 10 Hz width. The spectrograms show a significant similarity
of formant distributions between speakers. The spatial distribution
of formants depends on the interspeaker variability as described
in [2]. However, the pitch histograms are different and vary from
one speaker to another for the same context. If one compares the
histograms by taking into account their frequency amplitude and
width, it is observed that speaker 2 from the second column and
speaker 4 from the fourth column do have a similar pitch distri-
bution. On the other hand, speakers 1 and 3 are characterized by
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Figure 1: For each of four male speakers: Pitch histograms and
spectrograms for the same English digit utterance ‘26’.

dissimilar pitch histograms. Consequently, if one takes into con-
sideration the pitch information, the interspeaker variability can
be restricted to speakers with similar pitch distributions, and the
other speakers will be considered as belonging to other clusters.
Speakers with similar pitch will be recognized based on the spec-
tral characteristics.

In summary, pitch and vocal tract features can be jointly ex-
ploited in order to establish probability models of feature vectors



assuming the a priori knowledge of the pitch distribution.

3. PROPOSED MODEL

3.1. Theoretical framework

We suppose that pitch and vocal tract features are two random pro-

cess respectively denoted asX(t) andY (t). Let’s write dX(n),

the estimated discretized pitch frequency at timen�t and dY (n)
the estimated discretized vocal tract feature vector at timen�t.dY (n) is an l-dimensional vector. In practicedY (n) is anLPC
or MFCC vector estimated from a centered signal window at

time n�t. For each processdX(n) and dY (n), we assume time
independence of their respective realizations. As a consequence,dX(n+ 1) is independent of the realization ofdX(n). The same

restriction applies todY (n). In the following, we drop the time and

consider the simultaneous realization ofdX(n) anddY (n) as being

time independent. The crosscorrelation betweendX(n) and dY (n)
is still preserved.
Let us writefx1; x2; ::; xng; the increasing sequence of realiza-
tions of bX, with xi 2 [60 Hz; 660 Hz]. We suppose that the set
of realizations ofbY is finite (by using vector quantization for ex-
ample) and equal tof�!y1 ;�!y2; ::;�!ymg, with �!yi 2 Rl. Let f to be
the joint probability ofbX andbY .

f(xi;�!yj ) = P ( bX = xi; bY = �!yj ) with (1)

0 � f(xi;�!yj ) � 1 and

i=nX
i=1

j=mX
j=1

f(xi;�!yj ) = 1: (2)

The respective marginal probability functions are:

f(xi) =

mX
j=1

f(xi;�!yj ) and f(yj) =

nX
i=1

f(xi;�!yj ): (3)

Each speakers is supposed to be defined by its probability func-
tion,

fs(xi;�!yj ) = Ps( bX = xi; bY = �!yj ): (4)

We observe that

fs(xi;�!yj ) = fs(�!yj=xi)fs(xi) (5)

fs(xi) is thea priori probability of a pitch frequency to be equal
to xi andfs(�!yj=xi) is thea posterioriprobability of observing a
feature vector to be equal to�!yj given the knowledge of the pitch
frequencyxi. The estimation of the a priori probability of the
pitch frequency is relatively straightforward while the estimation
of fs(�!yj=xi) can be long and tedious.

3.2. Feature vector distributions based on pitch knowledge

In the present work we focus on the estimation and integration of
the posteriori probability,fs(�!yj=xi), in speaker recognition sys-
tems. The consideration of the factorfs(xi) from equation 5 is
left as a future work.

We propose to subdivide the space(x;�!y ) into subspacesHk

wherefs(�!yj=xi) is supposed to be locally independent of the pitch
value. Let us defineIk, k = 1; : : : ; N as sub–intervals of the
pitch setfx1; x2; ::; xng. We recall thatx1 = 66 Hz andxn =

660 Hz, N is the number of intervals withI1 [ : : : [ IN =
fx1; x2; ::; xng. Each subspaceHk is associated to a pitch in-
tervalIk. For eachHk, we suppose that the probability function is
stationary and independent of the pitch inside the intervalIk, that
is,

fs(�!yj=xi) ' fs(�!yj=Ik): (6)

Theoretically, the number of modelsfs(�!yj=xi) would be equal
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Figure 2: Proposed approach for generating sub–models.

to n. By subdividing the space intoN subspaces, we reduce that
number toN . Figure 2 illustrates the notion of subspaces and
models of probability functionsfs(�!yj=Ik). The interval length of
Ik is based on the shape of the pitch histogram (section 7.3).

4. SPEECH ANALYSIS

Mel Cepstrum Coefficients derived from a bank of filters (MFCC)
are used as features to characterize the identity of speakers. We
use coefficientsc1 to c12. The speech is first preemphasized (0.97);
then, a sliding Hamming window with a length of 32 ms and a shift
of 10 ms is positioned on the signal. Cepstral mean normalization
and liftering are also performed. Delta and delta-delta MFCC are
not used, as the comparison between the systems would be biased.
In fact, adjacent segments can have different pitch values belong-
ing to different sub–intervalsIk.

5. PATTERN RECOGNITION

5.1. Framework

Two pattern recognizers are used for the experimental task: one
parametric and one non-parametric.

5.1.1. Parametric model

We use a Gaussian Mixture Model (GMM) [7] with 32 (M = 32)
weighted sums of Gaussians. Each GMM is defined for a spe-
cific speakers and pitch intervalIk. Let us definep(�!y =�s;k),
the Gaussian mixture density associated to the probability func-
tion fs(�!yj=Ik) for speakers, as

p(�!y =�s;k) =

MX
i=1

wi;kbi;k(�!y ) (7)

with
bi;k(�!y ) =

1

(2�)l=2j�i;kj
1=2 expf�

1
2
(�!y ���!�i;k)

0

��1
i;k(

�!y ���!�i;k)g.

M is the GMM order,�!y is thel-dimensional vector estimating the
vocal tract contribution (MFCC vector),bi;k is the i-th Gaussian
density with mean�i;k and covariance matrix�i;k andwi;k are
the mixture weights.bi;k, �i;k,�i;k andwi;k are defined for pitch



intervalIk and for speakers. Each speaker is characterized byN
models�s;k corresponding toN pitch intervalsIk.

5.1.2. Non–parametric model

We use the hybrid LVQ-SLP network as proposed by Heet al. [3].
Each speakers, with a pitch belonging toIk, is characterized by
a codebookCs;k. The codebook size is the same for all speakers.
We performed experiments with codebook sizes of 512 for each
speaker.

5.2. Recognition

5.2.1. Parametric model

We defineT as being the test length over which the recognition
is performed. A frame-by-frame estimation of log–likelihood for
each speakers and pitch intervalIk is first performed. Each frame
(32 ms length) is shifted by 10 ms. Then, the maximum log–
likehood for each speaker is estimated overT . When the test sen-
tence is longer thanT , the average of the score over the number of
segments with a length ofT is computed according to equation 8.

SsT =
nb: of seg: correctly tested for T duration

total nb: of seg: tested for T duration
(8)

The final identification score (equation 9) is obtained by averaging
over the number of speakersNs:

Score =

PNs

i=1
SsT

Ns
(9)

5.2.2. Non–parametric model

For each frame, the feature vector is classified by using the Nearest
Neighbor criteria. A speaker is recognized if, for the entire test
conversation, it is selected more frequently than the other speakers.

6. SPEECH DATABASE

A subset of the SPIDRE–Swichboard Corpus is used and com-
prises eighteen (18) female speakers of the database. Each speaker
has 4 conversations originating from 3 different handsets. The
training data contains 3 conversations, with 2 conversations com-
ing from the same handset. The last conversation, using the third
handset (different from the others), is presented as the test data.
This combination is referred to as themismatched condition. The
matched conditionrefers to situations where training and testing
data are recorded from the same handset.

7. STRATEGIES

7.1. The baseline strategy

The baseline strategy uses both the voiced and unvoiced segments.
The suppression of silence was carried out based on the energy
evolution and comparison with fixed thresholds.

7.2. Recognition based on voiced speech segments

We include a module that estimates the pitch and selects the voiced
segments. We use a pitch tracker and a voiced-unvoiced detection
system [8] in conjunction with the SID system analysis module.
In this case, silence and unvoiced segments are automatically re-
jected. During training and for each pitch period, we centered a 32
ms duration window and extracted the MFCC coefficients.

7.3. Recognition based on the estimated a posteriori proba-
bilites

For the third strategy, four pitch intervalsI1,. . . ,I4 are created
according to the pitch frequency histogram. More than 90% of
the pitch frequencies belong to the interval [150Hz,220Hz]. We
distributed the pitch frequencies over 4 intervalsI1=[150,180],
I2=[170,200],I3=[190,220] andI4=[66,150][[220,660]. The choice
of four intervals is a trade off between fine pitch intervals and suf-
ficient training size of the models. During training and for each
intervalIk, the MFCC vectors are used to generate model param-
eters for each speaker. Therefore each speaker is characterized by
4 models. With the aim of overcoming the pitch estimation er-
rors, we choose an overlap of 10 Hz between the intervals. Thus,
the MFCC vectors from speech whose fundamental frequency be-
longs to two adjacent intervals (Ik, Ik+1), will be used to train
two models, respectively, associated to subspacesHk andHk+1.
Then, during the testing session, the evaluation is carried out over
these two subspaces and we keep the best score.

In the case of LVQ–SLP, the coodbook generation is made
according to two procedures. One attributes the same codebook
size to each subspace, and the other distributes the number of pro-
totypes per codebook according to the number of events in each
subspace.

In the case of the GMM models, one model�s is generated
for the baseline system, one model is also used for recognition on
voiced speech and four models�s;k are generated for the recog-
nition taking into account the a posteriori probabilities of voiced
speech according to the pitch.

8. RESULTS AND DISCUSSION

8.1. Evaluation with a LVQ–SLP model

LVQ–SLP results for 18 women of the SPIDRE database are re-
ported in tables 1 and 2.

Table 1: LVQ–SLP: Identification rate increases for 18 female
speakers with fixed codebook sizes. Baseline system: 55%.

Voiced H1 H2 H3 H4

(512) (128) (128) (128) (128)
Matched 6 14 10 1 0

Mismatched 3 4 4 5 2

When the unvoiced segments are not taken into account (Voiced
column), the identification rate increases to 61% (6% more in ta-
ble 1) for matched handsets and to 58% (3%) for mismatched
handsets. When pitch is taken into account (columnsHk in ta-
bles 1 and 2), the increase is almost the double inH1 andH2 and
weaker inH3 andH4. H1 andH2 are the subspaces with the
greatest number of events andH3 andH4 with the smallest num-
ber of events. When the number of prototypes per codebook is



Table 2: LVQ–SLP: Identification rate increases for 18 female
speakers with codebook sizes proportional to the number of events
in each subspace. Baseline system: 55%.

H1 H2 H3 H4

Matched 14 3 0 -1
Mismatched 4 5 6 1

proportional to the number of events, performance falls inH2 and
H4 and remains constant inH1.

When recognition rates are weighted according to the num-
ber of events per subspace, we obtain an averaged increase of 8%
in matched conditions, and 4% in mismatched situations. It is ob-
served that the identification results are sensitive to several factors:
1) codebook sizes, 2) training techniques, 3) scores combination,
and 4) pitch estimation. The best increase in performance is ob-
served for subspaces with the greatest number of events.

8.2. Evaluation with a GMM model

Table 3 reports the identification results observed with the three
strategies: 1) Baseline (voiced and unvoiced segments), 2) Voiced
(only voiced segments) and 3) Voiced segments with partition of
space intoH1 toH4. The first column gives the value ofT , that is,
the duration of maximum log–likehood estimation. The baseline

Table 3: GMM: Mismatched identification rates for 18 female
speakers.

Time(seconds) Baseline(%) Voiced(%) Voiced & pitch(%)
0.1 36.8 37.7 40.5
0.5 63.4 66.7 69.4
1 75.4 79.9 80.8
2 84.2 87.9 88.0
3 88.0 90.6 90.5
4 90.0 93.9 93.3
5 91.4 95.4 94.7
6 92.7 95.3 95.2

strategy yields the lowest identification rates. When voiced seg-
ments are used, the best increase is 4.5% and the weakest is 1%.
When a preliminary subdivision based on pitch is performed, the
greatest increase is 6% and the weakest is 2.5%.

When the test duration is greater than 2 seconds, strategies
based on voiced segments yield similar results. WhenT is less
than 2 seconds, the best results are observed with the strategy that
takes into account the posterior probability (subdivision into sub-
spaces). The increase is on the order of 2%.

8.3. Discussion

Identification rates of LVQ–SLP and GMM are not strictly com-
parable, as the recognition criteria is different. The comparison of
Tables 1 and 2 suggests that the a priori probabilityfs(xi) should
be taken into account. In Table 3, aT of 1 second is equivalent to
100 MFCC vectors and is independent of the strategy. The weaker
performance of the baseline system might be partially due to the
smaller number of voiced frames in a fixedT . In several cases, the
pitch is not well estimated and affects the performance. If these
errors are corrected, we can possibly achieve a better training and
evaluation. The voiced pitch strategy requires more calculation
and is more sensitive to errors especially during training.

9. CONCLUSION

A new approach that preserves the dependence between the vocal
source and the vocal tract has been proposed. Experiments that
integrate the a posteriori probability of observing a MFCC vector
given the knowledge of the pitch frequency have been reported.
They are compared with a baseline system operating on all voiced
and unvoiced speech segments and with a second system that op-
erates on voiced speech segments only. Closed set Speaker Iden-
tification experiments were performed on a subset of the SPIDRE
corpus that comprises highly confusable female speakers. Systems
based on voiced segments yield the best scores.

When the dependence of the source and vocal tract is taken
into account, the best results are observed for durationsT lower
than 3 seconds (up to 4.5% forT = 500 ms). ForT � 3 seconds
scores are 1% higher, in favour of the system based on voiced seg-
ments only.

Despite the small improvement in performance, it appears to
us that the approach is promising. In fact, many restrictive hy-
potheses have been made to set up the experiments. The pitch
tracker has been supposed to be reliable; sufficient training data
for subspaces decomposition, local independence of MFCC in re-
lation to pitch in a subspace (equation 6), and time independence
of pitch and MFCC have been assumed.

We therefore suggest, as future work, to increase the size of the
corpus for a better statistical convergence, to optimize the number
and width of the pitch intervals (Ik) and to introduce weighting by
the a priori probability distribution of the pitch (fs(xi)) in accor-
dance with equation 5. We also suggest restricting the application
to a text-dependent system, for which the variability of the param-
eters is usually smaller.
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