
University of Texas at El Paso University of Texas at El Paso

ScholarWorks@UTEP ScholarWorks@UTEP

Departmental Technical Reports (CS) Computer Science

6-2005

Towards Combining Probabilistic and Interval Uncertainty in Towards Combining Probabilistic and Interval Uncertainty in

Engineering Calculations: Algorithms for Computing Statistics Engineering Calculations: Algorithms for Computing Statistics

under Interval Uncertainty, and Their Computational Complexity under Interval Uncertainty, and Their Computational Complexity

Vladik Kreinovich
The University of Texas at El Paso, vladik@utep.edu

Gang Xiang

Scott A. Starks
The University of Texas at El Paso, sstarks@utep.edu

Luc Longpre
The University of Texas at El Paso, longpre@utep.edu

Martine Ceberio
The University of Texas at El Paso, mceberio@utep.edu

See next page for additional authors

Follow this and additional works at: https://scholarworks.utep.edu/cs_techrep

 Part of the Computer Engineering Commons

Comments:

UTEP-CS-04-20b.

Published in Reliable Computing, 2006, Vol. 12, No. 6, pp. 471-501.

Recommended Citation Recommended Citation
Kreinovich, Vladik; Xiang, Gang; Starks, Scott A.; Longpre, Luc; Ceberio, Martine; Araiza, Roberto; Beck, J.;
Kandathi, R.; Nayak, A.; Torres, R.; and Hajagos, J., "Towards Combining Probabilistic and Interval
Uncertainty in Engineering Calculations: Algorithms for Computing Statistics under Interval Uncertainty,
and Their Computational Complexity" (2005). Departmental Technical Reports (CS). 305.
https://scholarworks.utep.edu/cs_techrep/305

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UTEP. It has
been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of
ScholarWorks@UTEP. For more information, please contact lweber@utep.edu.

https://scholarworks.utep.edu/
https://scholarworks.utep.edu/cs_techrep
https://scholarworks.utep.edu/computer
https://scholarworks.utep.edu/cs_techrep?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F305&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F305&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/cs_techrep/305?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F305&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

Authors Authors
Vladik Kreinovich, Gang Xiang, Scott A. Starks, Luc Longpre, Martine Ceberio, Roberto Araiza, J. Beck, R.
Kandathi, A. Nayak, R. Torres, and J. Hajagos

This article is available at ScholarWorks@UTEP: https://scholarworks.utep.edu/cs_techrep/305

https://scholarworks.utep.edu/cs_techrep/305

1

Towards Combining Probabilistic and Interval

Uncertainty in Engineering Calculations:

Algorithms for Computing Statistics under Interval

Uncertainty, and Their Computational Complexity

V. Kreinovich, G. Xiang, S. A. Starks, L. Longpré, M. Ceberio,
R. Araiza, J. Beck, R. Kandathi, A. Nayak and R. Torres
NASA Pan-American Center for Earth and Environmental Studies (PACES),
University of Texas, El Paso, TX 79968, USA (vladik@utep.edu)

J. G. Hajagos
Applied Biomathematics, 100 North Country Road, Setauket, NY 11733, USA, and
Dept. of Ecology and Evolution, State University of New York, Stony Brook, NY
11794, USA (janos@ramas.com)

Abstract. In many engineering applications, we have to combine probabilistic and
interval uncertainty. For example, in environmental analysis, we observe a pollution
level x(t) in a lake at different moments of time t, and we would like to estimate
standard statistical characteristics such as mean, variance, autocorrelation, corre-
lation with other measurements. In environmental measurements, we often only
measure the values with interval uncertainty. We must therefore modify the existing
statistical algorithms to process such interval data.

In this paper, we provide a survey of algorithms for computing various statistics
under interval uncertainty and their computational complexity. The survey includes
both known and new algorithms.

Keywords: probabilistic uncertainty, interval uncertainty, engineering calculations,
computational complexity

1. Formulation of the Problem

Computing statistics is important. In many engineering applications,
we are interested in computing statistics. For example, in environmen-
tal analysis, we observe a pollution level x(t) in a lake at different
moments of time t, and we would like to estimate standard statistical
characteristics such as mean, variance, autocorrelation, correlation with
other measurements. For each of these characteristics C, there is an
expression C(x1, . . . , xn) that enables us to provide an estimate for
C based on the observed values x1, . . . , xn. For example, a reasonable
statistic for estimating the mean value of a probability distribution is

the population average E(x1, . . . , xn) =
1
n
· (x1 + . . . + xn); a reason-

2

able statistic for estimating the variance V is the population variance

V (x1, . . . , xn) =
1
n
·

n∑

i=1

(xi − E)2, where E
def=

1
n
·

n∑

i=1

xi.

Comment. The population variance is often computed by using an

alternative formula V = M−E2, where M =
1
n
·

n∑
i=1

x2
i is the population

second moment.

Comment. In many practical situations, we are interested in an
unbiased estimate of the population variance

Vu(x1, . . . , xn) =
1

n− 1
·

n∑

i=1

(xi −E)2.

In this paper, we will describe how to estimate V under interval uncer-
tainty; since Vu =

n

n− 1
· V , we can easily transform estimates for V

into estimates for Vu.

Interval uncertainty. In environmental measurements, we often only
measure the values with interval uncertainty. For example, if we did not
detect any pollution, the pollution value v can be anywhere between 0
and the sensor’s detection limit DL. In other words, the only informa-
tion that we have about v is that v belongs to the interval [0, DL]; we
have no information about the probability of different values from this
interval.

Another example: to study the effect of a pollutant on the fish, we
check on the fish daily; if a fish was alive on Day 5 but dead on Day
6, then the only information about the lifetime of this fish is that it is
somewhere within the interval [5, 6]; we have no information about the
distribution of different values in this interval.

In non-destructive testing, we look for outliers as indications of pos-
sible faults. To detect an outlier, we must know the mean and standard
deviation of the normal values – and these values can often only be
measured with interval uncertainty (see, e.g., [38, 39]). In other words,
often, we know the result x̃ of measuring the desired characteristic
x, and we know the upper bound ∆ on the absolute value |∆x| of
the measurement error ∆x

def= x̃ − x (this upper bound is provided
by the manufacturer of the measuring instrument), but we have no
information about the probability of different values ∆x ∈ [−∆, ∆]. In
such situations, after the measurement, the only information that we
have about the true value x of the measured quantity is that this value
belongs to interval [x̃−∆, x̃ + ∆].

3

In geophysics, outliers should be identified as possible locations of
minerals; the importance of interval uncertainty for such applications
was emphasized in [36, 37]. Detecting outliers is also important in
bioinformatics [42].

In bioinformatics and bioengineering applications, we must solve
systems of linear equations in which coefficients come from experts and
are only known with interval uncertainty; see, e.g., [52].

In biomedical systems, statistical analysis of the data often leads
to improvements in medical recommendations; however, to maintain
privacy, we do not want to use the exact values of the patient’s para-
meters. Instead, for each parameter, we select fixed values, and for each
patient, we only keep the corresponding range. For example, instead of
keeping the exact age, we only record whether the age is between 0 and
10, 10 and 20, 20 and 30, etc. We must then perform statistical analysis
based on such interval data; see, e.g., [20, 51].

Estimating statistics under interval uncertainty: a problem. In all such
cases, instead of the true values x1, . . . , xn, we only know the intervals
x1 = [x1, x1], . . . ,xn = [xn, xn] that contain the (unknown) true values
of the measured quantities. For different values xi ∈ xi, we get, in
general, different values of the corresponding statistical characteristic
C(x1, . . . , xn). Since all values xi ∈ xi are possible, we conclude that
all the values C(x1, . . . , xn) corresponding to xi ∈ xi are possible esti-
mates for the corresponding statistical characteristic. Therefore, for the
interval data x1, . . . ,xn, a reasonable estimate for the corresponding
statistical characteristic is the range

C(x1, . . . ,xn) def= {C(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn}.
We must therefore modify the existing statistical algorithms so that
they compute, or bound these ranges. This is the problem that we
solve in this paper.

This problem is a part of a general problem. The above range es-
timation problem is a specific problem related to a combination of
interval and probabilistic uncertainty. Such problems – and their po-
tential applications – have been described, in a general context, in the
monographs [27, 45]; for further developments, see, e.g., [2, 3, 4, 5, 7,
11, 28, 30, 40, 41, 48] and references therein.

4

2. Analysis of the Problem

Mean. Let us start our discussion with the simplest possible character-
istic: the mean. The arithmetic average E is a monotonically increasing
function of each of its n variables x1, . . . , xn, so its smallest possible
value E is attained when each value xi is the smallest possible (xi = xi)
and its largest possible value is attained when xi = xi for all i. In other
words, the range E of E is equal to [E(x1, . . . , xn), E(x1, . . . , xn)]. In

other words, E =
1
n
· (x1 + . . . + xn) and E =

1
n
· (x1 + . . . + xn).

Variance: computing the exact range is difficult. Another widely used
statistic is the variance. In contrast to the mean, the dependence of
the variance V on xi is not monotonic, so the above simple idea does
not work. Rather surprisingly, it turns out that the problem of com-
puting the exact range for the variance over interval data is, in general,
NP-hard [10, 24] which means, crudely speaking, that the worst-case
computation time grows exponentially with n. Moreover, if we want to
compute the variance range with a given accuracy ε, the problem is still
NP-hard. (For a more detailed description of NP-hardness in relation
to interval uncertainty, see, e.g., [19].)

Linearization. From the practical viewpoint, often, we may not need
the exact range, we can often use approximate linearization techniques.
For example, when the uncertainty comes from measurement errors
∆xi, and these errors are small, we can ignore terms that are quadratic
(and of higher order) in ∆xi and get reasonable estimates for the
corresponding statistical characteristics. In general, in order to esti-
mate the range of the statistic C(x1, . . . , xn) on the intervals [x1, x1],
. . . , [xn, xn], we expand the function C in Taylor series at the mid-
point x̃i

def= (xi + xi)/2 and keep only linear terms in this expansion.
As a result, we replace the original statistic with its linearized ver-

sion Clin(x1, . . . , xn) = C0 −
n∑

i=1
Ci · ∆xi, where C0

def= C(x̃1, . . . , x̃n),

Ci
def=

∂C

∂xi
(x̃1, . . . , x̃n), and ∆xi

def= x̃i−xi. For each i, when xi ∈ [xi, xi],

the difference ∆xi can take all possible values from −∆i to ∆i, where
∆i

def= (xi − xi)/2. Thus, in the linear approximation, we can esti-
mate the range of the characteristic C as [C0 − ∆, C0 + ∆], where

∆ def=
n∑

i=1
|Ci| ·∆i.

5

In particular, if we take, as the statistic, the population variance

C = V , then Ci =
∂V

∂xi
=

2
n
· (x̃i − Ẽ), where Ẽ is the average of the

midpoints x̃i, and C0 =
1
n
·

n∑

i=1

(x̃i− Ẽ)2 is the variance of the midpoint

values x̃1, . . . , x̃n. So, for the variance, ∆ =
2
n
·

n∑

i=1

|x̃i − Ẽ| ·∆i.

It is worth mentioning that for the variance, the ignored quadratic

term is equal to
1
n
·

n∑

i=1

(∆xi)2 − (∆E)2, where ∆E
def=

1
n
·

n∑

i=1

∆xi, and

therefore, can be bounded by 0 from below and by ∆(2) def=
1
n
·

n∑

i=1

∆2
i

from above. Thus, the interval [V0 −∆, V0 + ∆ + ∆(2)] is a guaranteed
enclosure for V.

Linearization is not always acceptable. In some cases, linearized esti-
mates are not sufficient: the intervals may be wide so that quadratic
terms can no longer be ignored, and/or we may be in a situation where
we want to guarantee that, e.g., the variance does not exceed a certain
required threshold. In such situations, we need to get the exact range
– or at least an enclosure for the exact range.

Since, even for as simple a characteristic as variance, the problem of
computing its exact range is NP-hard, we cannot have a feasible-time
algorithm that always computes the exact range of these characteristics.
Therefore, we must look for the reasonable classes of problems for which
such algorithms are possible. Let us analyze what such classes can be.

3. Reasonable Classes of Problems for Which We Can
Expect Feasible Algorithms for Statistics of Interval Data

First class: narrow intervals. As we have just mentioned, the compu-
tational problems become more complex when we have wider intervals.
In other words, when intervals are narrower, the problems are easier.
How can we formalize “narrow intervals”? One way to do it is as follows:
the true values x1, . . . , xn of the measured quantity are real numbers,
so they are usually different. The data intervals xi contain these values.
When the intervals xi surrounding the corresponding points xi are
narrow, these intervals do not intersect. When their widths becomes
larger than the distance between the original values, the intervals start
intersecting.

6

Definition. Thus, the ideal case of “narrow intervals” can be described
as the case when no two intervals xi intersect.

Second class: slightly wider intervals. Slightly wider intervals corre-
spond to the situation when few intervals intersect, i.e., when for some
integer K, no set of K intervals has a common intersection.

Third class: single measuring instrument. Since we want to find the
exact range C of a statistic C, it is important not only that intervals
are relatively narrow, it is also important that they are approximately
of the same size: otherwise, if, say, ∆x2

i is of the same order as ∆xj ,
we cannot meaningfully ignore ∆x2

i and retain ∆xj . In other words,
the interval data set should not combine high-accurate measurement
results (with narrow intervals) and low-accurate results (with wide in-
tervals): all measurements should have been done by a single measuring
instrument (or at least by several measuring instruments of the same
type).

How can we describe this mathematically? A clear indication that
we have two measuring instruments (MI) of different quality is that one
interval is a proper subset of the other one: [xi, xi] ⊆ (xj , xj).

This restriction only refers to inexact measurement results, i.e., to
non-degenerate intervals. In additional to such interval values, we may
also have values produced by very accurate measurements, so accurate
that we can, for all practical purposes, consider these values exactly
known. From this viewpoint, when we talk about measurements made
by a single measuring instrument, we may allow degenerate intervals
(i.e., exact numbers) as well.

As we will see, the absence of such pairs is a useful property that
enables us to compute interval statistics faster. We will also see that
this absence happens not only for measurements made by a single MI,
but also in several other useful practical cases. Since this property is
useful, we will give it a name.

Definition. We say that a collection of intervals satisfies a subset prop-
erty if [xi, xi] 6⊆ (xj , xj) for all i and j for which the intervals xi and
xj are non-degenerate.

Fourth class: same accuracy measurement. In some situations, it is
also reasonable to consider a specific subcase of the single MI case
when all measurements are performed with exactly the same accuracy.

After each measurement, we get the measurement result x̃i, and we
conclude that the (unknown) true value xi of the measured quantity
belongs to the interval xi = [xi, xi], where xi = x̃i−∆i and xi = x̃i+∆i.

7

In the above text, we characterized measurement uncertainty in
terms of the (absolute) measurement error ∆xi = x̃i − xi. In this case,
the upper bound ∆i on the absolute value |∆xi| of the measurement
error is a natural measure of the measurement accuracy. In these terms,
the case of same accuracy measurements can be described as the case
when all these upper bounds coincide: ∆1 = . . . = ∆n.

We have mentioned that the single MI case covers not only the situ-
ation when the intervals come from measurements, but other important
situations as well. How can we describe this same accuracy property
in the general case, when we are simply given n intervals xi = [xi, xi]
that do not necessarily come from measurements?

In the case when the interval xi results from a measurement, the
value ∆i is the half-width of the interval. Thus, in general, the case of
“same accuracy” measurements can be described as the case in which
all non-degenerate intervals [xi, xi] have exactly the same half-width

∆i =
1
2
· (xi − xi).

Comment. Sometimes, it is reasonable to describe measurement er-
rors in relative terms – as accuracy, say, 5% instead of 0.1 units;
(see, e.g., [39]). A relative measurement error is defined as the ratio
δxi

def= ∆xi/|x̃i|. Within this description, as a natural measure of the
measurement accuracy, we can take the largest possible absolute value
|δxi| of the relative error, i.e., the value δi = ∆i/x̃i.

In such situations, it is reasonable to consider the case when all the
measurements are of the same relative accuracy, i.e., in which all non-
degenerate intervals [xi, xi] have exactly the same ratio δi = ∆i/|x̃i|
between the half-width and the midpoint. One can easily check that
this condition is equivalent to the condition that all non-degenerate
intervals have the same ratio xi/xi.

This case is yet another subcase of the single MI case; it may be
beneficial to check whether any of our algorithms can be simplified
when restricted to this subcase.

Fifth class: several MI. After the single MI case, the natural next
case is when we have several MI, i.e., when our intervals are divided
into several subgroups each of which has the above-described subset
property.

Comment. The need to use multiple MI comes from the interval uncer-
tainty. Indeed, as sample size increases, a point of diminishing returns
is reached when observations are interval bounds that contain mea-
surement error. For example, when constructing a confidence interval

8

on E, we expect its width to monotonically decrease as a function of
sample size. In the presence of interval bounded measurement errors,
a point will be reached where increasing sample size has almost no
impact. Indeed, in the limit, as n →∞, the confidence interval will be
the width of measurement error intervals.

If, however, it is possible to use multiple measuring instruments to
produce multiple intervals for each observation, then these multiple
measurements can be intersected to reduce the interval width due to
measurement error on each observation; see, e.g., [46, 47]. In this way,
effort could be balanced between increasing sample size and increasing
the number of measuring instruments used for each observation.

Sixth class: privacy case. Although these definitions are in terms of
measurements, they make sense for other sources of interval data as
well. For example, for privacy data, intervals either coincide (if the
value corresponding to the two patients belongs to the same range)
or are different, in which case they can only intersect in one point.
Similarly to the above situation, we also allow exact values in addition
to ranges; these values correspond, e.g., to the exact records made in
the past, records that are already in the public domain.

Definition. We will call interval data with this property – that every
two non-degenerate intervals either coincide or intersect at most in one
point – privacy case.

Comment. For the privacy case, the subset property is satisfied, so
algorithms that work for the subset property case work for the privacy
case as well.

Comment. Sometimes, in the privacy-motivated situation, we must
process interval data in which intervals come from several different
“granulation” schemes. For example, to find the average salary in North
America, we may combine US interval records in which the salary is
from 0 to 10,000 US dollars, from 10,000 to 20,000, etc., with the
Canadian interval records in which the ranges are between 0 to 10,000
Canadian dollars, 10,000 to 20,000 Canadian dollars, etc. When we
transform these records to a single unit, we get two different families of
intervals, each of which satisfies the subset property. Thus, to handle
such situations, we can use algorithms develop for the several MI case.

Seventh class: non-detects. Similarly, if the only source of interval
uncertainty is detection limits, i.e., if every measurement result is ei-
ther an exact value or a non-detect, i.e., an interval [0, DLi] for some

9

real number DLi (with possibly different detection limits for different
sensors), then the resulting non-degenerate intervals also satisfy the
subset property. Thus, algorithms that work for the subset property
case work for this “non-detects” case as well.

Also, an algorithm that works for the general privacy case also works
for the non-detects case when all sensors have the same detection limit
DL.

Let us now describe the known algorithms for statistics of interval
data.

4. Results

4.1. Variance: Lower Bound

Known result: in brief. The lower bound V can be always computed
in time O(n · log(n)) [14].

Main idea behind this result. The algorithm for computing V is based
on the fact that when a function V attains a minimum on an interval
[xi, xi], then either

∂V

∂xi
= 0, or the minimum is attained at the left

endpoint xi = xi – then
∂V

∂xi
> 0, or the minimum is attained at the

right endpoint xi = xi and
∂V

∂xi
< 0. Since the partial derivative is equal

to (2/n) · (xi −E), we conclude that either xi = E, or xi = xi > E, or
xi = xi < E. Thus, if we know where E is located in relation to all the
endpoints, we can uniquely determine the corresponding minimizing
value xi for every i: if xi ≤ E then xi = xi; if xi ≤ xi, then xi = xi;
otherwise, xi = E. The corresponding value E can be found from the
condition that E is the average of all the selected values xi.

So, to find the smallest value of V , we can sort all 2n bounds xi, xi

into a sequence x(1) ≤ x(2) ≤ . . .; then, for each zone [x(k), x(k+1)], we
compute the corresponding values xi, find their variance Vk, and then
compute the smallest of these variances Vk.

As we have mentioned, the corresponding value E can be found from
the condition that E is the average of all the selected values xi. If E is
in the zone [x(k), x(k+1)], then we know all the values xi, so n ·E should
be equal to the sum of these values:

n · E =
∑

i:xi≥x(k+1)

xi + (n−Nk) · E +
∑

j:xj≤x(k)

xj ,

10

where by Nk, we denoted the total number of such i’s for which xi ≥
x(k+1) and j’s for which xj ≤ x(k).

Subtracting (n−Nk)·E from both sides of this equality, we conclude
that Nk · E = Sk, where

Sk
def=

∑

i:xi≥x(k+1)

xi +
∑

j:xj≤x(k)

xj .

If Nk = 0, this means that xi = E for all i, so V = 0. If Nk 6= 0, then
E = Sk/Nk.

Once E is computed, we can now compute the corresponding
variance Vk as Mk − E2, where Mk is the second population moment:

Mk =
1
n
·

∑

i:xi≥x(k+1)

(xi)
2 +

n−Nk

n
· E2 +

1
n
·

∑

j:xj≤x(k)

(xj)2,

i.e., Vk = M ′
k −

Nk

n
· E2, where

M ′
k

def=
1
n
·

 ∑

i:xi≥x(k+1)

(xi)
2 +

∑

j:xj≤x(k)

(xj)2

 .

How many steps do we need for this algorithm? Sorting requires O(n ·
log(n)) steps. Computing the initial values of Sk, Nk, and M ′

k requires
linear time, i.e., O(n) steps.

For each k, the values Sk, Nk, and M ′
k differ from the previous

value by only one or two terms – namely, e.g., the values i for which
xi ≥ x(k) but xi < x(k+1). In other words, the only change is for i for
which x(k) ≤ xi < x(k+1). Since x(k) is the ordering of all lower and
upper bounds, this means that x(k) = xi.

Similarly, the only change in the second sum is the term for which
xj = x(k).

So, each of these values Sk, . . . , can be computed from the previous
values Sk−1, . . . in a constant number of steps. Thus, the overall number
of steps for computing them is linear in n. The smallest of the values
Vk is the desired V . Thus, we can compute V in O(n · log(n))+O(n) =
O(n · log(n)) steps.

Comment. If two bounds happen to coincide, then for the correspond-
ing k, we may have a difference of several values between Sk and Sk−1.
However, each of the 2n bounds can occur only once in this change, so
the overall number of terms is still O(n).

11

How good is this algorithm? Since even simple sorting requires at least
O(n · log(n)) steps, algorithms like this, that compute a bound of a
statistical interval characteristic in O(n·log(n)) steps, can be considered
a “golden standard” for such algorithms.

4.2. Variance: Upper Bound

General case. We have already mentioned that computing V is, in
general, an NP-hard problem.

A new NP-hardness result. In the original proof of NP-hardness, we
have x̃1 = . . . = x̃n = 0, i.e., all measurement results are the same,
only accuracies ∆i are different. What if all the measurement results
are different? We can show that in this case, computing V is still an
NP-hard problem: namely, for every n-tuple of real numbers x̃1, . . . , x̃n,
the problem of computing V for intervals xi = [x̃i−∆i, x̃i + ∆i] is still
NP-hard.

To prove this result, it is sufficient to consider ∆i = N ·∆(0)
i , where

∆(0)
i are the values used in the original proof and N is a large integer

(that will be selected later). In this case, we can describe ∆xi = x̃i−xi

as N · ∆x
(0)
i , where ∆(0)

i ∈ [−∆(0)
i ,∆(0)

i]. For large N , the difference
between the variance corresponding to the values xi = x̃i + N ·∆x

(0)
i

and N2 times the variance of the values ∆x
(0)
i is bounded by a term

proportional to N (and the coefficient at N can be easily bounded).
Thus, the difference between V and N2 · V (0) is bounded by C · N
for some known constant C. Hence, by computing V for sufficiently
large N , we can compute V

(0) with a given accuracy ε > 0, and we
already know that computing V

(0) with given accuracy is NP-hard.
This reduction proves that our new problem is also NP-hard.

How to compute the upper bound: general case. It is known that the
maximum of a quadratic function on an interval is always attained
at one of the endpoints. Thus, in principle, we can always compute
the upper bound V in time 2n: namely, it is sufficient to compute
the variance V for all 2n possible vectors x = (xε1

1 , . . . , xεn
n), where

εi ∈ {−, +}, x−i = xi and x+
i = xi – then the largest of these 2n values

is the desired value V .

Cases of narrow intervals and slightly wider intervals. For V , we can
provide an analysis of the derivatives which is similar to the analysis
provided for V . For V , to this analysis, we can add the fact that the

12

second derivative of V is ≥ 0, so there cannot be a maximum inside
the interval [xi, xi].

So, when xi ≤ E, we take xi = xi; when E ≤ xi, we take xi = xi;
otherwise, we must consider both possibilities xi = xi and xi = xi.

When intervals do not intersect, we thus end up with an O(n·log(n))
algorithm for computing V . It turns out that a O(n · log(n)) algorithm
is possible not only when the original intervals [x̃i − ∆i, x̃i + ∆i] do
not intersect, but also in a more general case when the “narrowed”
intervals [x̃i−∆i/n, x̃i +∆i/n] do not intersect. In fact, a O(n · log(n))
algorithm is even possible in the case when for some integer K < n, no
sub-collection of greater than K narrowed intervals of xi has a common
intersection [50].

Case of the subset property. For the case of the subset property, we
can sort the intervals in lexicographic order: xi ≤ xj if and only if
xi < xj or (xi = xj and xi ≤ xj).

It can be proven that the maximum of V is always attained if for
some k, the first k values xi are equal to xi and the next n−k values xi

are equal to xi. This result is proven by reduction to a contradiction: if
in the maximizing vector x = (x1, . . . , xn), some xi is preceding some
xj , i < j, then we can increase V while keeping E intact – which is in
contradiction with the assumption that the vector x was maximizing.
Specifically, to increase V , we can do the following: if ∆i ≤ ∆j , we
replace xi with xi = xi − 2∆i and xj with xj + 2∆i; otherwise, we
replace xj with xj = xj + 2∆j and xi with xi − 2∆j .

As a result, we arrive at the following algorithm: first, we sort
the intervals [xi, xi] in lexicographic order; then, for k = 0, 1, . . . , n,
compute the value V = M − E2 for the corresponding vectors x(k) =
(x1, . . . , xk, xk+1, . . . , xn). When we go from a vector x(k) to the vector
x(k+1), only one term changes in the vector x, so only one term changes
in each of the sums E and M .

How good is this algorithm? Sorting takes O(n · log(n)) time; com-
puting the initial values of E and M requires linear time O(n). For each
k, computing the new values of E and M requires a constant number of
steps, so overall, computing all n values of E, M (and hence V) requires
linear time. Thus, the overall time of this algorithm is O(n · log(n)).

Comment. In our proof, we used a technique of replacing two values
in such a way that their sum (and hence, the overall average) remain
unchanged. According to [13], this technique, called a transfer, was
first introduced by Robert Muirhead in 1903. The transfer technique
is actively used both in mathematics, where it is one of the main tools
in proving inequalities (see, e.g., [15]), and in economics, where it has

13

been used by several major economists (e.g., by Hugh Dalton) as a
basis of their economic theories and results.

Case of several MI. In case of several MI, we can similarly prove that
if we sort the intervals corresponding to each MI in lexicographic order,
then the maximum of V is attained when from intervals corresponding
to each MI, the values xi corresponding to this MI form a sequence
(x1, . . . , xkj

, xkj+1, . . . , xnj), where nj is the total number of intervals
corresponding to the j-th MI.

Thus, to find the maximum of V , we must find the values k1, . . . , km

corresponding to m MIs. For these values, V = M − E2, where M =∑
Mj and E =

∑
Ej , where we denoted by Ej and Mj , the averages

of, correspondingly, xi and x2
i , taken by using only results of j-th MI.

For each MI j, we can compute all nj +1 possible values Ej and Mj

in linear time.
There are ≤ nm combinations of kis; for each combination, we need

m additions to compute E =
∑

Ej , m additions to compute M =∑
Mj , and a constant number of operations to compute V = M −E2.

Thus, overall, we need time O(nm).

Cases of privacy and non-detects. Since these two cases are a partic-
ular case of the subset property case, and for the subset property case,
we have an O(n · log(n)) algorithm, this same algorithm can be applied
to these two cases as well.

Case when only some intervals are non-degenerate. Sometimes, most
of the data is accurate, so among n intervals, only d ¿ n are non-
degenerate intervals. For example, we can have many accurate values
and d non-detects.

In this situation, to find the extrema of V , we only need to find xi

for d non-degenerate intervals; thus, we only need to consider 2d zones
formed by their endpoints.

To compute V , we need time O(d · log(d)) to sort 2d endpoints,
time O(n) to produce the initial values of Sk, Nk, and M ′

k, and then
time O(d) to compute all the other values Sk, Nk, and M ′

k – and the
corresponding values Vk. Since d ≤ n, the resulting time is O(d·log(d)+
n).

To compute V , in the general case, we only have to consider possible
combinations of d endpoints, so the overall time is n+2d instead of 2n.

For the case of feasible algorithms, similarly to computing V , for
computing V for classes 1, 2, and 3, we need time O(d · log(d) + n)
(hence we need the same time for classes 4, 6, and 7).

14

For class 5 (with m MI), we need O(d · log(d)) steps for sorting,
O(n) steps for the original arrangement, and dm steps to compute the
values for all dm possible combinations of kj . For m ≥ 2, we have
d · log(d) ≤ dm, hence the overall time is O(n + dm).

4.3. Covariance

What is covariance. When we two different measurement results xi

and yi for each measurement i, then an important statistical charac-

teristic is the covariance Cxy =
1
n
·

n∑

i=1

(xi − Ex) · (yi − Ey), where

Ex =
1
n
·

n∑

i=1

xi and Ey =
1
n
·

n∑

i=1

yi are the corresponding population

averages. The covariance can also be described as Cxy = Mxy−Ex ·Ey,

where Mxy
def=

1
n
·

n∑

i=1

xi · yi is the second mixed moment.

General case. In general, computing the range of the covariance Cxy

based on given intervals xi and yi is NP-hard [38].

Cases of narrow intervals and slightly wider intervals. When boxes
xi×yi do not intersect – or if ≥ K boxes cannot have a common point
– we can compute the range in feasible time [1].

The main idea behind the corresponding algorithm is to consider the
derivatives of Cxy relative to xi and yi. Then, once we know where the
point (Ex, Ey) is in relation to xi and yi, we can uniquely determine the
optimizing values xi and yi – except for the boxes xi × yi that contain
(Ex, Ey).

The bounds xi and xi divide the x axis into 2n+2 intervals; similarly,
the y-bounds divide the y-axis into 2n + 2 intervals. Combining these
intervals, we get O(n2) zones.

Due to the limited intersection property, for each of these zones, we
have finitely many (≤ K) indices i for which the corresponding box
intersects with the zone. For each such box, we may have two different
combinations: (xi, yi

) or (xi, yi) for Cxy, (xi, yi) or (xi, yi
) for Cxy.

Thus, we have finitely many (≤ 2K) possible combinations of (xi, yi)
corresponding to each zone.

When we move from a zone to the next one, each sum Mxy, Ex, and
Ey changes by a single term. Thus, for each zone, we need to perform
finitely many steps to update these values and to find the corresponding
values of the covariances. Thus, to cover all O(n2) zones, we need O(n2)
time.

15

Case of same accuracy measurements. Another polynomial-time case
is when all the measurements are exactly of the same accuracy, i.e.,
when all non-degenerate x-intervals have the same half-width ∆x, and
all non-degenerate y-intervals have the same half-width ∆y.

In this case, e.g., for Cxy, if we have at least two boxes i and j
intersecting with the same zone, and we have (xi, yi) = (xi, yi

) and
(xj , yj) = (xj , yj), then we can swap i and j assignments – i.e., make
(x′i, y

′
i) = (xi, yi) and (x′j , y

′
j) = (xj , yj

) – without changing Ex and Ey.
In this case, the only change in Cxy comes from replacing xi ·yi +xj ·yj .
It is easy to see that the new value C is larger than the old value if and
only if zi > zj , where zi

def= x̃i ·∆y + ỹi ·∆x.
Thus, in the true maximum, whenever we assign (xi, yi

) to some i
and (xi, yj) to some j, we must have zi ≤ zj .

So, to get the largest value of Cxy, we must: sort the indices by zi,
select a threshold t, and assign (xi, yi

) to all the boxes with zi ≤ t and
(xj , yj) to all the boxes j with zj > t.

If nk ≤ n denotes the overall number of all the boxes that intersect
with k-th zone, then we have nk+1 possible choices of thresholds, hence
nk + 1 such assignments.

For each of O(n2) zones, we test ≤ n assignments; to the total of
O(n3). Computing each assignment from the previous one requires a
constant number of steps, so overall, we need time O(n3).

Privacy case. In the privacy case, all boxes xi×yi are either identical
or non-intersecting, so the only case when a box intersects with a zone
is when the box coincides with this zone.

For each zone k, there may be many (nk) such boxes, but since they
are all identical, what matters for our estimates is how many of them
are assigned one of the possible (xi, yi) combinations and how many the
other one. There are only nk+1 such assignments: 0 to first combination
and nk to second, 1 to first and nk− 1 to second, etc. Thus, the overall
number of all combinations for all the zones k is

∑
k

nk +
∑
k

1, where
∑

nk = n and
∑
k

1 is the overall number of zones, i.e., O(n2).

For the original combination of xi and yi, we need O(n) steps. Mov-
ing from one combination to another means changing only one term in
each sum Mxy, Ex, Ey, thus, computing each combination requires a
constant number of steps – to the total of O(n2).

Thus, in the privacy case, we can compute both Cxy and Cxy in
time O(n2) + O(n) = O(n2).

Case when only some intervals are non-degenerate. For narrow inter-
vals, if n− d measurement results (xi, yi) are exact numbers and only

16

d are non-point boxes, then we only need O(d2) zones. So, we need
O(d · log(d)) time for sorting, O(n) to compute the initial values of
Mxy, Ex, and Ey, and O(d2) time to compute the values Cxy for all the
zones – to the total of O(n + d2).

In the case of same accuracy measurements, if only d boxes are
non-degenerate, we need sorting (which takes time O(d · log(d))), ini-
tial computation (which takes time O(n)), and checking all O(d3)
assignments – so the overall time is O(n + d3).

In the privacy case, similarly to the case of narrow intervals, we have
O(d2) zones, so we also need time O(n + d2).

4.4. Population Moments

For population moments
1
n
·

n∑
i=1

xq
i , known interval bounds on xq leads

to exact range.

4.5. Central Moments of Even Order

Definition. A population central moment is defined as

Mq =
1
n
·

n∑
i=1

(xi −E)q.

Computing M q. For even q, we have
∂Mq

∂xi
=

q

n
·(xi−E)q−1−q ·Mq−1,

so
∂Mq

∂xi
≥ 0 ↔ xi ≥ λ

def= E + (q ·Mq−1)1/(q−1).

Thus, once we know where λ is located w.r.t. the endpoints, we can
find all xi – and find λ from the condition that this value λ is equal
to the values E + (q · Mq−1)1/(q−1) computed based on the resulting
sample.

The value Mq−1 can be computed based on the corresponding pop-
ulation moments up to order q−1. Once we know the moments for one
zone, we recomputing the moment for the next zone requires constant
time.

Thus, to find M q, we must sort the endpoints (which takes time
O(n · log(n))), compute the original values of the moments (time O(n)),
and then compute the moments for all zones (time O(n))) – overall time
is O(n · log(n)).

Computing M q for narrow and slightly wider intervals. In this case, a
similar analysis of partial derivatives leads to an O(n·log(n)) algorithm.

17

Computing M q the subset property case: idea. In this case, similarly
to the variance, we can prove that the maximum is always attained at
one of the vectors x = (x1, . . . , xk, xk+1, . . . , xn).

The following proof works not only for Mq, but also for a generalized

central moment Mψ
def=

1
n
·

n∑

i=1

ψ(xi − E), where E =
1
n
·

n∑

i=1

xi and

ψ(x) ≥ 0 is an (arbitrary) convex function for which ψ(0) = 0 and
ψ′′(x) > 0 for all x 6= 0.

Let us first show that the maximum cannot be attained inside an
interval [xi, xi].

Indeed, in this case, at the maximizing point, the first derivative

∂Mψ

∂xi
=

1
n
· ψ′(xi − E)− 1

n2
·

n∑

j=1

ψ′(xj −E)

should be equal to 0, and the second derivative

∂2Mψ

∂x2
i

=
1
n
· ψ′′(xi −E) ·

(
1− 2

n

)
+

1
n3
·

n∑

j=1

ψ′′(xj − E)

is non-positive. Since the function ψ(x) is convex, we have ψ′′(x) ≥ 0, so
this second derivative is a sum of non-negative terms, and the only case
when it is non-negative is when all these terms are 0s, i.e., when xj = E
for all j. In this case, Mψ = 0 which, for non-degenerate intervals, is
clearly not the largest possible value of Mψ.

So, for every i, the maximum of Mψ is attained either when xi = xi

or when xi = xi.
Similarly to the proof for the variance, we will now prove

that the maximum is always attained for one of the vectors
(x1, . . . , xk, xk+1, . . . , xn).

To prove this, we need to show that if xi = xi and xj = xj for
some i < j (and xi ≤ xj), then the change described in that proof,
while keeping the average E intact, increases the value of Mψ. Without
losing generality, we can consider the case ∆i ≤ ∆j . In this case, the
fact that Mψ increase after the above-described change is equivalent
to: ψ(xi + 2∆i −E) + ψ(xj −E) ≤ ψ(xi −E) + ψ(xj + 2∆i −E), i.e.,
that ψ(xi + 2∆i − E) − ψ(xi − E) ≤ ψ(xj + 2∆j − E) − ψ(xj − E).
Since xi ≤ xj and xi − E ≤ xj − E, this can be proven if we show
that for every ∆ > 0 (and, in particular, for ∆ = 2∆i), the function
ψ(x+∆)−ψ(x) is increasing. Indeed, the derivative of this function is
equal to ψ′(x+∆)−ψ′(x), and since ψ′′(x) ≥ 0, we do have ψ′(x+∆) ≥
ψ′(x).

18

Computing M q the subset property case: algorithm. In view of the
above result, to find Mψ, it is sufficient to check all n vectors of the
type (x1, . . . , xk, xk+1, . . . , xn), which, as we have shown, requires O(n ·
log(n)) steps. For m MIs, we similarly need O(nm) steps.

Case when only d < n intervals are non-degenerate. If only d out of
n intervals are non-degenerate, then we need O(n+2d) time instead of
O(2n), and O(n + d · log(d)) instead of O(n · log(n)).

4.6. Central Moments of Odd Order

For odd q, the formula for the derivative has the same form
∂Mq

∂xi
=

q

n
· (xi − E)q−1 − q ·Mq−1, but due to the fact q is odd, it leads to a

more complex description of the condition
∂Mq

∂xi
≥ 0: it is equivalent to

xi ≥ λ+ or xi ≤ λ−, where λ± def= E ± (q ·Mq−1)1/(q−1).
Thus, to find all the values xi, instead of knowing a single zone

where λ lies, we now need to know two zones: a zone containing λ−
and a zone containing λ+. There are O(n2) such pairs of zones, and
each needs to be tried. So, for odd q, if ≤ K intervals do not intersect,
we can compute both M q and M q in time O(n2).

If only d out of n intervals are non-degenerate, then we need O(n +
2d) time instead of O(2n), and O(n + d2) instead of O(n2).

4.7. Confidence Intervals and Outliers

What we are going to compute. Traditionally, in statistics, we fix a
value k0 (e.g., 2 or 3) and claim that every value x outside the k0-
sigma interval [L,U], where L

def= E − k0 · σ, U
def= E + k0 · σ (and

σ
def=
√

V), is an outlier.
Thus, to detect outliers based on interval data, we must know the

ranges of L and U .
The values L and U can also be viewed as bound for the confi-

dence intervals, so by checking outliers, we thus estimate the confidence
interval as well.

Comment. Previously, we have mainly considered descriptive statis-
tics – statistics used to describe the sample.

L and U are examples of inferential statistics – statistics that are
used to make conclusions about the data (in this case, whether a given
data point is an outlier).

19

Why cannot we simply combine the intervals for E and σ =
√

V .
In principle, we can use the general ideas of interval computations
to combine these intervals and conclude, e.g., that U always belongs
to the interval E + k0 · [σ, σ]. However, as often happens in interval
computations, the resulting interval for U is wider than the actual
range – wider because the values E and σ are computed based on the
same inputs x1, . . . , xn and cannot, therefore, change independently.

As an example that we may lose precision by combining intervals
for E and σ, let us consider the case when x1 = x2 = [0, 1] and k0 = 2.
In this case, the range E of E = (x1 + x2)/2 is equal to [0, 1], where
the largest value 1 is attained only if x1 = x2 = 1. For the variance, we
have V = ((x1 − E)2 + (x2 − E)2)/2 = (x1 − x2)2/4; so, the range V
of V is [0, 0.25] and, correspondingly, the range for σ =

√
V is [0, 0.5].

The largest value σ = 0.5 is only attained in two cases: when x1 = 0
and x2 = 1, and when x1 = 1 and x2 = 0. When we simply combine
the intervals, we conclude that U ∈ [0, 1] + 2 · [0, 0.5] = [0, 2]. However,
it is easy to see that U cannot be equal to 2:

− The only way for U to be equal to 2 is when both E and σ attain
their largest values: E = 1 and σ = 0.5.

− However, the only pair on which the mean E attains its largest
value 1 is x1 = x2 = 1, and for this pair, σ = 0.

So, in this case, the actual range of U is narrower than the result [0, 2]
of combining intervals for E and σ.

Computing U and L: general case. There is a feasible algorithm for
computing U and L; see, e.g., [23, 24, 26].

The idea of such an algorithm is similar to the idea of an algorithm
for computing V . It comes from the fact that the minimum of a dif-
ferentiable function of xi on an interval [xi, xi] is attained either inside
this interval or at one of the endpoints. If the minimum is attained

inside, the derivative
∂U

∂xi
is equal to 0; if it is attained at xi = xi,

then
∂U

∂xi
≥ 0; finally, if it is attained at xi = xi, then

∂U

∂xi
≤ 0.

For our function,
∂U

∂xi
=

1
n

+ k0 · xi − E

σ · n ; thus,
∂U

∂xi
= 0 if and only if

xi = λ
def= E−α·σ; similarly, the non-positiveness and non-negativeness

of the derivative can be described by comparing xi with λ. So, either
xi ∈ (xi, xi) and xi = λ, or xi = xi and xi = xi ≥ λ, or xi = xi and
xi = xi ≤ λ.

Hence, if we know how the value λ is located with respect to all
the intervals [xi, xi], we can find the optimal values of xi: if xi ≤ λ,

20

then minimum cannot be attained inside or at the lower endpoint, so
it is attained when xi = xi; if λ ≤ xi, then, similarly, the minimum
is attained when xi = xi; if xi < λ < xi, then the minimum is at-
tained when xi = λ. So, to find the minimum, we will analyze how the
endpoints xi and xi divide the real line, and consider all the resulting
zones.

Let the corresponding zone [x(k), x(k+1)] be fixed. For the i’s for
which λ 6∈ (xi, xi), the values xi that correspond to the minimal sample
variance are uniquely determined by the above formulas.

For the i’s for which λ ∈ (xi, xi), the selected value xi should be
equal to the same value λ. To determine this λ, we will use the fact
that, by definition, λ = E − α · σ, where E and σ are computed by
using the same value of λ. This equation is equivalent to E−λ ≥ 0 and
α2 ·σ2 = (λ−E)2. Substituting the above values of xi into the formula
for the mean E and for the standard deviation σ, we get the quadratic
equation for λ. So, for each zone, we can uniquely determine the values
xi that may correspond to a minimum of U .

For the actual minimum, the value λ is inside one of these zone, so
the smallest of the values Uk is indeed the desired minimum.

The resulting algorithms AU for computing U and AL for computing
L are as follows [24]. First, we sort all 2n values xi, xi into a sequence
x(1) ≤ x(2) ≤ . . . ≤ x(2n); take x(0) = −∞ and x(2n+1) = +∞. For each
of these zones [x(k), x(k+1)], k = 0, 1, . . . , 2n, we compute the values

ek
def=

∑

i:xi≥x(k+1)

xi +
∑

j:xj≤x(k)

xj ,

mk
def=

∑

i:xi≥x(k+1)

(xi)
2 +

∑

j:xj≤x(k)

(xj)2,

and nk = the total number of such i’s and j’s. Then, we solve the
quadratic equation Ak −Bk · λ + Ck · λ2 = 0, where

Ak
def= e2

k · (1 + α2)− α2 ·mk · n; α
def= 1/k0,

Bk
def= 2 · ek ·

(
(1 + α2) · nk − α2 · n

)
;

Ck
def= nk ·

(
(1 + α2) · nk − α2 · n

)
.

For computing U , we select only those solutions for which λ · nk ≤ ek

and λ ∈ [x(k), x(k+1)]; for computing L, we select only those solutions
for which λ · nk ≥ ek and λ ∈ [x(k), x(k+1)]. For each selected solution,
we compute the values of

Ek =
ek

n
+

n− nk

n
· λ, Mk =

mk

n
+

n− nk

n
· λ2,

21

Uk = Ek + k0 ·
√

Mk − (Ek)2 or Lk = Ek − k0 ·
√

Mk − (Ek)2.

Finally, if we are computing U , we return the smallest of the values Uk;
if we are computing L, we return the smallest of the values Lk.

In these algorithms, sorting requires O(n · log(n)) steps (see, e.g.,
[6]). The initial computation of all the quantities requires linear time,
and for each zone, we need a constant time to update all the quantities,
compute λ, and then compute the corresponding value U . Thus, the
algorithm requires O(n · log(n)) time.

Computing U and L: general case. It is known that in general,
computing U and L is NP-hard [23, 24, 26].

If 1 + (1/k0)2 ≤ n (which is true, e.g., if k0 > 1 and n ≥ 2), then
the corresponding maximum and minimum are always attained at the
endpoints of the intervals [xi, xi]; so, to compute U and L, it is sufficient
to consider all 2n combinations of such endpoints.

Computing U and L: cases of narrow intervals and slightly wider in-
tervals. For computing U and L, a feasible algorithm is possible not
only when the original intervals [x̃i −∆i, x̃i + ∆i] do not intersect, but
also in a more general case when 1/n + 1/k2

0 < 1 and the “narrowed”

intervals

[
x̃i − 1 + α2

n
·∆i, x̃i +

1 + α2

n
·∆i

]
do not intersect – where

α = 1/k0 and ∆i
def= (xi − xi)/2 is the interval’s half-width.

In fact, a feasible algorithm is even possible in the case when for
some integer K < n, no sub-collection of greater than K narrowed
intervals of xi has a common intersection [24].

The algorithms presented in [24] require quadratic time, but we can
use the arguments like in the above description of V (see also [50]) and
perform both algorithms in time O(n · log(n)).

Computing U and L: subset property case. For the subset prop-
erty case, similarly to variance, we can prove that the maximum
of U and the minimum of L are attained at one of the vectors
(x1, . . . , xk, xk+1, . . . , xn); actually, practically the same proof works,
because increasing V without changing E increases U = E + k0 ·

√
V

as well.
Thus, in this case, first, we sort the intervals [xi, xi] in lexicographic

order; then, for k = 0, 1, . . . , n, we compute the values V = M−E2 and
L and U for the corresponding vectors x(k) = (x1, . . . , xk, xk+1, . . . , xn).
When we go from a vector x(k) to the vector x(k+1), only one term
changes in the vector x, so only one terms changes in each of the sums
E and M .

22

Sorting takes O(n · log(n)) time. Computing the initial values of E
and M requires linear time O(n). For each k, computing the new values
of E and M requires a constant number of steps, so overall, computing
all n values of E, M (and hence V) requires linear time.

Thus, the overall time of this algorithm is O(n · log(n)).

Computing U and L: case of several MIs. In this case, similar to
computing V , we can perform all the computations in time O(nm).

Case when only some intervals d < n are non-degenerate. In this case,
we only need to sort the endpoints of non-degenerate intervals, and,
correspondingly, only consider 2d zones. Thus, here, the computational
complexity is the same as for the case of computing V (see table below).

4.8. Degree of Outlier-Ness

What is the degree of outlier-ness. For every x, we can also determine
the “degree of outlier-ness” r as the smallest k0 for which x is no longer
inside the interval [E − k0 · σ,E + k0 · σ], i.e., as |x− E|/σ.

This ratio is another example of inferential statistic actively used in
statistics.

Simplification of the problem. First, it turns out that the value of r
does not change if, instead of the original variables xi with values from
intervals xi, we consider new variables x′i

def= xi − x and a new value
x′ = 0. Indeed, in this case, E′ = E−x hence E′−x′ = E−x, and the
standard deviation σ does not change if we simply shift all the values
xi. Thus, without losing generality, we can assume that x = 0, and we
are therefore interested in the ratio |E|/σ.

Second, the lower bound of the ratio r is attained when the reverse
ratio 1/r = σ/|E| is the largest, and vice versa. Thus, to find the
interval of possible values for |E|/σ, it is necessary and sufficient to
find the interval of possible values of σ/|E|. Computing this interval is,
in its turn, equivalent to computing the interval for the square V/E2

of the reverse ratio 1/r.

Finally, since V = M −E2, where M
def=

x2
1 + . . . + x2

n

n
is the second

moment, we have V/E2 = M/E2 − 1, so computing the sharp bounds
for V/E2 is equivalent to computing the sharp bounds for the ratio
R

def= M/E2.

23

Computing R. For every i, the location of the minimum on the interval
[xi, xi] depends on the values of the derivative

∂R

∂xi
=

2
n · E2

·
(

xi − M

E

)
.

Thus, once we know where λ
def= M/E is located in comparison with

the endpoints, we can uniquely determine all the values xi – and the
value λ can be determined from the condition that the ratio M/E is
exactly equal to λ.

Thus, we arrive at the algorithm presented in [24]. Similar to V ,
sorting requires time O(n · log(n)); computing the initial values of the
corresponding sums requires O(n) steps; finally, updating each of these
values requires a constant number of steps, so the overall time is linear.
Thus, we can compute R in O(n · log(n)) steps.

Computing R: general case. In principle, we can have R = +∞ – e.g.,
if 0 ∈ [E, E]. If 0 6∈ [E, E] – e.g., if E > 0 – then we can guarantee that
R < +∞. In this case, we can bound R by the ratio M/E2.

When R < n, the maximum R is always attained at the endpoints
[24], so we can compute R by testing all 2n combinations of xi and xi.

Computing R: cases of narrow intervals and slightly wider intervals.
For computing U and R, a feasible algorithm is possible not only when
the original intervals [x̃i −∆i, x̃i + ∆i] do not intersect, but also in a
more general case when R < n and the “narrowed” intervals [x−i , x+

i]

do not intersect, where x−i
def=

x̃i

1 +
∆i

E · n
and x+

i
def=

x̃i

1− ∆i

E · n
. In fact,

a feasible algorithm is even possible in the case when for some integer
K < n, no sub-collection of greater than K narrowed intervals of xi

has a common intersection [24].
So, first, we sort all 2n values xi, xi into a sequence x(1) ≤ x(2) ≤

. . . ≤ x(2n), take x(0) = −∞ and x(2n+1) = +∞, and thus divide the
real line into 2n + 1 zones (x(0), x(1)], [x(1), x(2)], . . . , [x(2n−1), x(2n)],
[x(2n), x(2n+1)). For each of these zones [x(k), x(k+1)], k = 0, 1, . . . , 2n,
and for each variable xi, we take:

• xi = xi if x+
i ≤ x(k);

• xi = xi if x−i ≥ x(k+1);

• both values xi = xi and xi = xi otherwise.

24

For each of the resulting tuples (x1, . . . , xn), we compute E, M , and
λ = M/E, and check if λ is within the zone; if it is, we compute
Rk = M/E2.

The largest of these computed values Rk is the desired upper
endpoint R.

This algorithm, if implemented along the lines of our algorithm for
V , can perform in time O(n · log(n)).

Computing R: cases of the subset property and of several MIs.
For the subset property case, similarly to computing V , we can
prove that the maximum is attained on one of the vectors x =
(x1, . . . , xk, xk+1, . . . , xn). Thus, in this case, we can compute R in
O(n · log(n)) steps.

Similarly, for the case of m MIs, we can compute R in time O(nm).

Computing R: other cases. Other cases are handled similarly to the
case of computing bound for L and U , so we have similar complexity
estimates.

Comment. We have described interval versions of several statistics of
the type C = f(M, E): namely, V = M − E2, L = E − k0 ·

√
V ,

U = E + k0 ·
√

V , and R = M/E2. In all these cases, f is an increasing

function of M , hence
∂f

∂xi
=

∂f

∂M
·2xi

n
+

∂f

∂E
· 1
n

has the same sign as xi−λ

for some constant λ
def= −1

2
·
(

∂f

∂E

/
∂f

∂M

)
. Thus, for other statistics

of the type f(M, E), it may be possible to repeat arguments similar to
the ones given for V , L, U , and R, and derive similar algorithms and
similar computational complexity results.

4.9. Summary

The above results are summarized in the following table. In this table,
the first row corresponds to a general case, other rows correspond to
different classes of problems:

25

class number class description

0 general case

1 narrow intervals: no intersection

2 slightly wider intervals
≤ K intervals intersect

3 subset property –
no interval is a “proper” subset of the other

e.g., single measuring instrument (MI)

4 same accuracy measurements:
all intervals have the same half-width

5 several (m) measuring instruments:
intervals form m groups,

with subset property in each group

6 privacy case:
intervals same or non-intersecting

7 non-detects case:
only non-degenerate intervals are [0, DLi]

E V,L, U,R, M2p Cxy M2p+1

0 O(n) NP-hard NP-hard ?

1 O(n) O(n · log(n)) O(n2) O(n2)

2 O(n) O(n · log(n)) O(n2) O(n2)

3 O(n) O(n · log(n)) ? ?

4 O(n) O(n · log(n)) O(n3) ?

5 O(n) O(nm) ? ?

6 O(n) O(n · log(n)) O(n2) ?

7 O(n) O(n · log(n)) ? ?

26

The case when only d out of n data points are intervals is
summarized in the following table:

E V, L, U,R, M2p Cxy M2p+1

0 O(n) NP-hard NP-hard ?

1 O(n) O(n + d · log(d)) O(n + d2) O(n + d2)

2 O(n) O(n + d · log(d)) O(n + d2) O(n + d2)

3 O(n) O(n + d · log(d)) ? ?

4 O(n) O(n + d · log(d)) O(n + d3) ?

5 O(n) O(n + dm) ? ?

6 O(n) O(n + d · log(d)) O(n + d2) ?

7 O(n) O(n + d · log(d)) ? ?

4.10. Other Statistical Characteristics

Weighted mean and weighted average. In the above text, we consid-
ered the case when we only know the upper bound ∆i on the overall
measurement error. In some real-life situations (see, e.g., [39]), we know
the standard deviation σi of the random error component and the
bound ∆i on the absolute value of the systematic error component. If we
had no systematic errors, then we would able to estimate the mean E by
solving the corresponding Least Squares problem

∑
σ−2

i · (xi −E)2 →
min

E
, i.e., as Ew =

n∑
i=1

pi · xi, where pi
def=

σ−2
i

n∑

j=1

σ−2
j

. In this case, the

variance can be estimated as Vw =
n∑

i=1
pi · (xi−Ew)2 =

n∑
i=1

pi ·x2
i −E2

w.

Due to the presence of systematic errors, the true values xi may be
anywhere within the intervals [xi, xi]

def= [x̃i − ∆i, x̃i + ∆i]. Thus, we
arrive at the problem of estimating the range of the above expressions
for weighted mean and weighted variance on the interval data [xi, xi].

The expression for the mean is monotonic, so, similar to the average,
we substitute the values xi to get Ew and the values xi to get Ew.

27

For the weighted variance, the derivative is equal to 2pi · (xi −Ew),
and the second derivative is always ≥ 0, so, similarly to the above
proof for the non-weighted variance, we conclude that the minimum is
always attained at a vector (x1, . . . , xk, Ew, . . . , Ew, xk+l, . . . , xn). So,
by considering 2n + 2 zones, we can find V w in time O(n · log(n)).

For V w, we can prove that the maximum is always attained at values
xi = xi or xi = xi, so we can always find it in time O(2n). If no more
than K intervals intersect, then, similarly to the non-weighted variance,
we can compute V w in time O(n · log(n)).

Robust estimates for the mean. Arithmetic average is vulnerable to
outliers: if one of the values is accidentally mis-read as 106 times larger
than the others, the average is ruined. Several techniques have been
proposed to make estimates robust; see, e.g., [16]. The best known
estimate of this type is the median; there are also more general L-

estimates of the type
n∑

i=1
wi · x(i), where w1 ≥ 0, . . . , wn ≥ 0 are given

constants, and x(i) is the i-th value in the ordering of x1, . . . , xn in
increasing order. Other techniques include M-estimates, i.e., estimates

a for which
n∑

i=1
ψ(|xi − a|) → max

a
for some non-decreasing function

ψ(x).
Each of these statistics C is a (non-strictly) increasing function

of each of the variables xi. Thus, similarly to the average, C =
[C(x1, . . . , xn), C(x1, . . . , xn)].

Robust estimates for the generalized central moments. When we dis-
cussed central moments, we considered generalized central moments

Mψ =
1
n
·

n∑
i=1

ψ(xi − E) for an appropriate convex function ψ(x). In

that description, we assumed that E is the usual average.
It is also possible to consider the case when E is not the average,

but the value for which
n∑

i=1
ψ(xi − E) → min

E
. In this case, the robust

estimate for the generalized central moment takes the form

M rob
ψ = min

E

(
1
n
·

n∑

i=1

ψ(xi − E)

)
.

Since the function ψ(x) is convex, the expression
n∑

i=1
ψ(xi − E) is also

convex, so it only attains its maximum at the vertices of the convex box
x1 × . . . × xb, i.e., when for every i, either xi = xi or xi = xi. For the
subset property case, the same proof as for the average E enables us to

28

conclude that the maximum of the new generalized central moment is
also always attained at one of n vectors (x1, . . . , xk, xk+1, . . . , xn), and
thus, that this maximum can be computed in time O(n2). For m MIs,
we need time O(nm+1).

Correlation. For correlation, we only know that in general, the
problem of computing the exact range is NP-hard [9].

4.11. From the 1-D Ranges of E and V to the 2-D Range
of (E, V)

Formulation of the Problem In the above text, we have described how,
given the interval data x1, . . . ,xn, we can compute the exact range E
of the population mean E and the exact range V of the population
variance V . The fact that the range is exact means the following:

− first, that for every x1 ∈ x1, . . . , xn ∈ xn, the values E and V
belong to the corresponding intervals E and V;

− second, that for every value E ∈ E, there exist values xi ∈ xi

for which the population mean is equal to E, and that for every
value V ∈ V, there exist values xi ∈ xi for which the population
variance is equal to V .

Based on the computed ranges E and V, we can conclude that for every
xi ∈ xi, the pair (E, V) belongs to the box E × V. However, not all
pairs (E, V) from this box are possible. For example, the only way to
get E = E is to use x1 = x1, . . . , xn = xn; in this case, the population

variance can take only one value V (x1, . . . , xn) =
1
n
·

n∑

i=1

(xi −E)2.

It is therefore desirable to describe not only the ranges E and V
of E and V , but also the range of possible values of the pairs (E, V).
In other words, for each E ∈ E, we want to know the range V(E) =
[V (E), V (E)] of possible values of the population variance V under the
condition that the population mean is equal to E. Let us describe how
we can compute the dependence of the range V(E) on the given value
of E.

Computing V (E). Let us show that we can compute the dependence
V (E) in time O(n · log(n)). The corresponding algorithm is similar to
the one that we used to compute V .

29

Indeed, since V = M − E2, minimizing V under fixed E is equiv-

alent to minimizing M =
1
n
·

n∑

i=1

x2
i . Let (x1, . . . , xn) be a tuple that

minimizes M .
Let us first show that if xi < xi and xj > xj , then xi ≥ xj . Indeed,

in this case, if ε > 0 is sufficiently small, we can replace xi with xi + ε,
and xj with xj − ε. After this replacement, the population average E

does not change, and M is replaced with M +
2
n
· (xi − xj) · ε + O(ε2).

Since M was at its minimum, the change in M cannot be negative,
hence xi − xj ≥ 0 and xi ≥ xj .

From this property, we can conclude that if xi and xj are inside
the corresponding intervals, i.e., xi < xi < xi and xj < xj < xj , then
xi = xj . Indeed, from the fact that xi < xi and xj > xj , we conclude
that xi ≥ xj , and similarly, from the fact that if xj < xj and xi > xi,
we conclude that xj ≥ xi; therefore, xi = xj . Thus, all internal values
of xi coincide. Let us denote the common internal value of xi by λ.

Similarly, we conclude that in the minimizing tuples x =
(x1, . . . , xn), every value xi = xi is not smaller than every internal
value xi = λ, and λ is not smaller than every value xj = xj . Thus, if we
know λ, we can uniquely determine all n values xi: xi = xi when xi ≤ λ,
xi = xi when λ ≤ xi, and xi = λ when xi < λ < xi. (If no xi attains its
internal value, then, as λ, we can take any value separating xi from xj .)
Hence, after we sort the endpoints xi and xi into an increasing sequence
x(1) ≤ x(2) ≤ . . ., then, once we know to which zone [x(k), x(k+1)] the
value λ belongs, we get Nk values xi = λ and n − Nk known values
xi. Similarly to the case of V , for λ ∈ [x(k), x(k+1)], we thus get E as
a linear function of λ and the corresponding value M(E) – and hence,
V (E) – as an explicit quadratic function of λ.

We can use the expression for E to describe λ as a linear function of
E; substituting this expression into the formula for V (E), we get the
coefficients of the quadratic expression that describes the dependence
of V (E) on E for all E from the corresponding interval [Ek, Ek+1],

where Ek
def=

k∑
i=1

xi +
n∑

j=k+1
xj .

Similar to the case of V , sorting requires O(n · log(n)) steps; the ini-
tial computation of the necessary expressions Ek, M ′

k, and Nk requires
O(n) steps, and the transition from each k to the next requires a con-
stant number of steps. Thus, overall, we can determine the piece-wise
quadratic dependence of V (E) on E in O(n · log(n)) steps.

Computing V (E): general case. For V , we can similarly conclude that
in the maximizing tuple x = (x1, . . . , xn), all the internal values of xi

30

coincide (xi = λ), all the values xi = xi are smaller than or equal to λ,
and all the values xi = xi are larger than or equal to λ.

In addition, we can prove that in the maximizing sequence, there can
be at most one internal value. Indeed, if we have two internal values
xi = xj = λ, then, for sufficiently small ε > 0, we can replace xi = λ
with xi = λ+ε, and xj = λ with xj = λ−ε. After this replacement, the
population average E does not change, and M is replaced by a larger

value M +
2
n
· ε2. Since M was at its maximum, this cannot happen,

so in the maximizing tuple, there is indeed at most one internal value
xi; all the other values xj are equal to either xj or to xj .

In the general case, to find V (E), we can, therefore, test all the
values i from 1 to n; for each i, we try all 2n−1 combinations of xj and
xj . For each such combination, E is a linear function of λ and V is
a quadratic function of λ. Similarly to the case of V (E), we can find
the linear dependence of λ on E and hence, the quadratic dependence
of V on E. The actual dependence V (E) is thus the maximum of the
corresponding 2n−1 · n = O(2n) quadratic dependences. So, in general,
we can find the dependence of V (E) on E in O(2n) steps.

Computing V (E): cases of narrow and almost narrow intervals. From
the above properties of the maximizing sequence xi, it follows that
xi = xi when xi ≤ λ, xi = xi when λ ≤ xi, and for the remaining case
when xi < λ < xi, we can have 3 possibilities: xi = xi, xi = xi, and
xi = λ (where the equality xi = λ is possible for at most one value i).

So, once we fix the zone that contains λ, we can uniquely determine
the values xi for all the intervals xi except for the intervals that contain
this zone. In the case of almost narrow intervals, for each zone, there
are at most K such intervals, so we have ≤ K · 2K = O(1) possible
assignments. Thus, we can describe V (E) as the maximum of O(n)
dependences corresponding to all these assignments.

Similarly to the case of V , computing all the coefficients of all these
O(n) dependences requires O(n · log(n)) time.

Computing V (E): subset property case. In the subset property case,
we can sort the intervals xi = [xi, xi] in lexicographic order so that
both their lower endpoints xi and upper endpoints xi become sorted:
x1 ≤ x2 ≤ . . . and x1 ≤ x2 ≤ . . .

Let us first show that, for every E, we can choose a monotonic
maximizing sequence xi. Indeed, if we have a maximizing sequence
(x1, . . . , xn) in which xi > xj for some i < j, then we have xj < xi ≤ xi

and xj ≥ xj ≥ xi hence xj ∈ xi, and similarly, xi ∈ xj . Thus, we
can swap the values xi and xj (i.e., take xnew

i = xj and xnew
j = xi)

31

and get a new sequence with exactly the same values of E, M , and V .
After repeating such a swap as many times as necessary, we will get
a maximizing sequence that is monotonic in the sense that x1 ≤ x2 ≤
. . . ≤ xn.

In view of the already proven properties of maximizing sequences,
and in view of the fact that the sequences xi and xi are also monotonic,
we conclude that the maximizing sequence has the following form:
(x1, . . . , xk1

, λ, xk+1, . . . , xn).
For each zone λ ∈ [x(k), x(k+1)], we thus get E as a linear function of

λ and the corresponding value V as an explicit quadratic function of λ.
So, we can get the coefficients of the quadratic expression that describes
the dependence of V (E) on E for all E from the corresponding interval

[E′
k, E

′
k+1], where E′

k
def=

k∑
i=1

xi +
n∑

j=k+1
xj .

Similar to the case of V , we can thus determine the piece-wise
quadratic dependence of V (E) on E in O(n · log(n)) steps.

5. Additional Issues

On-line data processing. In the above text, we implicitly assumed that
before we start computing the statistics, we have all the measurement
results. In real life, we often continue measurements after we started
the computations. Traditional estimates for mean and variance can be
easily modified with the arrival of the new measurement result xn+1:
E′ = (n ·E +xn+1)/(n+1) and V ′ = M ′− (E′)2, where M ′ = (n ·M +
x2

n+1)/(n + 1) and M = V + E2. For the interval mean, we can have a
similar adjustment. However, for other statistics, the above algorithms
for processing interval data require that we start computation from
scratch. Is it possible to modify these algorithms to adjust them to on-
line data processing? The only statistic for which such an adjustment
is known is the variance, for which an algorithm proposed in [25, 49]
requires only O(n) steps to incorporate a new interval data point.

In this algorithm, we store the sorting corresponding to the zones
and we store auxiliary results corresponding to each zone (finitely many
results for each zone). So, if only d out of n intervals are non-degenerate,
we only need O(d) steps to incorporate a new data point.

Fuzzy data. Often, in addition to (or instead of) the guaranteed
bounds, an expert can provide bounds that contain xi with a certain
degree of confidence. Often, we know several such bounding intervals
corresponding to different degrees of confidence. Such a nested family of

32

intervals is also called a fuzzy set, because it turns out to be equivalent
to a more traditional definition of fuzzy set [32, 33] (if a traditional
fuzzy set is given, then different intervals from the nested family can
be viewed as α-cuts corresponding to different levels of uncertainty α).

To provide statistical analysis of fuzzy-valued data, we can there-
fore, for each level α, apply the above interval-valued techniques to the
corresponding α-cuts [29, 34].

Can we detect when the algorithms designed for the several MI case are
applicable? For the several MI case, we know how many MIs there
are and which measurements are made with which MI. In other words,
the measurement results are labeled by the corresponding MI, and this
labeling is used in the algorithms.

Sometimes, the intervals come not from measurements but, e.g.,
from experts. In some such cases, we can still divide the resulting
intervals into a small number of sub-families each of which has a subset
property. In such cases, instead of the time-consuming general-case
algorithms, we can use more efficient algorithms designed for the case
of several MIs.

To be able to apply these efficient algorithms, we must be able, given
a family of intervals and a small integer m, to check whether this family
can be subdivided into m families that have the subset property.

For m = 2, we can check whether this subdivision is possible as
follows. Let x1, . . . ,xn be the intervals that we want to subdivide. We
will analyze these intervals one by one and, in the process of analyzing,
assign each interval to one of the two families.

Without losing generality, we assign the first interval x1 to Family 1.
When intervals x1, . . . ,xk are already assigned to different families, we
check whether the next interval xk+1 is in subset relation with the
already assigned intervals x1, . . . ,xk. If xk+1 is in subset relation with
an interval from the first family and with an interval from the second
family, then the subdivision into 2 families is impossible, so we stop.
Otherwise, if xk+1 is in subset relation with one of the intervals assigned
to the first family, we assign it to the second family, else we assign it to
the first family. If the algorithm did not stop, this means that we have
the desired subdivision, so we can apply the algorithms developed for
the case of several MIs.

For m > 2, checking may not be easy. Indeed, we can construct a
graph in which vertices are intervals, and vertices are connected if they
are in a subset relation. Our objective is to assign a class to each vertex
so that connected vertices cannot be of the same class. This is exactly
the coloring problem that is known to be NP-hard [12].

33

Parallelization. In the general case, the problem of computing the
range C of a statistic C on interval data xi requires too much com-
putation time. One way to speed up computations is to use parallel
computations.

If we have a potentially unlimited number of parallel processors,
then, for the mean, the addition can be done in time O(log(n)) [17]. In
O(n·log(n)) algorithms for computing V and V , we can perform sorting
in time O(log(n)), then compute Vk for each zone in parallel, and find
the largest of the n resulting values Vk in parallel (in time O(log(n))).
The sum that constitutes the variance can also be computed in parallel
in time O(log(n)), so overall, we need O(log(n)) time.

Similarly, we can transform polynomial algorithms for computing
the bounds for covariance, outlier statistics (L, U , and R), and moments
into O(log(n)) parallel algorithms.

In the general case, to find V and other difficult-to-compute bounds,
we must compute the largest of the N

def= 2n values corresponding to 2n

possible combinations of xi and xi. This maximum can be computed
in time O(log(N)) = O(n). This does not mean, of course, that we can
always physically compute V in linear time: communication time grows
exponentially with n; see, e.g., [31].

It is desirable to also analyze the case when we have a limited number
of processors p ¿ n.

Quantum algorithms. Another way to speed up computations is to use
quantum computing. In [29, 21], we describe how quantum algorithms
can speed up the computation of C.

Acknowledgements

This work was supported in part by NASA under cooperative agree-
ment NCC5-209, by the Future Aerospace Science and Technology
Program (FAST) Center for Structural Integrity of Aerospace Systems,
effort sponsored by the Air Force Office of Scientific Research, Air Force
Materiel Command, USAF, under grant F49620-00-1-0365, by NSF
grants EAR-0112968, EAR-0225670, and EIA-0321328, by the Army
Research Laboratories grant DATM-05-02-C-0046, and by a research
grant from Sandia National Laboratories as part of the Department of
Energy Accelerated Strategic Computing Initiative (ASCI).

The authors are greatly thankful to all the participants of the
International Workshop on Reliable Engineering Computing REC’04
(Savannah, Georgia, September 15–17, 2004) for valuable comments,
and to the anonymous referees for their very useful suggestions.

34

References

1. J. Beck, V. Kreinovich, and B. Wu, Interval-Valued and Fuzzy-Valued Random
Variables: From Computing Sample Variances to Computing Sample Covari-
ances, In: M. Lopez, M. A. Gil, P. Grzegorzewski, O. Hrynewicz, and J. Lawry,
editor, Soft Methodology and Random Information Systems, Springer-Verlag,
Berlin-Heidelberg, 2004, pp. 85–92.

2. D. Berleant, Automatically verified arithmetic with both intervals and proba-
bility density functions, Interval Computations, 1993, (2):48–70.

3. D. Berleant, Automatically verified arithmetic on probability distributions and
intervals, In: R. B. Kearfott and V. Kreinovich, editors, Applications of Interval
Computations, Kluwer, Dordrecht, 1996.

4. D. Berleant and C. Goodman-Strauss, Bounding the results of arithmetic op-
erations on random variables of unknown dependency using intervals, Reliable
Computing, 1998, 4(2):147–165.

5. D. Berleant, L. Xie, and J. Zhang, Statool: A Tool for Distribution Enve-
lope Determination (DEnv), an Interval-Based Algorithm for Arithmetic on
Random Variables, Reliable Computing, 2003, 9(2):91–108.

6. Th. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, MIT Press, Cambridge, MA, 2001.

7. S. Ferson, RAMAS Risk Calc 4.0: Risk Assessment with Uncertain Numbers,
CRC Press, Boca Raton, Florida, 2002.

8. S. Ferson, L. Ginzburg, V. Kreinovich, and M. Aviles, Exact Bounds on Sample
Variance of Interval Data, Extended Abstracts of the 2002 SIAM Workshop on
Validated Computing, Toronto, Canada, 2002, pp. 67–69

9. S. Ferson, L. Ginzburg, V. Kreinovich, L. Longpré, and M. Aviles, Exact
Bounds on Finite Populations of Interval Data, Reliable Computing, 2005,
11(3):207–233.

10. S. Ferson, L. Ginzburg, V. Kreinovich, L. Longpré, and M. Aviles, Computing
Variance for Interval Data is NP-Hard, ACM SIGACT News, 2002, 33(2):108–
118.

11. S. Ferson, D. Myers, and D. Berleant, Distribution-free risk analysis: I. Range,
mean, and variance, Applied Biomathematics, Technical Report, 2001.

12. M. E. Garey and D. S. Johnson, Computers and intractability: a guide to the
theory of NP-completeness, Freeman, San Francisco, 1979.

13. D. J. H. Garling, A book review, American Mathematical Monthly, 2005,
112(6):575–579.

14. L. Granvilliers, V. Kreinovich, and N. Müller, Novel Approaches to Numerical
Software with Result Verification, In: R. Alt, A. Frommer, R. B. Kearfott, and
W. Luther (eds.), Numerical Software with Result Verification, (International
Dagstuhl Seminar, Dagstuhl Castle, Germany, January 19–24, 2003), Springer
Lectures Notes in Computer Science, 2004, Vol. 2991, pp. 274–305.

15. G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge University
Press, 1988.

16. P. J. Huber, Robust statistics, Wiley, New York, 2004.
17. J. Jájá, An Introduction to Parallel Algorithms, Addison-Wesley, Reading, MA,

1992.
18. V. Kreinovich, Probabilities, Intervals, What Next? Optimization Problems

Related to Extension of Interval Computations to Situations with Par-
tial Information about Probabilities, Journal of Global Optimization, 2004,
29(3):265–280.

35

19. V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational complexity
and feasibility of data processing and interval computations, Kluwer, Dordrecht,
1997.

20. V. Kreinovich and L. Longpré, Computational complexity and feasibility of
data processing and interval computations, with extension to cases when we
have partial information about probabilities, In: V. Brattka, M. Schroeder,
K. Weihrauch, and N. Zhong, editors, Proc. Conf. on Computability and Com-
plexity in Analysis CCA’2003, Cincinnati, Ohio, USA, August 28–30, 2003,
pp. 19–54.

21. V. Kreinovich and L. Longpré, Fast Quantum Algorithms for Handling
Probabilistic and Interval Uncertainty, Mathematical Logic Quarterly, 2004,
50(4/5):507–518.

22. V. Kreinovich, L. Longpré, S. Ferson, and L. Ginzburg, Computing Higher
Central Moments for Interval Data, University of Texas at El Paso, De-
partment of Computer Science, Technical Report UTEP-CS-03-14b, 2004,
http://www.cs.utep.edu/vladik/2003/tr03-14b.pdf

23. V. Kreinovich, L. Longpré, P. Patangay, S. Ferson, and L. Ginzburg, Outlier
Detection Under Interval Uncertainty: Algorithmic Solvability and Computa-
tional Complexity, In: I. Lirkov, S. Margenov, J. Wasniewski, and P. Yalamov,
editors, Large-Scale Scientific Computing, Proceedings of the 4-th International
Conference LSSC’2003, Sozopol, Bulgaria, June 4–8, 2003, Springer Lecture
Notes in Computer Science, 2004, Vol. 2907, pp. 238–245

24. V. Kreinovich, L. Longpré, P. Patangay, S. Ferson, and L. Ginzburg, Outlier
Detection Under Interval Uncertainty: Algorithmic Solvability and Computa-
tional Complexity, Reliable Computing, 2005, 11(1):59–76.

25. V. Kreinovich, H. T. Nguyen, and B. Wu, On-Line Algorithms for Computing
Mean and Variance of Interval Data, and Their Use in Intelligent Systems,
Information Sciences (in press).

26. V. Kreinovich, P. Patangay, L. Longpré, S. A. Starks, C. Campos, S. Ferson,
and L. Ginzburg, Outlier Detection Under Interval and Fuzzy Uncertainty: Al-
gorithmic Solvability and Computational Complexity, Proceedings of the 22nd
International Conference of the North American Fuzzy Information Processing
Society NAFIPS’2003, Chicago, Illinois, July 24–26, 2003, pp. 401–406.

27. V. P. Kuznetsov, Interval Statistical Models, Radio i Svyaz, Moscow, 1991 (in
Russian).

28. W. A. Lodwick and K. D. Jamison, Estimating and Validating the Cumulative
Distribution of a Function of Random Variables: Toward the Development of
Distribution Arithmetic, Reliable Computing, 2003, 9(2):127–141.

29. M. Martinez, L. Longpré, V. Kreinovich, S. A. Starks, and H. T. Nguyen, Fast
Quantum Algorithms for Handling Probabilistic, Interval, and Fuzzy Uncer-
tainty, Proceedings of the 22nd International Conference of the North American
Fuzzy Information Processing Society NAFIPS’2003, Chicago, Illinois, July
24–26, 2003, pp. 395–400.

30. R. E. Moore and W. A. Lodwick, Interval Analysis and Fuzzy Set Theory,
Fuzzy Sets and Systems, 2003, 135(1):5–9.

31. D. Morgenstein and V. Kreinovich, Which algorithms are feasible and which are
not depends on the geometry of space-time, Geombinatorics, 1995, 4(3):80–97.

32. H. T. Nguyen and V. Kreinovich, Nested Intervals and Sets: Concepts, Rela-
tions to Fuzzy Sets, and Applications, In: R. B. Kearfott and V. Kreinovich,
editors, Applications of Interval Computations, Kluwer, Dordrecht, 1996,
pp. 245–290

36

33. H. T. Nguyen and E. A. Walker, First Course in Fuzzy Logic, CRC Press, Boca
Raton, Florida, 1999.

34. H. T. Nguyen, T. Wang, and V. Kreinovich, Towards Foundations of Processing
Imprecise Data: From Traditional Statistical Techniques of Processing Crisp
Data to Statistical Processing of Fuzzy Data, In: Y. Liu, G. Chen, M. Ying,
and K.-Y. Cai, editors, Proceedings of the International Conference on Fuzzy
Information Processing: Theories and Applications FIP’2003, Beijing, China,
March 1–4, 2003, Vol. II, pp. 895–900.

35. H. T. Nguyen, B. Wu, and V. Kreinovich, Shadows of Fuzzy Sets – A Natural
Approach Towards Describing 2-D and Multi-D Fuzzy Uncertainty in Linguistic
Terms, Proc. 9th IEEE Int’l Conference on Fuzzy Systems FUZZ-IEEE’2000,
San Antonio, Texas, May 7–10, 2000, Vol. 1, pp. 340–345.

36. P. Nivlet, F. Fournier, and J. Royer, A new methodology to account for uncer-
tainties in 4-D seismic interpretation, Proc. 71st Annual Int’l Meeting of Soc.
of Exploratory Geophysics SEG’2001, San Antonio, TX, September 9–14, 2001,
1644–1647.

37. P. Nivlet, F. Fournier, and J. Royer, Propagating interval uncertainties in su-
pervised pattern recognition for reservoir characterization, Proc. 2001 Society
of Petroleum Engineers Annual Conf. SPE’2001, New Orleans, LA, September
30–October 3, 2001, paper SPE-71327.

38. R. Osegueda, V. Kreinovich, L. Potluri, R. Aló, Non-Destructive Testing of
Aerospace Structures: Granularity and Data Mining Approach, Proc. FUZZ-
IEEE’2002, Honolulu, HI, May 12–17, 2002, Vol. 1, pp. 685–689

39. S. Rabinovich, Measurement Errors: Theory and Practice, American Institute
of Physics, New York, 1993.

40. H. Regan, S. Ferson, and D. Berleant, Equivalence of five methods for bounding
uncertainty, Journal of Approximate Reasoning, 2004, 36(1):1–30.

41. N. C. Rowe, Absolute bounds on the mean and standard deviation of trans-
formed data for constant-sign-derivative transformations, SIAM Journal of
Scientific Statistical Computing, 1988, 9:1098–1113.

42. I. Shmulevich and W. Zhang, Binary analysis and optimization-based normal-
ization of gene expression data, Bioinformatics, 2002, 18(4):555–565.

43. S. A. Starks, V. Kreinovich, L. Longpre, M. Ceberio, G. Xiang, R. Araiza,
J. Beck, R. Kandathi, A. Nayak, and R. Torres, “Towards combining proba-
bilistic and interval uncertainty in engineering calculations”, Proceedings of the
Workshop on Reliable Engineering Computing, Savannah, Georgia, September
15–17, 2004, pp. 193–213.

44. H. M. Wadsworth, Jr., editor, Handbook of statistical methods for engineers
and scientists, McGraw-Hill Publishing Co., N.Y., 1990.

45. P. Walley, Statistical Reasoning with Imprecise Probabilities, Chapman & Hall,
N.Y., 1991.

46. G. W. Walster, Philosophy and practicalities of interval arithmetic, In:
Reliability in Computing, Academic Press, N.Y., 1988, pp. 309–323.

47. G. W. Walster and V. Kreinovich, For unknown-but-bounded errors, interval
estimates are often better than averaging, ACM SIGNUM Newsletter, 1996,
31(2)6–19.

48. R. Williamson and T. Downs, Probabilistic arithmetic I: numerical methods
for calculating convolutions and dependency bounds, International Journal of
Approximate Reasoning, 1990, 4:89–158.

49. B. Wu, H. T. Nguyen, and V. Kreinovich, Real-Time Algorithms for Statisti-
cal Analysis of Interval Data, Proceedings of the International Conference on

37

Information Technology InTech’03, Chiang Mai, Thailand, December 17–19,
2003, pp. 483–490.

50. G. Xiang, Fast algorithm for computing the upper endpoint of sample vari-
ance for interval data: case of sufficiently accurate measurements, Reliable
Computing (in press).

51. G. Xiang, S. A. Starks, V. Kreinovich, and L. Longpré, New Algorithms for
Statistical Analysis of Interval Data, Proceedings of the Workshop on State-
of-the-Art in Scientific Computing PARA’04, Lyngby, Denmark, June 20–23,
2004, Vol. 1, pp. 123–129.

52. W. Zhang, I. Shmulevich, and J. Astola, Microarray Quality Control, Wiley,
Hoboken, New Jersey, 2004.

	Towards Combining Probabilistic and Interval Uncertainty in Engineering Calculations: Algorithms for Computing Statistics under Interval Uncertainty, and Their Computational Complexity
	Recommended Citation
	Authors

	tmp.1287163961.pdf.bL5h9

