
University of Texas at El Paso University of Texas at El Paso 

ScholarWorks@UTEP ScholarWorks@UTEP 

Departmental Technical Reports (CS) Computer Science 

7-2004 

Towards Combining Probabilistic and Interval Uncertainty in Towards Combining Probabilistic and Interval Uncertainty in 

Engineering Calculations Engineering Calculations 

Scott A. Starks 
The University of Texas at El Paso, sstarks@utep.edu 

Vladik Kreinovich 
The University of Texas at El Paso, vladik@utep.edu 

Luc Longpre 
The University of Texas at El Paso, longpre@utep.edu 

Martine Ceberio 
The University of Texas at El Paso, mceberio@utep.edu 

Gang Xiang 

See next page for additional authors 
Follow this and additional works at: https://scholarworks.utep.edu/cs_techrep 

 Part of the Computer Engineering Commons 

Comments: 

UTEP-CS-04-20. 

Published in Proceedings of the Workshop on Reliable Engineering Computing, Savannah, 

Georgia, September 15-17, 2004, pp. 193-213. 

Recommended Citation Recommended Citation 
Starks, Scott A.; Kreinovich, Vladik; Longpre, Luc; Ceberio, Martine; Xiang, Gang; Araiza, Roberto; Beck, J.; 
Kandathi, R.; Nayak, A.; and Torres, R., "Towards Combining Probabilistic and Interval Uncertainty in 
Engineering Calculations" (2004). Departmental Technical Reports (CS). 304. 
https://scholarworks.utep.edu/cs_techrep/304 

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UTEP. It has 
been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of 
ScholarWorks@UTEP. For more information, please contact lweber@utep.edu. 

https://scholarworks.utep.edu/
https://scholarworks.utep.edu/cs_techrep
https://scholarworks.utep.edu/computer
https://scholarworks.utep.edu/cs_techrep?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F304&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F304&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/cs_techrep/304?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F304&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu


Authors Authors 
Scott A. Starks, Vladik Kreinovich, Luc Longpre, Martine Ceberio, Gang Xiang, Roberto Araiza, J. Beck, R. 
Kandathi, A. Nayak, and R. Torres 

This article is available at ScholarWorks@UTEP: https://scholarworks.utep.edu/cs_techrep/304 

https://scholarworks.utep.edu/cs_techrep/304


1

Towards Combining Probabilistic and Interval

Uncertainty in Engineering Calculations

S. A. Starks, V. Kreinovich, L. Longpré, M. Ceberio, G. Xiang,
R. Araiza, J. Beck, R. Kandathi, A. Nayak and R. Torres
NASA Pan-American Center for Earth and Environmental Studies (PACES),
University of Texas, El Paso, TX 79968, USA (vladik@cs.utep.edu)

Abstract. In many engineering applications, we have to combine probabilistic and
interval errors. For example, in environmental analysis, we observe a pollution level
x(t) in a lake at different moments of time t, and we would like to estimate stan-
dard statistical characteristics such as mean, variance, autocorrelation, correlation
with other measurements. In environmental measurements, we often only know the
values with interval uncertainty. We must therefore modify the existing statistical
algorithms to process such interval data. Such modification are described in this
paper.

Keywords: probabilistic uncertainty, interval uncertainty, engineering calculations

1. Formulation of the Problem

Computing statistics is important. In many engineering applications,
we are interested in computing statistics. For example, in environmen-
tal analysis, we observe a pollution level x(t) in a lake at different
moments of time t, and we would like to estimate standard statistical
characteristics such as mean, variance, autocorrelation, correlation with
other measurements. For each of these characteristics C, there is an
expression C(x1, . . . , xn) that enables us to provide an estimate for
C based on the observed values x1, . . . , xn. For example, a reasonable
statistic for estimating the mean value of a probability distribution is

the population average E(x1, . . . , xn) =
1
n

(x1 + . . . + xn); a reason-
able statistic for estimating the variance V is the population variance

V (x1, . . . , xn) =
1
n
·
n∑
i=1

(xi − x̄)2, where x̄ def=
1
n
·
n∑
i=1

xi.

Interval uncertainty. In environmental measurements, we often only
know the values with interval uncertainty. For example, if we did not
detect any pollution, the pollution value v can be anywhere between 0
and the sensor’s detection limit DL. In other words, the only informa-
tion that we have about v is that v belongs to the interval [0, DL]; we
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have no information about the probability of different values from this
interval.

Another example: to study the effect of a pollutant on the fish, we
check on the fish daily; if a fish was alive on Day 5 but dead on Day
6, then the only information about the lifetime of this fish is that it is
somewhere within the interval [5, 6]; we have no information about the
probability of different values within this interval.

In non-destructive testing, we look for outliers as indications of pos-
sible faults. To detect an outlier, we must know the mean and standard
deviation of the normal values – and these values can often only be mea-
sured with interval uncertainty (see, e.g., (Rabinovich, 1993; Osegueda
et al., 2002)). In other words, often, we know the result x̃ of measuring
the desired characteristic x, and we know the upper bound ∆ on the
absolute value |∆x| of the measurement error ∆x def= x̃− x (this upper
bound is provided by the manufacturer of the measuring instrument),
but we have no information about the probability of different values
∆x ∈ [−∆,∆]. In such situations, after the measurement, the only
information that we have about the actual value x of the measured
quantity is that this value belongs to interval [x̃−∆, x̃+ ∆].

In geophysics, outliers should be identified as possible locations of
minerals; the importance of interval uncertainty for such applications
was emphasized in (Nivlet et al., 2001; Nivlet et al., 2001a). Detecting
outliers is also important in bioinformatics (Shmulevich and Zhang,
2002).

In bioinformatics and bioengineering applications, we must solve
systems of linear equations in which coefficients come from experts and
are only known with interval uncertainty; see, e.g., (Zhang et al., 2004).

In biomedical systems, statistical analysis of the data often leads
to improvements in medical recommendations; however, to maintain
privacy, we do not want to use the exact values of the patient’s param-
eters. Instead, for each parameter, we select fixed values, and for each
patient, we only keep the corresponding range. For example, instead
of keeping the exact age, we only record whether the age is between 0
and 10, 10 and 20, 20 and 30, etc. We must then perform statistical
analysis based on such interval data; see, e.g., (Kreinovich and Longpré,
2003; Xiang et al., 2004).

Estimating statistics under interval uncertainty: a problem. In all such
cases, instead of the actual values x1, . . . , xn, we only know the intervals
x1 = [x1, x1], . . . ,xn = [xn, xn] that contain the (unknown) actual
values of the measured quantities. For different values xi ∈ xi, we get,
in general, different values of the corresponding statistical characteristic
C(x1, . . . , xn). Since all values xi ∈ xi are possible, we conclude that
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all the values C(x1, . . . , xn) corresponding to xi ∈ xi are possible esti-
mates for the corresponding statistical characteristic. Therefore, for the
interval data x1, . . . ,xn, a reasonable estimate for the corresponding
statistical characteristic is the range

C(x1, . . . ,xn)
def= {C(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn}.

We must therefore modify the existing statistical algorithms so that
they would be able to estimate such ranges. This is a problem that we
solve in this paper.

This problem is a part of a general problem. The above range es-
timation problem is a specific problem related to a combination of
interval and probabilistic uncertainty. Such problems – and their po-
tential applications – have been described, in a general context, in the
monographs (Kuznetsov, 1991; Walley, 1991); for further developments,
see, e.g., (Rowe, 1988; Williamson, 1990; Berleant, 1993; Berleant,
1996; Berleant and Goodman-Strauss, 1998; Ferson et al., 2001; Ferson,
2002; Berleant et al., 2003; Lodwick and Jamison, 2003; Moore and
Lodwick, 2003; Regan et al., (in press)) and references therein.

2. Analysis of the Problem

Mean. Let us start our discussion with the simplest possible character-
istic: the mean. The arithmetic average E is a monotonically increasing
function of each of its n variables x1, . . . , xn, so its smallest possible
value E is attained when each value xi is the smallest possible (xi = xi)
and its largest possible value is attained when xi = xi for all i. In other
words, the range E of E is equal to [E(x1, . . . , xn), E(x1, . . . , xn)]. In

other words, E =
1
n

(x1 + . . .+ xn) and E =
1
n

(x1 + . . .+ xn).

Variance: computing the exact range is difficult. Another widely used
statistic is the variance. In contrast to the mean, the dependence of the
variance V on xi is not monotonic, so the above simple idea does not
work. Rather surprisingly, it turns out that the problem of computing
the exact range for the variance over interval data is, in general, NP-
hard (Ferson et al., 2002; Kreinovich, (in press)) which means, crudely
speaking, that the worst-case computation time grows exponentially
with n. Moreover, if we want to compute the variance range with a
given accuracy ε, the problem is still NP-hard. (For a more detailed
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description of NP-hardness in relation to interval uncertainty, see, e.g.,
(Kreinovich et al., 1997).)

Linearization. From the practical viewpoint, often, we may not need
the exact range, we can often use approximate linearization techniques.
For example, when the uncertainty comes from measurement errors
∆xi, and these errors are small, we can ignore terms that are quadratic
(and of higher order) in ∆xi and get reasonable estimates for the
corresponding statistical characteristics. In general, in order to esti-
mate the range of the statistic C(x1, . . . , xn) on the intervals [x1, x1],
. . . , [xn, xn], we expand the function C in Taylor series at the mid-
point x̃i

def= (xi + xi)/2 and keep only linear terms in this expansion.
As a result, we replace the original statistic with its linearized ver-

sion Clin(x1, . . . , xn) = C0 −
n∑
i=1

Ci · ∆xi, where C0
def= C(x̃1, . . . , x̃n),

Ci
def=

∂C

∂xi
(x̃1, . . . , x̃n), and ∆xi

def= x̃i−xi. For each i, when xi ∈ [xi, xi],

the difference ∆xi can take all possible values from −∆i to ∆i, where
∆i

def= (xi − xi)/2. Thus, in the linear approximation, we can esti-
mate the range of the characteristic C as [C0 − ∆, C0 + ∆], where

∆ def=
n∑
i=1

|ci| ·∆i.

In particular, for variance, Ci =
∂V

∂xi
=

2
n

(x̃i − ¯̃x), where ¯̃x is the

average of the midpoints x̃i. So, here, V0 =
1
n

n∑
i=1

(x̃i− ¯̃x)2 is the variance

of the midpoint values x̃1, . . . , x̃n, and ∆ =
2
n

n∑
i=1

|x̃i − ¯̃x| ·∆i.

It is worth mentioning that for the variance, the ignored quadratic

term is equal to
1
n

n∑
i=1

(∆xi)2 − (∆x)2, where ∆x def=
1
n

n∑
i=1

∆xi, and

therefore, can be bounded by 0 from below and by ∆(2) def=
1
n

n∑
i=1

∆2
i

from above. Thus, the interval [V0 −∆, V0 + ∆ + ∆(2)] is a guaranteed
enclosure for V.

Linearization is not always acceptable. In some cases, linearized esti-
mates are not sufficient: the intervals may be wide so that quadratic
terms can no longer be ignored, and/or we may be in a situation where
we want to guarantee that, e.g., the variance does not exceed a certain
required threshold. In such situations, we need to get the exact range
– or at least an enclosure for the exact range.
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Since, even for as simple a characteristic as variance, the problem of
computing its exact range is NP-hard, we cannot have a feasible-time
algorithm that always computes the exact range of these characteristics.
Therefore, we must look for the reasonable classes of problems for which
such algorithms are possible. Let us analyze what such classes can be.

First class: narrow intervals. As we have just mentioned, the compu-
tational problems become more complex when we have wider intervals.
In other words, when intervals are narrower, the problems are easier.
How can we formalize “narrow intervals”? One way to do it is as follows:
the actual values x1, . . . , xn of the measured quantity are real numbers,
so they are usually different. The data intervals xi contain these values.
When the intervals xi surrounding the corresponding points xi are
narrow, these intervals do not intersect. When their widths becomes
larger than the distance between the original values, the intervals start
intersecting.

Definition. Thus, the ideal case of “narrow intervals” can be described
as the case when no two intervals xi intersect.

Second class: slightly wider intervals. Slightly wider intervals corre-
spond to the situation when few intervals intersect, i.e., when for some
integer K, no set of K intervals has a common intersection.

Third class: single measuring instrument. Since we want to find the
exact range C of a statistic C, it is important not only that intervals
are relatively narrow, it is also important that they are approximately
of the same size: otherwise, if, say, ∆x2

i is of the same order as ∆xj ,
we cannot meaningfully ignore ∆x2

i and retain ∆xj . In other words,
the interval data set should not combine high-accurate measurement
results (with narrow intervals) and low-accurate results (with wide in-
tervals): all measurements should have been done by a single measuring
instrument (or at least by several measuring instruments of the same
type).

How can we describe this mathematically? A clear indication that
we have two measuring instruments (MI) of different quality is that one
interval is a proper subset of the other one: [xi, xi] ⊆ (xj , xj).

Definition. So, if all pairs of non-degenerate intervals satisfy the fol-
lowing subset property [xi, xi] 6⊆ (xj , xj), we say that the measurements
were done by a single MI.

Comment. This restriction only refers to inexact measurement re-
sults, i.e., to non-degenerate intervals. In additional to such interval
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values, we may have exact values (degenerate intervals). For example,
in geodetic measurements, we may select some point (“benchmark”) as
a reference point, and describe, e.g., elevation of each point relative to
this benchmark. For the benchmark point itself, the relative elevation
will be therefore exactly equal to 0. When we want to compute the
variance of elevations, we want to include the benchmark point too.
From this viewpoint, when we talk about measurements made by a
single measuring instrument, we may allow degenerate intervals (i.e.,
exact numbers) as well.

A reader should be warned that in the published algorithms de-
scribing a single MI case (Xiang et al., 2004), we only considered
non-degenerate intervals. However, as one can easily see from the pub-
lished proofs (and from the idea of these proofs, as described below),
these algorithms can be easily modified to incorporate possible exact
values xi.

Fourth class: same accuracy measurement. In some situations, it is
also reasonable to consider a specific case of the single MI case when
all measurements are performed with exactly the same accuracy, i.e.,
in mathematical terms, when all non-degenerate intervals [xi, xi] have

exactly the same half-width ∆i =
1
2
· (xi − xi).

Fifth class: several MI. After the single MI case, the natural next
case is when we have several MI, i.e., when our intervals are divided
into several subgroups each of which has the above-described subset
property.

Sixth class: privacy case. Although these definitions are in terms of
measurements, they make sense for other sources of interval data as
well. For example, for privacy data, intervals either coincide (if the
value corresponding to the two patients belongs to the same range)
or are different, in which case they can only intersect in one point.
Similarly to the above situation, we also allow exact values in addition
to ranges; these values correspond, e.g., to the exact records made in
the past, records that are already in the public domain.

Definition. We will call interval data with this property – that ev-
ery two non-degenerate intervals either coincide or do nor intersect –
privacy case.

Comment. For the privacy case, the subset property is satisfied, so
algorithms that work for a single MI case work for the privacy case as
well.
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Seventh class: non-detects. Similarly, if the only source of interval
uncertainty is detection limits, i.e., if every measurement result is ei-
ther an exact value or a non-detect, i.e., an interval [0, DLi] for some
real number DLi (with possibly different detection limits for different
sensors), then the resulting non-degenerate intervals also satisfy the
subset property. Thus, algorithms that work for a single MI case work
for this “non-detects” case as well.

Also, an algorithm that works for the general privacy case also works
for the non-detects case when all sensors have the same detection limit
DL.

3. Results

Variance: known results. The lower bound V can be always computed
in time O(n · log(n)) (Granvilliers et al., 2004).

Computing V is, in general, an NP-hard problem; V can be com-
puted in time 2n. If intervals do not intersect (and even if “narrowed”
intervals [x̃i − ∆i/n, x̃i + ∆i/n] do not intersect), we can compute V
in time O(n · log(n)) (Granvilliers et al., 2004). If for some K, no more
than K interval intersect, we can compute V in time O(n2) (Ferson et
al., 2002; Kreinovich, (in press)).

For the case of a single MI, V can be computed in time O(n · log(n));
for m MIs, we need time O(nm+1) (Xiang et al., 2004).

Variance: main ideas behind the known results. The algorithm for
computing V is based on the fact that when a function V attains a

minimum on an interval [xi, xi], then either
∂V

∂xi
= 0, or the minimum

is attained at the left endpoint xi = xi – then
∂V

∂xi
> 0, or xi = xi

and
∂V

∂xi
< 0. Since the partial derivative is equal to (2/n) · (xi − x̄),

we conclude that either xi = x̄, or xi = xi > x̄, or xi = xi < x̄. Thus,
if we know where x̄ is located in relation to all the endpoints, we can
uniquely determine the corresponding minimizing value xi for every i:
if xi ≤ x̄ then xi = xi; if xi ≤ xi, then xi = xi; otherwise, xi = x̄. The
corresponding value x̄ can be found from the condition that x̄ is the
average of all the selected values xi.

So, to find the smallest value of V , we can sort all 2n bounds xi, xi
into a sequence x(1) ≤ x(2) ≤ . . .; then, for each zone [x(k), x(k+1)], we
compute the corresponding values xi, find their variance Vk, and then
compute the smallest of these variances Vk.
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For each of 2n zones, we need O(n) steps, so this algorithm requires
O(n2) steps. It turns out that the function Vk decreases until the desired
k then increases, so we can use binary search – that requires that we
only analyze O(log(n)) zones – find the appropriate zone k. As a result,
we get an O(n · log(n)) algorithm.

For V , to the similar analysis of the derivatives, we can add the
fact that the second derivative of V is ≥ 0, so there cannot be a
maximum inside the interval [xi, xi]. So, in principle, to compute V ,
it is sufficient to consider all 2n combinations of endpoints. When few
intervals intersect, then, when xi ≤ x̄, we take xi = xi; when x̄ ≤ xi,
we take xi = xi; otherwise, we must consider both possibilities xi = xi
and xi = xi.

For the case of a single MI, we can sort the intervals in lexicographic
order: xi ≤ xj if and only if xi < xj or (xi = xj and xi ≤ xj). It can
be proven that the maximum of V is always attained if for some k,
the first k values xi are equal to xi and the next n − k values xi are
equal to xi. This result is proven by reduction to a contradiction: if
in the maximizing vector x = (x1, . . . , xn), some xi is preceding some
xj , i < j, then we can increase V while keeping E intact – which is in
contradiction with the assumption that the vector x was maximizing.
Specifically, to increase V , we can do the following: if ∆i ≤ ∆j , we
replace xi with xi = xi − 2∆i and xj with xj + 2∆i; otherwise, we
replace xj with xj = xj + 2∆j and xi with xi − 2∆j .

As a result, to find the maximum of V , it is sufficient to sort the
intervals (this takes O(n · log(n)) time), and then, for different values
k, check vectors (x1, . . . , xk, xk+1, . . . , xn). The dependence of V on k
is concave, so we can use binary search to find k; binary search takes
O(log(n)) steps, and for each k, we need linear time, so overall, we need
time O(n · log(n)).

In case of several MI, we sort intervals corresponding to each of m
MI. Then, to find the maximum of V , we must find the values k1, . . . , km
corresponding to m MIs. There are ≤ nm combinations of kis, and
checking each combination requires O(n) time, so overall, we need time
O(nm+1).

Variance: new results. Sometimes, most of the data is accurate, so
among n intervals, only d � n are non-degenerate intervals. For ex-
ample, we can have many accurate values and m non-detects. In this
situation, to find the extrema of V , we only need to find xi for d non-
degenerate intervals; thus, we only need to consider 2d zones formed
by their endpoints. Within each zone, we still need O(n) computations
to compute the corresponding variance.
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So, in this case, to compute V , we need time O(n · log(d)), and
to compute V , we need O(n · 2d) steps. If narrowed intervals do not
intersect, we need time O(n · log(d)) to compute V ; if for some K, no
more than K interval intersect, we can compute V in time O(n · d).

For the case of a single MI, V can be computed in time O(n · log(d));
for m MIs, we need time O(n · dm).

In addition to new algorithms, we also have a new NP-hardness
result. In the original proof of NP-hardness, we have x̃1 = . . . = x̃n = 0,
i.e., all measurement results are the same, only accuracies ∆i are dif-
ferent. What if all the measurement results are different? We can show
that in this case, computing V is still an NP-hard problem: namely, for
every n-tuple of real numbers x̃1, . . . , x̃n, the problem of computing V
for intervals xi = [x̃i −∆i, x̃i + ∆i] is still NP-hard.

To prove this result, it is sufficient to consider ∆i = N ·∆(0)
i , where

∆(0)
i are the values used in the original proof. In this case, we can

describe ∆xi = x̃i − xi as N · ∆x(0)
i , where ∆(0)

i ∈ [−∆(0)
i ,∆(0)

i ]. For
largeN , the difference between the variance corresponding to the values
xi = x̃i + N · ∆x(0)

i and N2 times the variance of the values ∆x(0)
i is

bounded by a term proportional to N (and the coefficient at N can
be easily bounded). Thus, the difference between V and N2 · V (0) is
bounded by C · N for some known constant C. Hence, by computing
V for sufficiently large N , we can compute V (0) with a given accuracy
ε > 0, and we already know that computing V (0) with given accuracy is
NP-hard. This reduction proves that our new problem is also NP-hard.

Covariance: known results. In general, computing the range of covari-

ance Cxy =
1
n

n∑
i=1

(xi− x̄) · (yi− ȳ) based on given intervals xi and yi is

NP-hard (Osegueda et al., 2002). When boxes xi × yi do not intersect
– or if ≥ K boxes cannot have a common point – we can compute the
range in time O(n3) (Beck et al., 2004).

The main idea behind this algorithm is to consider the derivatives
of C relative to xi and yi. Then, once we know where the point (x̄, ȳ)
is in relation to xi and yi, we can uniquely determine the optimizing
values xi and yi – except for the boxes xi × yi that contain (x̄, ȳ).
The bounds xi and xi divide the x axis into 2n+ 2 intervals; similarly,
the y-bounds divide the y-axis into 2n + 2 intervals. Combining these
intervals, we get O(n2) zones. Due to the limited intersection property,
for each of these zones, we have finitely many (≤ K) indices i for which
the corresponding box intersects with the zone. For each such box, we
may have two different combinations: (xi, yi) and (xi, yi) for C and



10

(xi, yi) and (xi, yi) for C. Thus, we have finitely many (≤ 2K) possible
combinations of (xi, yi) corresponding to each zone. Hence, for each of
O(n2) zones, it takes O(n) time to find the corresponding values xi and
yi and to compute the covariance; thus, overall, we need O(n3) time.

Covariance: new results. If n−dmeasurement results (xi, yi) are exact
numbers and only d are non-point boxes, then we only need O(d2)
zones, so we can compute the range in time O(n · d2).

In the privacy case, all boxes xi × yi are either identical or non-
intersecting, so the only case when a box intersects with a zone is when
the box coincides with this zone. For each zone k, there may be many
(nk) such boxes, but since they are all identical, what matters for our
estimates is how many of them are assigned one of the possible (xi, yi)
combinations and how many the other one. There are only nk + 1 such
assignments: 0 to first combination and nk to second, 1 to first and
nk − 1 to second, etc. Thus, the overall number of all combinations for
all the zones k is

∑
k
nk +

∑
k

1, where
∑
nk = n and

∑
k

1 is the overall

number of zones, i.e., O(n2). For each combination of xi and yi, we
need O(n) steps. Thus, in the privacy case, we can compute both C
and C in time O(n2) · O(n) = O(n3) (or O(n · d2) if only d boxes are
non-degenerate).

Another polynomial-time case is when all the measurements are
exactly of the same accuracy, i.e., when all non-degenerate x-intervals
have the same half-width ∆x, and all non-degenerate y-intervals have
the same half-width ∆y. In this case, e.g., for C, if we have at least
two boxes i and j intersecting with the same zone, and we have
(xi, yi) = (xi, yi) and (xj , yj) = (xj , yj), then we can swap i and j

assignments – i.e., make (x′i, y
′
i) = (xi, yi) and (x′j , y

′
j) = (xj , yj) –

without changing x̄ and ȳ. In this case, the only change in Cxy comes
from replacing xi · yi + xj · yj . It is easy to see that the new value C is

larger than the old value if and only if zi > zj , where zi
def= x̃i·∆y+ỹi·∆x.

Thus, in the true maximum, whenever we assign (xi, yi) to some i and
(xi, yj) to some j, we must have zi ≤ zj . So, to get the largest value
of C, we must sort the indices by zi, select a threshold t, and assign
(xi, yi) to all the boxes with zi ≤ t and (xj , yj) to all the boxes j
with zj > t. If nk ≤ n denotes the overall number of all the boxes
that intersect with k-th zone, then we have nk + 1 possible choices of
thresholds, hence nk+1 such assignments. For each of O(n2) zones, we
test ≤ n assignments; testing each assignment requires O(n) steps, so
overall, we need time O(n4).

If only d boxes are non-degenerate, we only need time O(n · d3).
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Detecting outliers: known results. Traditionally, in statistics, we fix a
value k0 (e.g., 2 or 3) and claim that every value x outside the k0-sigma
interval [L,U ], where L def= E − k0 · σ, U def= E + k0 · σ (and σ def=

√
V ),

is an outlier; thus, to detect outliers based on interval data, we must
know the ranges of L and U . It turns out that we can always compute
U and L in O(n2) time (Kreinovich et al., 2003a; Kreinovich et al.,
2004). In contrast, computing U and L is NP-hard; in general, it can
be done in 2n time, and in quadratic time if ≤ K intervals intersect
(even if ≤ K appropriately narrowed intervals intersect) (Kreinovich et
al., 2003a; Kreinovich et al., 2004).

For every x, we can also determine the “degree of outlier-ness” R as
the smallest k0 for which x 6∈ [E − k0 · σ,E + k0 · σ], i.e., as |x−E|/σ.
It turns out that R can be always computed in time O(n2); the lower
bound R can be also computed in quadratic time if ≤ K narrowed
intervals intersect (Kreinovich et al., 2003a).

Detecting outliers: new results. Similar to the case of variance, if we
only have d� n non-degenerate intervals, then instead of O(n2) steps,
we only need O(n · d) steps (and instead of 2n steps, we only need
O(n · 2d) steps).

For the case of a single MI, similarly to variance, we can prove
that the maximum of U and the minimum of L are attained at one
of the vectors (x1, . . . , xk, xk+1, . . . , xn); actually, practically the same
proof works, because increasing V without changing E increases U =
E + k0 ·

√
V as well. Thus, to find U and L, it is sufficient to check n

such sequences; checking each sequence requires O(n) steps, so overall,
we need O(n2) time. For m MI, we need O(nm+1) time.

If only d � n intervals are non-degenerate, then we need, corre-
spondingly, time O(n · d) and O(n · dm).

Moments. For population moments
1
n
·
n∑
i=1

xqi , known interval bounds

on xq leads to exact range. For central moments Mq =
1
n
·
n∑
i=1

(xi− x̄)q,

we have the following results (Kreinovich et al., 2004a). For even q, the
lower endpoint M q can be computed in O(n2) time; the upper endpoint
M q can always be computed in time O(2n), and in O(n2) time if ≤ K
intersect. For odd q, if ≤ K intervals do not intersect, we can compute
both M q and M q in O(n3) time.

If only d out of n intervals are non-degenerate, then we need O(n·2d)
time instead of O(2n), O(n · d) instead of O(n2), and O(n · d2) instead
of O(n3).
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For even q, we can also consider the case of a single MI. The argu-
ments work not only for Mq, but also for a generalized central moment

Mψ
def=

1
n

n∑
i=1

ψ(xi − E) for an arbitrary convex function ψ(x) ≥ 0 for

which ψ(0) = 0 and ψ′′(x) > 0 for all x 6= 0. Let us first show that the
maximum cannot be attained inside an interval [xi, xi]. Indeed, in this
case, at the maximizing point, the first derivative

∂Mψ

∂xi
=

1
n
· ψ′(xi − E)− 1

n2
·
n∑
j=1

ψ′(xj − E)

should be equal to 0, and the second derivative

∂2Mψ

∂x2
i

=
1
n
· ψ′′(xi − E) ·

(
1− 2

n

)
+

1
n3

·
n∑
j=1

ψ′′(xj − E)

is non-positive. Since the function ψ(x) is convex, we have ψ′′(x) ≥ 0, so
this second derivative is a sum of non-negative terms, and the only case
when it is non-negative is when all these terms are 0s, i.e., when xj = E
for all j. In this case, Mψ = 0 which, for non-degenerate intervals, is
clearly not the largest possible value of Mψ.

So, for every i, the maximum of Mψ is attained either when xi =
xi or when xi = xi. Similarly to the proof for the variance, we will
now prove that the maximum is always attained for one of the vectors
(x1, . . . , xk, xk+1, . . . , xn). To prove this, we need to show that if xi = xi
and xj = xj for some i < j (and xi ≤ xj), then the change described in
that proof, while keeping the average E intact, increases the value of
Mψ. Without losing generality, we can consider the case ∆i ≤ ∆j . In
this case, the fact that Mψ increase after the above-described change is
equivalent to: ψ(xi+2∆i−E)+ψ(xj−E) ≤ ψ(xi−E)+ψ(xj+2∆i−E),
i.e., that ψ(xi + 2∆i−E)−ψ(xi−E) ≤ ψ(xj + 2∆j −E)−ψ(xj −E).
Since xi ≤ xj and xi − E ≤ xj − E, this can be proven if we show
that for every ∆ > 0 (and, in particular, for ∆ = 2∆i), the function
ψ(x+ ∆)−ψ(x) is increasing. Indeed, the derivative of this function is
equal to ψ′(x+∆)−ψ′(x), and since ψ′′(x) ≥ 0, we do have ψ′(x+∆) ≥
ψ′(x).

Therefore, to find Mψ, it is sufficient to check all n vectors of the
type (x1, . . . , xk, xk+1, . . . , xn), which requires O(n2) steps. For m MIs,
we similarly need O(nm+1) steps.

Summary. These results are summarized in the following table. In this
table, the first row corresponds to a general case, other rows correspond
to different classes of problems described in Section 2:
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class number class description

0 general case

1 narrow intervals: no intersection

2 slightly wider intervals
≤ K intervals intersect

3 single measuring instrument (MI):
subset property –

no interval is a “proper” subset of the other

4 same accuracy measurements:
all intervals have the same half-width

5 several (m) measuring instruments:
intervals form m groups,

with subset property in each group

6 privacy case:
intervals same or non-intersecting

7 non-detects case:
only non-degenerate intervals are [0, DLi]

# E V Cxy L,U,R M2p M2p+1

0 O(n) NP-hard NP-hard NP-hard NP-hard ?

1 O(n) O(n · log(n)) O(n3) O(n2) O(n2) O(n3)

2 O(n) O(n2) O(n3) O(n2) O(n2) O(n3)

3 O(n) O(n · log(n)) ? O(n2) O(n2) ?

4 O(n) O(n · log(n)) O(n4) O(n2) O(n2) ?

5 O(n) O(nm+1) ? O(nm+1) O(nm+1) ?

6 O(n) O(n · log(n)) O(n3) O(n2) O(n2) ?

7 O(n) O(n · log(n)) ? O(n2) O(n2) ?
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The case when only d out of n data points are intervals is
summarized in the following table:

# E V Cxy L,U,R M2p M2p+1

0 O(n) NP-hard NP-hard NP-hard NP-hard ?

1 O(n) O(n log(d)) O(n · d2) O(n · d) O(nd) O(nd2)

2 O(n) O(nd) O(n · d2) O(n · d) O(nd) O(nd2)

3 O(n) O(n log(d)) ? O(n · d) O(nd) ?

4 O(n) O(n log(d)) O(n · d3) O(n · d) O(nd) ?

5 O(n) O(ndm) ? O(n · dm) O(ndm) ?

6 O(n) O(n log(d)) O(n · d2) O(n · d) O(nd) ?

7 O(n) O(n log(d)) ? O(n · d) O(nd) ?

Weighted mean and weighted average. In the above text, we con-
sidered the case when we only know the upper bound ∆i on the
overall measurement error. In some real-life situations (see, e.g., (Ra-
binovich, 1993)), we know the standard deviation σi of the random
error component and the bound ∆i on the absolute value of the sys-
tematic error component. If we had no systematic errors, then we
would able to estimate the mean E by solving the corresponding Least

Squares problem
∑
σ−2
i · (xi − E)2 → min

E
, i.e., as Ew =

n∑
i=1

pi · xi,

where pi
def=

σ−2
i

n∑
j=1

σ−2
j

. In this case, the variance can be estimated as

Vw =
n∑
i=1

pi · (xi − Ew)2 =
n∑
i=1

pi · x2
i − E2

w. Due to the presence of

systematic errors, the actual values xi may be anywhere within the
intervals [xi, xi]

def= [x̃i−∆i, x̃i+∆i]. Thus, we arrive at the problem of
estimating the range of the above expressions for weighted mean and
weighted variance on the interval data [xi, xi].

The expression for the mean is monotonic, so, similar to the average,
we substitute the values xi to get Ew and the values xi to get Ew.

For the weighted variance, the derivative is equal to 2pi · (xi −Ew),
and the second derivative is always ≥ 0, so, similarly to the above
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proof for the non-weighted variance, we conclude that the minimum is
always attained at a vector (x1, . . . , xk, Ew, . . . , Ew, xk+l, . . . , xn). So,
by considering 2n+ 2 zones, we can find V w in time O(n2).

For V w, we can prove that the maximum is always attained at values
xi = xi or xi = xi, so we can always find it in time O(2n). If no more
thanK intervals intersect, then, similarly to the non-weighted variance,
we can compute V w in time O(n2).

Robust estimates for the mean. Arithmetic average is vulnerable to
outliers: if one of the values is accidentally mis-read as 106 times larger
than the others, the average is ruined. Several techniques have been
proposed to make estimates robust; see, e.g., (Huber, 2004). The best
known estimate of this type is the median; there are also more general

L-estimates of the type
n∑
i=1

wi ·x(i), where w1 ≥ 0, . . . , wn ≥ 0 are given

constants, and x(i) is the i-th value in the ordering of x1, . . . , xn in
increasing order. Other techniques include M-estimates, i.e., estimates

a for which
n∑
i=1

ψ(|xi − a|) → max
a

for some non-decreasing function

ψ(x).
Each of these statistics C is a (non-strictly) increasing function

of each of the variables xi. Thus, similarly to the average, C =
[C(x1, . . . , xn), C(x1, . . . , xn)].

Robust estimates for the generalized central moments. When we dis-
cussed central moments, we considered generalized central moments

Mψ =
1
n
·
n∑
i=1

ψ(xi − E) for an appropriate convex function ψ(x). In

that description, we assumed that E is the usual average.
It is also possible to consider the case when E is not the average,

but the value for which
n∑
i=1

ψ(xi − E) → min
E

. In this case, the robust

estimate for the generalized central moment takes the form

M rob
ψ = min

E

(
1
n
·
n∑
i=1

ψ(xi − E)

)
.

Since the function ψ(x) is convex, the expression
n∑
i=1

ψ(xi − E) is also

convex, so it only attains its maximum at the vertices of the convex
box x1 × . . .× xb, i.e., when for every i, either xi = xi or xi = xi. For
the case of a single MI, the same proof as for the average E enables us
to conclude that the maximum of the new generalized central moment
is also always attained at one of n vectors (x1, . . . , xk, xk+1, . . . , xn),
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and thus, that this maximum can be computed in time O(n2). For m
MIs, we need time O(nm+1).

Correlation. For correlation, we only know that in general, the
problem of computing the exact range is NP-hard (Ferson et al., 2002d).

4. Additional Issues

On-line data processing. In the above text, we implicitly assumed that
before we start computing the statistics, we have all the measurement
results. In real life, we often continue measurements after we started
the computations. Traditional estimates for mean and variance can be
easily modified with the arrival of the new measurement result xn+1:
E′ = (n ·E+xn+1)/(n+1) and V ′ = M ′− (E′)2, where M ′ = (n ·M +
x2
n+1)/(n+ 1) and M = V +E2. For the interval mean, we can have a

similar adjustment. However, for other statistics, the above algorithms
for processing interval data require that we start computation from
scratch. Is it possible to modify these algorithms to adjust them to on-
line data processing? The only statistic for which such an adjustment
is known is the variance, for which an algorithm proposed in (Wu et
al., 2003; Kreinovich et al., (in press)) requires only O(n) steps to
incorporate a new interval data point.

In this algorithm, we store the sorting corresponding to the zones
and we store auxiliary results corresponding to each zone (finitely many
results for each zone). So, if only d out of n intervals are non-degenerate,
we only need O(d) steps to incorporate a new data point.

Fuzzy data. Often, in addition to (or instead of) the guaranteed
bounds, an expert can provide bounds that contain xi with a certain
degree of confidence. Often, we know several such bounding intervals
corresponding to different degrees of confidence. Such a nested family of
intervals is also called a fuzzy set, because it turns out to be equivalent
to a more traditional definition of fuzzy set (Nguyen and Kreinovich,
1996; Nguyen and Walker, 1999) (if a traditional fuzzy set is given,
then different intervals from the nested family can be viewed as α-cuts
corresponding to different levels of uncertainty α).

To provide statistical analysis of fuzzy-valued data, we can there-
fore, for each level α, apply the above interval-valued techniques to the
corresponding α-cuts (Martinez, 2003; Nguyen et al., 2003).

Can we detect the case of several MI? For the several MI case, we
assumed that measurement are labeled, so that we can check which
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measurements were done by each MI; this labeling is used in the algo-
rithms. What if we do not keep records on which interval was measured
by which MI; can we then reconstruct the labels and thus apply the
algorithms?

For two MI, we can: we pick an interval and call it MI1. If any other
interval is in subset relation with this one, then this new interval is
MI2. At any given stage, if one of the un-classified intervals is in subset
relation with one of the already classified ones, we classify it to the
opposite class. If none of the un-classified intervals is in subset relation
with classified ones, we pick one of the un-classified ones and assign to
MI1. After ≤ n iterations, we get the desired labeling.

In general, for m MI, the labeling may not be easy. Indeed, we
can construct a graph in which vertices are intervals, and vertices are
connected if they are in a subset relation. Our objective is to assign a
class to each vertex so that connected vertices cannot be of the same
class. This is exactly the coloring problem that is known to be NP-hard
(Garey and Johnson, 1979).

Parallelization. In the general case, the problem of computing the
range C of a statistic C on interval data xi requires too much com-
putation time. One way to speed up computations is to use parallel
computations.

If we have a potentially unlimited number of parallel processors,
then, for the mean, the addition can be done in time O(log(n)) (Jaja,
1992). In O(n·log(n)) and O(n2) algorithms for computing V and V , we
can perform sorting in time O(log(n)), then compute Vk for each zone
in parallel, and find the largest of the n resulting values Vk in parallel
(in time O(log(n))). The sum that constitutes the variance can also be
computed in parallel in time O(log(n)), so overall, we need O(log(n))
time.

Similarly, we can transform polynomial algorithms for computing
the bounds for covariance, outlier statistics (L, U , andR), and moments
into O(log(n)) parallel algorithms.

In the general case, to find V and other difficult-to-compute bounds,
we must compute the largest of the N def= 2n values corresponding to 2n

possible combinations of xi and xi. This maximum can be computed
in time O(log(N)) = O(n). This does not mean, of course, that we can
always physically compute V in linear time: communication time grows
exponentially with n; see, e.g., (Morgenstein and Kreinovich, 1995).

It is desirable to also analyze the case when we have a limited number
of processors p� n.
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Quantum algorithms. Another way to speed up computations is to
use quantum computing. In (Martinez, 2003; Kreinovich and Longpré,
2004), we describe how quantum algorithms can speed up the compu-
tation of C.

What if we have partial information about the probabilities? Enter p-
boxes. In the above text, we assumed that the only information that
we have about the measurement error ∆x is that this error is somewhere
in the interval [−∆,∆], and that we have no information about the
probabilities of different values from this interval. In many real-life sit-
uations, we do not know the exact probability distribution for ∆x, but
we have a partial information about the corresponding probabilities.
How can we describe this partial information?

To answer this question, let us recall how the complete information
about the probability distribution is usually described. A natural way
to describe a probability distribution is by describing its cumulative
density function (cdf) F (t) def= Prob(∆x ≤ t). In practice, a reasonable
way to store the information about F (t) is to store quantiles, i.e., to fix
a natural number n and to store, for every i from 0 to n, the values ti
for which F (ti) = i/n. Here, t0 is the largest value for which F (t0) = 0
and tn is the smallest value for which F (tn) = 1, i.e., [t0, tn] is the
smallest interval on which the probability distribution is located with
probability 1.

If we only have partial information about the probabilities, this
means that – at least for some values t – we do not know the exact value
of F (t). At best, we know an interval F(t) = [F (t), F (t)] of possible
values of F (t). So, a natural way to describe partial information about
the probability distribution is to describe the two functions F (t) and
F (t). This pair of cdfs is called a p-box; see, e.g., a book (Ferson, 2002).
In addition to the theoretical concepts, this book describes the software
tool for processing different types of uncertainty, a tool based on the
notion of a p-box.

Similarly to the case of full information, it is reasonable to store the
corresponding quantiles, i.e., the values ti for which F (ti) = i/n and
the values ti for which F (ti) = i/n. (The reason why we switched the
notations is because F (t) ≤ F (t) implies ti ≤ ti.) This is exactly the
representation used in (Ferson, 2002).

What if we have partial information about the probabilities? Processing
p-boxes and how the above alorithms can help. Once we have a prob-
ability distribution F (t), natural questions are: what is the mean and
the variance of this distribution? A p-box means that several different
distributions are possible, and for different distributions, we may have
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different values of means and variance. So, when we have a p-box,
natural questions are: what is the range of possible values of the mean?
what is the range of possible values of the variance?

The mean E is a monotonic function of F (t); so, for the mean E,
the answer is simple: the mean of F (t) is the desired upper bound E
for E, and the mean of F (t) is the desired lower bound E for E. The
variance V is not monotonic, so the problem of estimating the variance
is more difficult.

For the case of the exact distribution, if we have the quantiles t(α)
corresponding to all possible probability values α ∈ [0, 1], then we can
describe the mean of the corresponding probability distribution as E =∫
t(α) dα, and the variance as V =

∫
(t(α)−E)2 dα. If we only know the

quantiles t1 = t(1/n), . . . , tn = t(n/n), then it is reasonable to replace
the integral by the corresponding integral sum; as a result, we get the

estimates E =
1
n

n∑
i=1

ti and V =
1
n

n∑
i=1

(ti − E)2.

In these terms, a p-box means that instead of the exact value ti of
each quantile, we have an interval of possible values [ti, ti]. So, to find
the range of V , we must consider the range of possible values of V when
ti ∈ [ti, ti]. There is an additional restriction that the values ti should
be (non-strictly) increasing: ti ≤ ti+1.

The resulting problem is very similar to the problems of estimating
mean and variance of the interval data. In this case, intervals satisfy the
subset property, i.e., we are in the case that we called the case of single
MI. The only difference between the current problem of analyzing p-
boxes and the above problem is that in the above problem, we looked
for minimum and maximum of the variance over all possible vectors
xi for which xi ∈ xi for all i, while in our new problem, we have an
additional monotonicity restriction ti ≤ ti+1. However, the solutions to
our previous problems of computing V and V for the case of a single
MI are actually attained at vectors that are monotonic. Thus, to find
the desired value V , we can use the same algorithm as we described
above.

Specifically, to find V , we find k for which the variance of the vec-
tor t = (t1, . . . , tk, t̄, . . . , t̄, tk+l, . . . , tn) for which the variance is the
smallest. To find V , we find k for which the variance of the vector
t = (t1, . . . , tk, tk+1, . . . , tn) for which the variance is the largest. Intu-
itively, this makes perfect sense: to get the smallest V , we select the
values ti as close to the average t̄ as possible; to get the largest V , we
select the values ti as far away from the average t̄ as possible. In both
case, we can compute V and V in time O(n · log(n)).

The above algorithm describes a heuristic estimate based on approx-
imating an integral with an integral sum. To get reliable bounds, we can
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take into consideration that both bounds F (t) and F (t) are monotonic;
thus, we can always replace the p-box by a larger p-box in which the
values t(α) are piecewise-constant: namely, we take t′i = [ti−1, ti] for
each i. For this new p-box, the integral sum coincides with the integral,
so the range [V , V ] produced by the above algorithm is exactly the
range of the variance over all possible distributions from the enlarged
p-box. It is therefore guaranteed to contain the range of possible values
of the variance V for the original p-box.

What if we have partial information about probabilities? Multi-
dimensional case. How can we describe partial information about
probabilities in multi-dimensional case? A traditional analogue of a
cdf is a multi-dimensional cdf

F (t1, . . . , tp) = Prob(x1 ≤ t1 & . . . &xp ≤ tp);

see, e.g., (Wadsworth, 1990). The problem with this definition is that
often multi-D data represent, e.g., vectors with components x1, . . . , xp.
The components depend on the choice of coordinates. As a result,
even if a distribution is symmetric – e.g., a rotation-invariant Gaus-
sian distribution – the description in terms of a multi-D cdf is not
rotation-invariant.

It is desirable to come up with a representation that preserves such
a symmetry. A natural way to do it is to store, for each half-space, the
probability that the vector ~x = (x1, . . . , xp) is within this half-space. In
other words, for every unit vector ~e and for every value t, we store the
probability F (~e, t) def= Prob(~x ·~e ≤ t), where ~x ·~e = x1 · e1 + . . .+xn · en
is a scalar (dot) product of the two vectors. This representation is
clearly rotation-invariant: if we change the coordinates, we keep the
same values F (~e, t); the only difference is that we store each value
under different (rotated) ~e. Moreover, this representation is invariant
under arbitrary linear transformations.

Based on this information, we can uniquely determine the prob-
ability distribution. For example, if the probability distribution has
a probability density function (pdf) ρ(~x), then this pdf can be re-
constructed as follows. First, we determine the characteristic function
χ(~ω) def= E[exp(i · (~x · ~ω))], where E[·] stands for the expected value.
To get the value of χ(~ω), we apply the 1-D Fourier transform, to the
values F (~e, t) for different t, where ~e def= ~ω/‖~ω‖ is a unit vector in the
direction of ~ω. Then, we can find ρ(~x) by applying the p-dimensional
Inverse Fourier Transform to χ(~ω).
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It is therefore reasonable to represent a partial information about
the probability distribution by storing, for each ~e and t, the bounds
F (~e, t) and F (~e, t) that describe the range of possible values for F (~e, t).

It is worth mentioning that since for continuous distributions,
F (~e, t) = 1 − F (−~e,−t), we have F (~e, t) = 1 − F (−~e,−t). So, it is
sufficient to only describe F (~e, t), the lower bounds F (~e, t) can then be
uniquely determined (or, vice versa, we can only describe the values
F (~e, t); then the values F (~e, t) will be uniquely determined).

In order to transform this idea into an efficient software tool, we
need to solve two types of problems. First, we must solve algorithmic
problems: develop algorithms for estimating the ranges of statistical
characteristics (such as moments) for the corresponding multi-D p-
boxes.

Second, we must solve implementation problems. Theoretically, to
uniquely describe a probability distribution, we need to know infinitely
many values F (~e, t) corresponding to infinitely many different vectors ~e
and infinitely many different numbers t. In practice, we can only store
finitely many values F (~e, t) corresponding to finitely many vectors ~e.

In principle, we can simply select a rectangular grid and store the
values for the vectors ~e from this grid. However, the selection of the
grid violates rotation-invariance and thus, eliminates the advantage of
selecting this particular multi-D analogue of a cdf. It turns out that
there is a better way: instead of using a grid, we can use rational points
on a unit sphere. There exists efficient algorithms for generating such
points, and the set of all such points is almost rotation-invariant: it is
invariant with respect to all rotations for which all the entries in the
corresponding rotation matrix are rational numbers (Oliverio, 1996;
Trautman, 1998).

Beyond p-boxes? A p-box does not fully describe all kinds of possible
partial information about the probability distribution. For example, the
same p-box corresponds to the class of all distributions located on an
interval [0, 1] and to the class of all distributions located at two points
0 and 1.

Similarly, in the multi-D case, if we only use the above-defined multi-
D cdfs, we will not be able to distinguish between a set S (= the class
of all probability distributions localized on the set S with probability
1) and its convex hull. To provide such a distinction, we may want, in
addition to the bounds on the probabilities Prob(f(x) ≤ t) for all linear
functions f(x), to also keep the bounds on the similar probabilities
corresponding to all quadratic functions f(x).

Let us show that this addition indeed enables us to distinguish
between different sets S. Indeed, for every point x, to check whether
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x ∈ S, we ask, for different values ε > 0, for the upper bound for the
probability Prob(d2(x, x0) ≤ ε2), where d(x, x0) denotes the distance
between the two points. If x 6∈ S, then for sufficiently small ε, this
probability will be 0; on the other hand, if x ∈ S, then it is possible
that we have a distribution located at this point x with probability 1,
so the upper bound is 1 for all ε (Nguyen et al., 2000).

In 1-D case, the condition f(x) ≤ t for a non-linear quadratic func-
tion f(x) is satisfied either inside an interval, or outside an interval.
Thus, in 1-D case, our idea means that in addition to cdf, we also
store the bounds on the probabilities of x being within different in-
tervals. Such bounds are analyzed, e.g., in (Berleant, 1993; Berleant,
1996; Berleant and Goodman-Strauss, 1998; Berleant et al., 2003).
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