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Abstract. We present an error calculus to support a novel specificatiecha-
nism for sound and/or complete safety properties that atetgiven by users.
With such specifications, our calculus can form a founddtoboth proving pro-
gram safety and/or discovering real bugs. The basis of doules is an algebra
with a lattice domainof four abstract statuses (namelgireachability validity,
must-errorandmay-erroi) on possible program states dodir operatorsfor this
domain to calculate suitable program status. We showgrowaf searcranderror
localizationcan be supported by our calculus. Our calculus can also badxd
to separation logiavith support for user-defined predicates and lemmas. We have
implemented our calculus in an automated verification toopbinter-based pro-
grams. Initial experiments have confirmed that it can a&htke dual objectives,
namely of safety proving and bug finding, with modest ovedsea

1 Introduction

Traditionally, program specifications are given primafily safety scenarios and are
used to describe the states under which program executiatdwacur safely. When
successfully verified, such specifications are said tsdandfor their specified input
scenarios. That is, a specification is said tesbandif it has identified input scenarios
(or preconditions) that are guaranteed to lead to safe pnogixecution. However, we
are also interested itompletespecifications that will additionally verify the remaining
input scenarios (that lead to execution failure) as invahids. Informally, a specifica-
tion is said to becompleteif it has unambiguously identified both input scenarios that
lead to safe code execution, and input scenarios that lezoti® execution failure.

Such complete specifications for programs are helpful formsasons. Firstly, they
can be used to specify precisely (through weakest predondjitwhen inputs can be
handled correctly by programs. Conversely, we are alsotalgescisely identify when
programs would fail to work correctly (or safely). Secondhe specifications on er-
roneous inputs can be used to help pinpoint actual softtimagsin programs as they
could be used to precisely indicate where each given ermirsc

Though useful, the task of capturing complete specificatisrvery challenging,
and may not always be possible since the input scenariog wideh failures could

1 While it may be desirable to have weakest precondition thatantee safety or correctness, we
also allow flexibility for users to specify a wider range oésfications that include those with
either stronger preconditions and/or weaker postconditibhough weaker specifications give
fewer guarantees, they are more easily verified and may hegerto ensure reliability.



occur may not be unambiguously specified and verified. Ingager, we shall provide
the basic mechanisms that can help specify complete spiufis, where possible.
To achieve this goal, we proposelattice domainof four abstract statuses (namely
unreachability validity, must-errorandmay-errol) and make use of the validity (must-
error) status for specifying safe (unsafe, resp.) exenwgi@narios. Furthermore, when
the complete requirements are hard (orimpossible) to §pea have also provided ap-
proximation mechanisms that can help us speg#gr-completspecifications through
the use ofnay-erroras opposed tmust-errorclassification in weakened postcondition.

Our motivation for developing complete specifications foograms was further
heightened by the recent VSTTE competition [1] that was ireovember 2011. Out
of five problems that the participants were asked to verifysfifety and correctness,
there were two problems (problem 4 and problem 5) where nargtex specifications
that satisfycompleteneswere requested. As complete specifications must additional
address erroneous scenarios, we have recently develomedm@eahensive verification
framework that could just as easily deal with input scersatiat invoke errors, as it
would with input scenarios that led to safe program exeoutio

At the heart of our proposal is a calculus that can uniformlgcify both safe and
unsafe execution scenarios. Our calculus wseslgebrawith the lattice domain of
four-point program statuses and four binary operations twese program statuses.
The program statuses can be used for each program statelsant aecorate more
precisely the post-conditions of program specificationsdpport modular verification,
we provide our calculus wittwo entailment procedurgene for pre-condition checks
at method calls, and another for post-condition checks)aagrdt ofsound structural
rules Furthermore, this extension also helps to classify (intshor may) as well as
to localize errors when the verification fails. This enatdesverifier to work both as a
safety and correctness proving tool and as a bug finding tool.

The paper makes the following main contributions

a lattice domain with four distinct statuses on possiblgypm states.
a specification mechanism to support both sound and comleperties.
a calculus (for the lattice) to reason about safety and mmasterrors (Sec. 3)
e support for separation logic with user-defined predicateslemmas (Sec. 4).
e support for error calculus within a modular verificationrfrawork (Sec. 5).
an extension to support error localization (Sec. 4.3).
We also demonstrate the calculus capability of provingtgatad detecting bugs with
modest overheads through an implementation and two expatiin Sec. 6. Next sec-
tion presents the algebra and new specification mechantisisolillustrates the use of
calculus through examples on modular verification and éoalization.

2 Motivation and Overview

2.1 An Algebra on Status of Program States

The basis of our proposal is the identification of an algebfa &) in which £ is a
lattice domain with four points used to capture the statusash program state, while
F is a set of four binary operators (megl(join (L), compose®) and search4)) to
combine the statuses of program states. The four pointatbatsed for program status
are as follows:
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Fig. 1. An Algebra on Status of Program States.

— 1:denotes an unreachable state.

— /: denotes a valid program state from normal program exetutio

— U: denotes a state that corresponds to a must (or definite)sareaario.

— T:denotes a state that corresponds to a may error or an unkstamario. That is,
it could either bel, or+/ or U.

Note that the must error statuS)(subsumes the unreachahlestatus. The may er-
ror status ") comes from imprecision or from dependency on some unknapati In
our system, potential sources of imprecision include imiseespecifications, imprecise
invariants of complex data structures and incomplete dos@ilthough we could sep-
arately identify those kinds of imprecision, for simpliciive uniformly specify them
with the T status value. In the implementation, we distinguish theraugh different
messages with status (see Sec. 4.3).

Let < be a partial ordering relation on status wherehy< 7 means status;
is more precise than status. The LI and operators denote the least upper bound
and the greatest lower bound, respectively, over the éattamain. The domais and
two operations1, U form a complete lattic® = (£, <,u, M, L, T) organized as shown
in Fig. 1la. This lattice forms a core part of the underlyingtedct semantics for our
system. Furthermorel, is zeroelement ofw and® operations; it means® 1 = L
and L ® x = 1 for any values. The remaining calculations of and® are illustrated
in Fig. 1b. The® operator is meant to support conjunctive proving, and $egréor
failuresfrom U and T status . Theb operator is meant to suppgtoof search and
searches fox/ status to succeed in proving. Thus the priority order of¢theperator
is U, T and lastly,/, and the priority order of the> operator is\/, T and lastlys.
Contrast this with thel operator which doesn'’t have any priority betwagand. So
it would simply yield T when the two statuses are combined together.

2.2 Mechanism for Sound and Complete Specifications

To illustrate our new specification mechanism, we considerethod that returns the
data which its input points to, as shown below

int get_data(node x)
case{ x#null — requires x—node(d, p) ensures (res=d) /;
x=null — ensures (true) U; }
whereres is a reserved identifier denoting the method’s result andi#te structure
node is declared aslatanode { int val; node next }.
In our system, each method is specified by pre- and post-ttonsl{through sepa-
ration logic formulas), denoted ligquires andensures keyword, respectively. In the



specification above, we also use structured specificat@nstere disjoint conditions

are expressed using case construct for expressing botld $aith x#nu11 condition)

and complete (withk=nu11 condition) requirements, as can be seen for the above speci-
fication ofget_data (with the/ andU statuses in postconditions, resp.). In comparison,
if we are only interested in sound specification, we coultijise the following instead:

int get_data(node x)
requires x—node(d, p) ensures (res=d) \/;

Occasionally, it may be possible to automatically genecataplete specification by
negating the input conditions of sound specification. Havethis may not always
be feasible. Firstly, negation computation may be hard tplément in complex do-
mains. For example, it is unclear how to compute negatiomparation logic (which
our system relies on). Secondly, not all methods have gleklineated boundary be-
tween sound and complete conditions, as an example corbilerteractive schedule
(ischedule) method in Fig. 2. Withprio=0 condition, this method’s status depends
on the user input which is unknown at verification time. THere, there exists a gap
between soundness and completeness that cannot be demineyl through the nega-
tion operation. For this example, we can instead providea-completespecification,
as shown in the bottom right of Fig. 2. Informally, a specfiiga is said to benear-
completdf it captures all possible input conditions but contairthei T program status
or an ambiguous disjunction, comprising of bgthandU statuses, in one or more of
its postconditions.

1. int ischedule(int prio){ Sound Specificatian

2. if (prio>0)/*runit* return 0; l;. int ischedule(int prio)

3. elseif (prio<0) abort(); lo. requires prio>0 ensures (res=0)./;
4. else{ Near-Complete Specification

5. printf("Allow this task to run? y or n”) 5. int ischedule(int prio)

6. char c=getc(); ls. case { prio>0 — ensures (res=0)./;
7. if (¢ = y')Irunit*/ return 0; ls. prio<0 — ensures (true)U;

8. else abort(); }} lg. prio=0 — ensures (true)T; }

Fig. 2. Code and Specification édcheduleMethod.

We note that our approach for proving the completeness @frpm is based on the
assumption that the user-supplied specification is compitetmely that it covers all
values of the input domain and that each error program s#atetds an input scenario
where no valid output state is possible. Checking (or evéariimg) the completeness
of specifications is a challenging research direction thatccbe investigated in future.

2.3 Essence of Error Calculus

To highlight how our calculus can be used to verify progracmsider the method
foo in Fig. 3. We shall verify the code afoo in a forward manner, and would com-
pute a program state for each of its program point. Each progtate®, is a for-
mula on the state of variables and heap. Each program stateecaombined with
a status and is represented (@, 7) wherer denotes a status value from our lattice.



As part of compositional verification, the pre-

1 int foo(int x, inty) condition of each callee is checked against the

g Z;ZE;::S(:i(;O)\/‘{ current calling context and the postcondition

4 if (x<0) return s JeL %) is checked at the exit of the method's body.
' In the example, we can identify four program

2 eiieé,x) return 1; /+L2x/ states of interests that correspond to four exits
7 else if (y<O0) return —1; /+L3x/ (L1, L2, L3 and L4) of the method. The fol-

8 elsereturny; /+L4x/ lowing illustrates how the statuses are decided
9 1} at exits through proof obligations discharged

for postcondition checking with the help of the
entailment procedutes that conforms to our
error calculus. Given a program stateand a
post-conditionr,., we can determine the stata$or such checking with the help of the
following judgmentr, ¢ 7. ~ s. The resulting statuses generated by the entailment
procedure are as follows:

Fig. 3. Code offoo Method.

L1:2>20 A x<0Ares=—1 Fores>0~ L
L2:2>0 A =(z<0) Ay>1 Ares=1 Fores>0~ 4/
L3:2>0 A =(z<0) A =(y>1) Ay<OAres=—1 Fcres>0~ U
L4 : >0 A =(z<0) A =(y>1) A =(y<0) Ares=y Fc res>0~ T

Each of the above proofs yields a status based on the outcbitseemtailment. This
status can be added to program state for each of these prqupits. At L1, the
antecedent is unsatisfiable which corresponds to an urabkxhcenario (either infi-
nite loop? or dead code) that can be captured (ffiytlse, 1) with false denoting
contradiction at that program point. At L2, the consequeart be directly proven
using the antecedent. This yields a valid program state daatbe represented by
(x>0A=(z<0)Ay>1Ares=1,/). This program state indicates that the method will
exit safely at this location witlres=1. At L3, the negation of the consequent can be
proven from its antecedent. The program state at L3 can b@uetmt to be a must er-
ror asz>0A—(z<0)Ay<0, V). The sub-formula on resuttes=—1 is dropped since
we have a must error outcome where the output state is untergorAt L4, the an-
tecedent can neither prove the consequent nor its negatence, we would need to
classify this program point as a may error whose stateIs0A—(z<0) A =(y>1) A
—(y<0) A res=y, T). A formula on resultres=y is still captured since the status
includes possibly safe output.
When an entailment checking fails, an error messages isrgieagewith relevant

information to help debugging process. For example, ther enessage at; is:

Verify methodfoo. Proving postcondition fails:

Failure (must):

(>0,2) A (=(2<0),5) A (=(y>1),6) A (y<0,7) A (res=—1,7) Fc (res>0, 3)
where irrelevant formulas are sliced away and failures acalized by pairs of the
relevant failing formulas and their corresponding statethoede or specification line
numbers.

2 Although we provide a mechanism to specify infinite loop,yimg termination is beyond the
scope of this paper.



3 Assertion Language

In this section, we introduce the concepts and terminolbgy are used to describe
our calculus throughout the paper. Our formalism includésictive predicates in sep-
aration logic which are written in an assertion language eWtend this language with
program statusr) to support error calculus with different program states.

pred::= p(v*) =@ [inv 7] a = v1=vz [v=null |a<0|a=0]:--
U o= {(P1,711); . (PiyTi)} a ==k|kxv|al+az
& ==\ (Fw-kAT)" L ::=lemmall] p(v*)Ax >t Jw™-(kAT)[T]
K =emp | v—=c(v™) | p(v*) | K1 * K2 X u=— | < | ¢
T on=a|oa| mAT Tu=1|0|/I|T
wherep/l is a predicate/lemma name, w are variable names
c is a data type namek is an integer or a float constant

Fig. 4. The Assertion Language

Separation logic can provide concise and precise notatmrspecifying pointer-
based programs and their data structures. We enhance tamtep logic fragment
presented in [2, 18]. Figure 4 describes our assertion kggEach data structure and
its properties can be defined by an inductive predipate, that consists of a nang a
main separation formulk& and an optional pure invariant formutathat must hold for
every predicate instance. The separation logic fornduia a disjunction of symbolic
heap. Each symbolic heap is a conjunction of a heap formwad a pure formula
. The pure part captures a rich constraint from the domaifyesburger arithmetic,
monadic set or polynomial real arithmetic. The heap pattiohes points-to predicate
—, spatial conjunction predicatefor combining two disjoint heap memory, and user-
defined predicates(vy, .., v,) t0o capture more complex data structures with selected
properties. For examples, with the simple data structuri declared in Sec. 2.2, we
define variants of list segment, as follows:

pred lseg(root,n,p) = (root=p An=0)
V 3d,q- (root—node(d, q)* 1seg(q,n—1,p)) invn>0

pred plseg(root,n,p) = 3d - (root—node(d,p) An=1Ad>0)
V 3d,q- (root—node(d, q)* plseg(q,n—1,p) Ad>0) invn>1

The predicataseg describes a list segment of nodes whose length is capturéueby
parametemn. Similarly, the predicat@lseg describes a list segment with only non-
negative integers.

Lemmas are used to relate data structures beyond theinakigiedicate definitions
[17]. A lemma specification consists of a hggd*), a guardr, a body¢ and a direc-
tion to apply (left—, right +— or both+«) that denotes a weakening, strengthening or
equivalence, respectively. For example, to illustratéghgeg(root, n, p) is an instance
of 1seg(root,n, p), we can use the following left (or weakening) coercion lemma

lemma w; plseg(root,n,p)An>0 —1seg(root,n,p)

4 A Calculus on Errors

In this section, we initially formalize the calculus withneuwithout heap) formulas.
The extension of the calculus to heap formulas will be preskim the next section.



4.1 The Entailment Procedures

In this subsection, we introduce two entailment procedtweslischarging the proof
obligations with support for the four-points status.

Entailment Procedure for Postconditions Checking. The basic machinery for the
judgmentr, F¢ 7. ~ s is captured by the following four rules. We use underlying
theorem solvers for answering sastifiability. Note thatsaT(7) denotes that is defi-
nitely unsatisfiable andsaT(7) denotes that is possibly satisfiable (as a complement
of unsatisfiability checking and due to its incompleteness)

[Ec-[BOTTOM]] [ECc—[0K]]
UNSAT(71) PSAT(m1) UNSAT(m A —7g)
m ey~ L m1 o ma~ y/
[EC-[MUST-ERROR]] [EC-[MAY-ERROR]|
PSAT(71) UNSAT(m1 A 72) PSAT(m1 A —72) PSAT(m1 A T2)
m ko ma~ 0 m o ma~ T

Two rules at the first line check the success of the entailmedtlassify it as unreach-
able (L) or valid (/) as usual (checkingnsaT(my A —72) is equivalent to checking
m — 7). Nexttwo rules at the second line check and classify the/imag error sce-
narios; in the first rule, a must error is identified when—- —. is provable: lastly,
due to the imprecision, entailments which has not been preedar are marked with
unknown status through the second rule. (In the last ructinditionpsaT(ry) is
discarded because it can be implied from two present camdifj

To illustrate this entailment procedure, let us consideostgondition checky >0,
under four different program states, as shown below.

r<—1Az=0t¢c >0~ L r<-1tc x>0~ 0
x>0 Fo x>0~/ true Fg x>0~ T
Entailment Procedure for Preconditions Checking.Furthermore, to support the check-

ing of preconditions from specifications with soundnesg@ntbmpleteness, we intro-
duce another entailment judgment of the formi-g 7. ~ s.

[EE—[BOTTOM]] [EE—[0K]] [EE—[MAY]]
UNSAT(71) PSAT(m1) UNSAT(m A —72) PSAT(m1 A —72)
mbg e~ L m FE e~/ mbgma~T

The status for this entailment is now limited to only thresgible values, namely, /
andT, without theU status, as illustrated below:

r<—1Az=0Fpg x>0~ L r<—1Fgpa>0~T
>0 Fg x>0~/ true Fp x>0~ T

Unlike the earlier entailment procedure, this new entailbies introduced & status
value wheréj was derived previously, since the precondition may be uageroximated.
We can recover from this lack of information by leveragingloa status from postcon-
ditions, where applicable. We defer formalization of theoweery to Sec. 6, we now
illustrate it through the check of the calling contextio<0, against the near-complete
specification of thaschedule procedure (presented in Fig. 2) as follows:



prio<OF case { prio>0 — ensures (res=0)./;
prio<0 — ensures (true)U;
prio=0 — ensures (true)T; }
~ (Ley)U (VRU) U (L’T) ~ LusuL
~ O
This compositional check is performed through two stepstlyj for each scenario (1)
the calling context is combined with the condition of cutrecenario; (2) unsatisfia-
bility check is performed by thle g procedure; and (3) the status from postcondition is
combined (byw). Secondly, those scenarios are joinedi(y

4.2 Structural Rules
We provide sound structural rules that would carry out thaiement proving process in

smaller entailments. These rules support error locatinaseparation entailment pro-
cedure and modular verification.

[SE—[u JOIN]] [SE-]¢ COMPOSE]]| [SE-[@ SEARCH]]
mbErT~T ThmT~T ThEmT~ T
o b T~ Ty ThE T~ Ty T Ty~ Ty

mVmo b~ Tty TmhE mAT ~ TIQTe T TV~ T1BT

These rules use the algebraic operations presented in Seim @ombine the results.
Note that}- is generic, and can bes or Fg. The first rule decomposes disjunction on
the antecedent, while the second rule decomposes comjarmtithe consequent. Both
these rules can be implemented without any loss of infolgnalfihe third rule performs
a search over a disjunction in the consequent. This seataimsa set of possible proofs
for the entailment. According to the operator, if at least on¢’ status is found in this
solution set, the entailment will succeed.

Theorem 1 (Soundness of the Structural Rules)Given an entailmentFms. (- is
either¢ or Fg). If the application of the structural rulese-|...]] on the given an-
tecedentr; and consequent; returns the result, then the application of thgc—|.. ]|
([EE-...]]) rules on the given antecedent and consequent; returns the same result
7, namelyr; F¢ mo ~ 7 (7 Fg ™ ~ 7, respectively).

The proof is by an induction on the structural rules—|...] and a case analysis on the
returned result. We present full proof of the theorem in the Appendix A. (drob
F¢) and Appendix B (proof fok ).

4.3 Error Localization Extension to Calculus

T[m] == L[0] | O[m] | /[m] | T[m] Ti[mi] © T2[ma] = (T1072)[M1oma]
m  x=bm | milms | mi®@ma|mi®me m o 0 =m
bm = m = w2 (valid) D o m =m

| 1 = T2 (must error) Lim] = L[]

| m1 = 72 (may error)
Fig. 5. Program State: Status and Message

To provide support for error localization, we must exteralfibur-point lattice with
messages that capture the reason for each success or fadartne left of Fig. 5).



StatusL does not carry any message which is denoted.bywhen faced with a
message with error fromm; Limo andm; ®ms, both of the two smaller messages (with
possible errors), denoted by; andm,, must be resolved, before the main message is
said to be resolved. When faced with a message with erroredfottm 11 ©mo, only
one of the messages with errors from eitheror ms needs to be resolved, before the
main message:; &ms is resolved. We may now modify the three operators and
@, to propagate messages capturing the localizations faesses and failures. Let us
denote this using a generic namdor three operators. We propagate every message,
where possible, as shown at the right of Fig. 5. In case empssagd) is generated,
we remove it from the main message as shown in the secondiathdutes. In case the
resulting status fronm o7 is L, we remove its messages, as shown in the last rule.

5 Error Calculus for Separation Logic

In this section, we show how our calculus can be used to stipperreasoning of
pointer-based programs via the fragment of separatiort Ipggsented in Sec.3. As
separation logic is a sub-structural logic, we have to astéar heap memory as a
resource. Thus, entailment in separation logic is typjcalipported with a frame infer-
ence capability [2, 18], similar to the following format:

431 F@Q*@g

whereby antecedeudt; entails®, with a residue frame captured ldy. Logically, the
above entailment is equivalentdq = @, +x$3 where®s may contain existential vari-
ables that have been instantiated and pure formula thatale@dy established ;.
We enhance the entailment procedure for separation logiwadnsteps. First, we
extend the entailment procedure above to support the estoulos by the following

judgment: By b By~ (B3, 7)

If the antecedent semantically entails the consequengrnteliment succeeds and we
expect status to be set to,/. Otherwise, the entailment fails and we expedb be
set to eithef or T. Second, this procedure is extended to support proof seethh
disjunctive formulas and lemma as elaborated in Sec. 5.1.

To illustrate the first step, let us examine four simple exi@s o better understand how
status outcome is being determined by the entailment puveaxf separation logic.

Entailment 1 Entailment 2
x—node(_, q) * g—node(_,null) ax—node(_, q) * g—node(_,null)
Fo z—node(-,p) Fo z—node(-,null)

~> (g—node(_,null) A p=q A z#null, /) ~> (g—node(_,null), V)

The entailment 1 yields a residges>node(_,null) and an instantiatiop=g from (im-
plicit) existential variable. It also carries a pure formula#null from the antecedent.
The entailment 2 yields a must failure, denoted by he consequent expeetsnull,
but the antecedent haé-node(_,null). This contradiction has causeddailure to
be raised. The residue captures the state when failure viestee.

Entailment 3

x—node(_, q) * g—node(_,null) k¢ z—node(3, p)
~» (g—node(-,null) A p=¢ A z#null, T)



The entailment 3 yields a may failure, denoted byThe consequent expects valie
to be proven as the data field of However, the antecedent has no information on that
field position. Hence, & failure was raised.

5.1 Separation Entailment with Proof Search

To support proof search the entailment procedure for séparbgic shall now be
presented as a judgment of the following (full) form:
@1 F 432 o (g/, T)
whereby? captures a set of residual program states with status isfilom We use a
set of program stated{ since our entailment procedure may have to conduct a proof
search with the help of lemmas. Furthermore, we must extendrdgailment procedure
in the following ways. First, rules are added to support psearch that adds to our set
of outcomes with the help of lemmas. Proof search is perfdiméhe order as follows:
— Status values of the proof search with lemmas are combinelebynion () op-

erator (where/ or T take priority overJ). Hence, if a proof search attempt fails,

we return aT (unknown) status, rather than(astatus since the latter prevents a

y/ success from being reported, even if they can be confirmediifiexent proof

search.

— If a complete set of lemmas have already been explored, thewsterror status is
returned.

Second, when our entailment procedure becomes stuck witimaempty conse-
quent, comprising some heap predicates, we shall firstigrohéhe a pure approxima-
tion of the consequent for both heap and pure data thraegte procedure [2]. For
examples:

XPure(x—mnode(.,_)) = x#null
XPure(lseg(root,n,p)) = root=pAn = 0V root#nullAn>0

where — denotes our over-approximation, and Iseq is a predicateatein Sec
3. We may then determine if there is any contradiction with @imtecedent to decide
whether must or may failure is going to be reported.

6 Modular Verification with Error Calculus

Code verification is typically formalised using Hoare teiplof the form{pre}c{post},
wherepre, postare the initial and final states of program cax@o incorporate status
into our program state, we shall use disjunctive prograne sthform\/(2, 7), giving
us a new Hoare triple of the forg\/ (@1, 1)} ¢ {\/(®1,71)}. To simplify our presenta-
tion, we shall us€®, 7) instead of the more general disjunctive program stit@, )
that was implemented. To provide sound and complete regeinés, we shall also use
structured specification from [9] of the form below:

Y ::=requires®Y | case{m=Y1;...;mn=Y,} | ensures (P)r

This extends the pre/post specifications to support cadgsismand staged ver-
ification. The verification requirement for methods can bleadéd by progressively
collecting the precondition in the structured specifiaatigrior to the verification of its
method body. As this process is straightforward, we omitails here.



The abstract semantics of each method call is captured tspésifications. We
encode its verification with the rulev—|jcaLr)]. Note that(t v)* and (ref t w)* de-
note pass-by-valuand pass-by-referencparameters, respectively. Each method call
mn(v*,u*) in our core language has only variables as arguments. Td #veineed for
argument substitutions, we assume that each method diémter@mPprogram has been
suitably renamed so that actual arguments are identichktéormal arguments.

[Fv—[cALL]|
to mn((t v)*, (reft u)*) Y {c} € Program
451 FY~ (@2, Tg)
&p = if 11=4/ then (F'*-®3) else P
{(P1, 7))} mn((tv)*, (reft u)*){(Pr, 1 ® T2)}

The proof obligations are generated and verified at the skbioa, provided that the
incoming status, is /. Furthermore, output states from proving entailment are-co
posed with status from pre-state at the third line. By deféuhe caller context contains
errors, such errors are simply propagated to the next ict&ruin a similar manner
as exceptions. However, unlike exceptions, error staes:iever caught. To generate
proof obligations for the extended specification, we preptmsextend the entailment
procedure to handle specification with separation formdias revised judgment has
the form®, - Y ~ (Pq, 12), whered, is the current statey is the specification and
(P2, 1) is the residual state and its status. Three syntax-diracied are extended.
They are used to prove each precondition and assume itsctegppostcondition for
the callee, as shown below:
[FV-[C-REQUIRES]|
@1 FE @M(@Q,Tg) (@2)FY’\/>(€I)3,73)
&1 Frequires @Y ~ (D3, 2R73)

[FV—[C—CASE]]| [FV—[C—ENSURES]]
AT EY;~ (P, 1)i=1...n @1 o true ~ (D, 71)
@ case{m=Y;}  ~ (\/®;,Ur;) &) F ensures (P2)m ~ (D1 * Po, 1 RT2)

7 Implementation and Experiments

We have implemented our error calculus inside a progranfieation system for sep-
aration logic, called HPEE. We use HPEE to verify C-based programs against user-
given specifications. The verification is performed compmsally for each method,
and loops are transformed to recursive methodsBH eventually translates separa-
tion logic proof obligations to pure formulae that can bectarged by different the-
orem provers. Our system uses Omega [20], MONA [15], Redidgapd Z3 [4] as
underlying theorem provers for answering the satisfighéitd simplification queries.
When program code is not successfully verified against pafetperties, HPEE not
only further classifies the failures into the must or may erbmt also localizes program
statements and specifications relevant to the errors.

7.1 Calculus Performance for Heap-Based Programs

To evaluate the overheads of error calculus, we executeslstem HPEE twice, once
with error calculus and a second timéthout, on a suite of bug-free pointer-based pro-
grams. We stress that although the sizes of these prograniaidy small, they deal



Programs (specified propg) Size |Prod| Time(sec.)| Invo.(#)
LOC|LOS| # || wo | w wo w
Linked list (size,interval)| 327| 50 | 26 || 0.44| 0.46|| 2738| 3202
Linked list (size,sets) | 157| 27 | 13 || 0.58| 0.6 || 1520| 1724
Sorted llist (size,sness,setsp8 | 11 | 6 || 0.46| 0.49|| 955 | 1060
Doubly llist (size,interval)| 186| 23 | 13 || 0.34| 0.34|| 1864 | 2083
Doubly llist (size,sets) | 91 | 13 0.5 | 0.5 || 1309| 1429
CompleteT (size,minheightl06| 12 0.87]0.94|| 2149| 2533
Heap trees (size,maxelem}i79| 13 1.9 | 1.91|| 4540| 4954
AVL (height, size) 313]| 27 3.44| 3.59|| 7863| 8585
AVL2 (height,size,bal) | 152| 37 2.83| 3 || 6959|7876
BST (size,height) 177 18 0.35| 0.37|| 1883 2192
BST (size,height,interval) 153 12 0.3 | 0.31}| 1581 1836
RBT (size,blackheight) | 508 | 48 3.32|3.38 1306916681
Bubble sort (size) 75| 9 0.21]0.21]| 1092| 1254
Quick sort (size, sets) | 82 | 10 0.27]0.28|| 778 | 832
Merge sort (size,sets) | 109| 11 0.47| 0.5 || 1035| 1074
Quick sort - queue (size) 127| 4 4.25]5.27(|1321821139
Total 2840 325|142(|20.5322.15|62553 78460

Table 1. Verification Performance witha) and without (vo) Error Calculus

NoARMDTOONG OO O

with fairly complex heap-based data structures, such &editists, doubly-linked lists
and AVL-trees. Therefore, these programs can be uskedlyevaluate the performance
of our calculus which has been embedded inside a separatiotmprover. The results
are summarized in Table 1. The first column contains the figh® verified programs
and their proven properties while the second, third andfoeolumns describe number
of lines of code (LOC), number of lines of specification (LGB) number of pro-
cedures in each program. On average, LOS is around 12% of IdGecifications
are complicated enough to demonstrate the performancer@fadeulus. The fifth and
sixth columns show the total verification time (in seconds}fie system HEE with-
out and with error calculus, respectively. The last two ouls capture the number of
satisfiability and simplification queries sent to the previer each experiment.

In Table 1, the results show that the total overhead intrediny our error calculus
is around 1.62 seconds (8%). This overhead is proportiorthEtnumber of extra satis-
fiability and simplification queries shown in the last twowmwmins. These experimental
results have shown that must/may error calculus with messegn be supported with
modest overhead.

7.2 Calculus Usability

In order to show the usability of our error calculus on bugdifig and localizing, we
evaluated our system on the Siemens test suite [12] of pmtagyrBhe test suite contains
programs with complex data structures (e.g. linked lisigugs), arrays and loops. Each
program in the suite has one non-faulty versian,and a number of seeded faulty ver-
sions (#Ver. column in Table 2) from to v,,. Each of these faulty versions has one or
more (seeded) faults. Total number of faults is capturedratt column. These faulty
versions are suitable for checking the ability of tools indfitg bugs and localizing
errors (as used in [14]).We provide specifications for eady@mam such that HEE



Programs |LOC|LOS|#Proc{#Ver.|#Faulf G |T*| T | LOE |time(s)
tcas 173| 48 9 41 | 48 |31/14| 3| 3.48| 3.06
schedule2 | 374|108/ 16 | 10| 10 |5/0|3| 3 | 8.25
schedulela | 412| 50| 18 | 10 | 16 |15/ 01| 4.38| 18.13
schedulelb | 413| 50 | 18 9 8 [710(|1|4.25|32.29
replace 564| 73| 21 | 24 | 24 |18/ 0|6|4.21|17.89
print tokens2| 570 64 | 19 | 10 | 10 |7|0|1]4.88| 20.42
print.tokens | 726| 87 | 18 7 9 (801|367 6.73
Total/(Average)3232 480| 119 | 111| 125 |91]14|16((3.98)(15.25

Table 2.Bugs finding and localizing with small programs in the Siem€ast Suite

(1) successfully verifies safety (sound or complete requémrs) in the non-faulty ver-
sions, and (2) captures potential must-bug errors that@rglementary to the safety
scenarios. We emphasize that these specifications wergnéésprimarily to verify
safety scenariosithoutconsidering the faulty versions of each program. Neveeti®l
HIPEE is able to utilize the same specification to find and explampresence of bugs
in the faulty versions, as elaborated below.

Table 2 shows the result of running our system on six progifaoms the suite. The
properties our tool proved include: (i) memory safety (dfif) size of data structures
(schedulela, schedulelb andschedule2 program), (iii) array-related propertiescés,
print_token, print_token2 andreplace program), (iv) functional arithmetic constraints
between input and output (all). We are interested in findinigadl the errors in the pro-
grams and classifying them as mu&)(disjunctive may *) or may (T) errors. For
instance, from 48 faults of prograteas, HIPEE was able to detect all the errors in the
program, and classified 31 of them as matérrors, 14 as disjunctive may () errors
and 3 as may[) errors. In summary, HEE detected 97% of real bugs including 73%,
11% and 13% o®, T* andT errors, respectively.

However, a few errors were not detected by our system,ve,gs Of schedule2
andv;, v, Of print_tokens2 were verified successfully by HEE. Upon careful exam-
ination, we found that the substituted statement.is semantically equivalent with
the non-faulty one ir,. Hence, we consider it as a bug in constructing the benchmark
rather than a real program bug. ~er v, andv,, there were omitted statements that are
related to the 1/0 systems. For instance, the followingestaint is omitted ir;:

if(ch == EOF) fprintf(stdout, "ltcan not get characte)’

This was not picked up by our system since the specificatiéfCabperations were not
being modelled. It would be interesting to see 1/0O operatioging modelled in future.

Our calculus further supports debugging in localizing thers. The LOE column
shows the average number of lines of program code and s@icificrelevant to the
errors for each program. We are able to provide concise @@t8-5 lines) error loca-
tions for all the bugs in the suite. Such short but accurataelipations make it easier
for users to comprehend the discovered errors. The lastroofinows the average time
which HIPEE took for verifying a faulty version of each program.

Purely from the system point of view and on the assumptioth spacifications

have already been provided|HEE took on average 16 seconds for safety proving, bug
finding and error localization on one faulty version of eaobgpam.



8 Related Work and Conclusion

The most relevant idea to our new specification mechaniswcispion safety in Spec#
language [16]. While Spec# usetherwisekeyword to explicate scenarios which def-
initely lead to exceptions, our proposal uses must erraresill to model erroneous
scenarios. Hence, it is possible to integrate our mechairitmmexception handling.
Moreover, our specification mechanism with the error calsiias well supported our
verifier not only in proving safety/functional correctnassl validating input parameter
(like Spec#) but also in finding and classifying bugs.

Static analysis based bug finding is not new and alreadysd%is8, 11, 13]. Recent
work in first order relational logic [6, 13] also addresses piioblem of finding bugs
in programs with pointers and linked data structures. Théhatkis based on under
approximation for loops and heap, thus it only finds the mustsh{J) in the code.
Similarly, Exorcise [11] is only capable of detecting musbes (U) based on evaluating
weakest liberal preconditionsince both consider only postcondition violation as a
must error, they do not report on the more common bugs thatwed¢o preconditions.
Our calculus is more expressive (with uncovering not onhgteuror but may error and
with proving safety) through the help of new specificatiorchranism on sound and/or
complete properties. Moreover, to handle pointer-basegrams, while the underlying
assumption in [13] is that most bugs can be found in the prograith small scope
(loop unrolling) and small heap size, we have also shown hemearor calculus can
handle data structures with aliasing through a simple natémn with separation logic.

As static analysis suffers from precision problem, theneeHzeen attempts to use
dynamic or hybrid analysis for safety proving and bugs figdiAn approach based
on dynamic analysis to infer likely invariants from coderglemented in [3]. Invari-
ants discovered can be used as method annotations or agsusnpthich can aid static
checkers in detecting bugs. This hybrid analysis uses a icatidn of under approxi-
mation and over approximation in different phases of amglymilarly, SMASH [10]
integrates safety with bug finding via a synergy betweencstatalysis and testing. In
our approach we do not rely on dynamic analysis as our comfaétce can symbol-
ically capture a richer set of possible program states. Gathad integrates both bug-
finding and safety proving within a single calculus, withputjudice to working with
dynamic-based analyses for unknown scenarios. Other piiteare based on dual static
analysis. An over-approximation for safety and another-approximation for bugs
finding was presented in [19] but it has only been applied toenical imperative pro-
grams. Another related approach using over- and undeleajppation was presented
in [5]. In [5], the may and must queries correspond to safety laveness properties.
Their conditions are computed with respect to a finite absta for each particular
property. In comparison, the conditions for our must/magreare captured in terms of
symbolic (infinite) domain that reliesnly on over-approximation mechanisms.
Conclusion In this paper, we described a novel specification mecharosivaith sound
and complete requirements via the calculus for must/may®rihe calculus also en-
ables bug finding (with safety checking) during modular fiestion. We can provide
fairly precise and concise failure localization from oulccdus. Using separation logic,
we can support sound and complete safety verification, irptheence of data struc-
tures with sophisticated invariants, via user-defined ipe¢ds and lemmas. We have



extended an automated tool for verifying complex data stines to use our error cal-
culus. Initial sets of experiments have shown that bug figp@ind safety checking via
the modular vefification can be supported with modest ovelhea
AcknowledgementThis work is being supported by MoE research grant 2009-T2-1
063. Florin Craciun is supported by the project POSDRU &&/60189 "Postdoctoral
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A Proof of the Soundness of the Structural Rules for-¢

We prove Theorem 1 inductively on the structural rules tigiau operator® operator
and operator.

A.1 JOIN (L) Operator

[EC—[u JOIN]]

m o m~ T

mo o T Ty
mVmbor~rTandri U =171

We prove Theorem 1 by the case analysis on the returned

Caser = L. Based on the lattice of program statdas,) » = L if , = L andm = L.
ltmeansr U = Lif m Fem~ Landm b m~ L.
Follow the entailment procedure:, we haver; ¢ 7~ L infers thatunsaT(m;)

with i € {1,2}.
We have:
UNSAT(71) A UNSAT(72)
= 7y A\ e
= —|(7T1 V 7T2)

= UNSAT(m1 V 72)

Again, follow the entailment procedure: we concluder; V o Fo m~ L
Thereforer; U = 7.

Caser = /. Based on the lattice of program status, ) = = +/ if

1. =yandr =,/ 0r
2. One of them isL and another ig/. We assume; = L andr, = /

Caser; = yand . =/
1 = +/, it meansr; k¢ 7 ~ /. Follow the entailment procedure:, we have:

PSAT(m1)A (1.a.1)
UNSAT(m1 A =) (1.a.2)

Similarly, with r», = /, we have:

PSAT(m2)A (1.a.3)
UNSAT(72 A =) (1.a.4)

From (1.a.1) and (1.a.3), we have:

PSAT(7m1) A PSAT(72)
= PSAT(m1 V 72) (1.1)



From (1.a.2) and (1.a.4), we have:

S (m A ) A (T A o)

(-m V7)) A (g V 7M)

=(-m A me) VT

—(m Vom) Vo

=((m V m2) A —mr)

UNSAT(m1 V 72) A ) (1.2)

From (1.1), (1.2), and follow the entailment procedutewe concluder; Vs Fo m~ +/.
SO,T1 U =17,
Casers = Landn = /
It meansm; o m~ L andmy Fo m~ +/.
Follow the entailment procedure:, we have:

UNSAT(71)A (1.b.2)
PSAT(m2)A (1.b.2)
UNSAT(72 A =) (1.b.3)

From (1.b.1) and (1.b.2), we have:

UNSAT(m1) A PSAT(m2)
= PSAT(7T1 V 7T2) (13)

From (1.b.2) and (1.b.3), we infer thakaT(7) and combined withuNnsAaT (1),
we haver;, — .

Moreover, withry, = 7 andr. = , follow the same proof leading to (1.2)
of caser; =/ and » = / we have:

(mVme) = (1.4)

From (1.3), (1.4), and follow the entailment procedutewe concluder; Vs Fo m~ /.
Thereforer U = 7.

Caser = U. Based on the lattice of program status,! 7> = U if

1. n =V andrn =0U. Or
2. One of them isL and another i&. We assume; = 1L andm = U

Caser, =0 andr =0
71 = U, it meansr; F¢ m ~ O. Follow the entailment procedure:, we have:

psaT(m) A (l.c.1)
unsaT(m A7) (1.c.2)

Similarly, with r» = U, we have:

PSAT(m2) A (1.c.3)
UNsAT(m2 A7) (1.c.4)



From (1.c.1) and (1.c.3), we have:

PSAT(m1) A PSAT(72)
= PSAT(m V T2) (1.5)

From (1.c.2) and (1.c.4), we have:

UNSAT(71 A ) A UNSAT (72 A T)

=(m Am) A (e AT)

(=1 Vo) A (g Vo)

(=71 A ) V o

=y Vmg) Voo

=((m V) A )

UNSAT((m1 V m2) A M) (1.6)

From (1.5), (1.6), and follow the entailment procedusene concluder; Vs o m~ O.
SO,T1 U7 =17,

Caser;=land» =0
71 = 1, it meansr; k¢ 7~ L. Follow the entailment procedure:, we have:

UNSAT(71) (1.d.1)
T2 = U, it meansry F¢ m ~ U. Follow the entailment procedure:, we have:

psaT(mz) A (1.d.2)
UNsAT(m2 A7) (1.d.3)

From (1.d.1) and (1.d.2) we infer that:
psaT(m1 V T2) (1.7)
From (1.d.1) we have:

UNSAT(71)
= T
= —m Vo (1.d.4)

From (1.d.3) we have:

UNSAT(72 A )
—(mg A )
-y Voom (1.d.5)

From (1.d.4) and (1.d.5) we have:

(= V —m) A (e Vo)
(=my A ) V o

=(m V) Vo

(7 V) A )

UNSAT((71 V 72) A ) (1.8)

From (1.7), (1.8), and follow the entailment procedusene concluder; Vs ¢ m~» U.
Thereforer; U = 7.



Caser = T. Based on the lattice of program status,| m» = T if

1. Eitherr, or » is T. Assumer; = T. Or
2. n=0andnr = /.

Caser; =T
T =T,itmeansr; F¢g 7~ T.
Follow the entailment procedure:, we have:

PSAT(m1 A —T)A (1.e1)
PSAT(m A T) (1.e.2)

From (1.e.1) we have:

PSAT(m1 A —r)
= PSAT((m1 A ) V (w2 A =)
= pPsAT((m1 V m2) A —r) (1.9)

From (1.e.2) we have:

PSAT(m1 A7)
= PSAT((m1 A7)V (m2 A))
= psatT((m V m2) A ) (1.10)

From (1.9), (1.10) and follow the entailment procedtite we conclude:r; Vv
mo o T T

Thereforer, U = 7.
Caser; =Uandr; =/

71 = U, itmeansr; F¢ m ~ O. Follow the entailment procedure:, we have:

PSAT(m1) A (1.1.1)
UNSAT(m1 A T) (1.£.2)

72 = 4/, it meansrs k¢ m ~ /. Follow the entailment procedure:, we have:

PSAT(m2)A (1.£.3)
UNSAT(72 A =) (1.1.4)

We provepsat(r2 A 7) by contradiction. Assume thatnsaT(72 A 7).
UNSAT(72 A T)

—(my A Tr)
e V T

Combined with (1.f.4), we have:

(=me V o) A (—ma V )
-y A (=7 V)
-y contradict with(1.f.4)



Hence, we concludesar(mz A ).
PSAT(m2 A7)
= PSAT((m1 A ) V (m2 AT))
= pPsAT((m1 V m2) A ) (1.11)
Similarly, we can prove that

PSAT((m1 V m2) A =) (1.12)

From (1.11), (1.12) and follow the entailment procedtirave concluder; Vrg o m~ T.
Thereforer Uy = 7.

A.2 COMPOSE (®) Operator

[EC—[® COMPOSE]]
ke~ T

T ko Ty~ T
Them Am~Tandn Q=1
We prove Theorem 1 by the case analysis on the returned

Caser = L. Based ong operator, the result ofi, ® 7 is L if either , or  is L.
Assumer; = L. ltmeansr ¢ m ~ L.

Follow the entailment procedure:, we infer:uNsaT(my).

Again, follow the entailment procedure: we concluder F¢ w3 A o~ L

SO, Q@7 =T.

Caser = /. Based ong operator, the result of, ® = is y/ if both ; andr, are/.
It meansr ¢ w1 ~ / andr k¢ ma ~ /.
Follow the entailment procedure:, we have:

PSAT(T) A (2.a.1)
UNSAT(7 A =71) A (2.a.2)
UNSAT(7 A —72) (2.a.3)

From (2.a.2) and (2.a.3), we have:

UNSAT(7 A =71 ) A UNSAT(T A —7a)
= (- V) A (-7 Vmg)
= -V (m A ma)
= UNSAT(m A =(71 A T2)) (2.1)

From (2.a.1), (2.1), and follow the entailment procedureve concluder ¢ m A

o~/

Thereforeq @ 7 = 7.



Caser = U. Based ong operator, the result afy ® = is U if one of them ¢, =) is
U, and another is nat. Assummer; = U andr, # L.
71 = U meansr ¢ w1 ~ O. Follow the entailment procedure;, we have:

PSAT(m) A (2.b.1)
PSAT(m) A (2.b.2)
UNSAT(7 A m1) (2.b.3)

From (2.b.3), we have:

UNSAT(T A 71)
= UNSAT(m A1 A T2) (2.2)

From (2.b.1), (2.2) and follow the entailment procedureve concluder ¢ 7 A
Ty~ O
Thereforeq, @ 72 = 7.

Caser = T. Based orp operatory; @ =T if

1. n=Tandr =T.Or
2. One of them4, =) is T, another is/. Assumer;=T andr = /.

Casern=Tandnrn =T
71=T meanst ¢ m; ~ T. Follow the entailment procedure:, we have:

PSAT(m A —7m1) A (2.c.1)
PSAT(m A 71) (2.c.2)

Similary, with~=T, we have:

PSAT(m A —2) A (2.c.3)
PSAT(7 A m2) (2.c.4)

From (2.c.1), (2.c.3), we have:

PSAT(m A —m1) A PSAT(T A —7g)

(
= PSAT((?T A—m1) V(7 A )
= PSAT(w (—|7r1 —T2))
= psaT((m A —(m1 A m2)) (2.3)

We provepsar(r A w1 A m2) by contradiction. Assume(r A w1 A 72).

(7w A A T2)
=((m Am) A (T A Ta))
—(m A1)V o(r Ama) (2.¢.5)

(2.c.5)contradicts withboth (2.¢.2) and (2.c.4). Hence, we conclude:

PSAT(m A m1 A T2) (2.4)



From (2.3), (2.4), and follow the entailment procedurewe concluder ¢ 71 A
Mg ~> T

Thereforeq, @ m» = 7.
Caser; = Tandn = /

71=T meanst k¢ m; ~ T. Follow the entailment procedure:, we have:

PSAT(m A —71) A (2.d.1)
PSAT(m A 71) (2.d.2)

To=/ Meansr ¢ mg ~ /.

PSAT(T) A (2.d.3)
UNSAT(7 A —72) (2.d.4)

From (2.d.1), we have:

PSAT
= PSAT
PSAT
PSAT

T AT

(m A=) V(T A )

A (- V )

(m A =(m1 AT2)) (2.5)

PPN

We provepsar(r A w1 A m2) by contradiction. Assume(r A w1 A 72).

—(m Ay A Te)
=-(r Amp) V)

Combined with (2.d.4), we have:

=(m Amy)Vome) A (- Vome)
= T

This contradicts with(2.d.3).
Hence, we conlcude:

PSAT(m A T A T2) (2.6)

From (2.5), (2.6), and follow the entailment procedurewe concluder ¢ 7 A
T > T
Thereforeq; @ 7 = 7.

A.3 UNION (&) Operator

[EC—[o UNION]]
Tho T~ T
T ko T~ T
ThemVm~Tandmn @ =1

We prove Theorem 1 by the case analysis on the returned



Caser = L. Based ons operator, the result of, @& » is L if either , or » is L.
Assumer; = L. ltmeansr ¢ m ~ L.
Follow the entailment procedure:, we infer:uNsaT(my).
Again, follow the entailment procedure: we concluder ¢ mp V o ~ L.
Thereforer @ m = 7.

Caser = /. Based onp operator, the result ofy & = is / if either (r; or 72) is /.
Assumer; = /. ltmeansr ¢ 1 ~ +/.
Follow the entailment procedure:, we have:

PSAT(T) A (3.a.1)
UNSAT(7 A —7rq) (3.a.2)

From (3.a.2), we have:

UNSAT(T A —71)
= (-m V) Ve
-V (m V ma)
UNSAT(7 A —(m1 V m2)) (3.1)

From (3.a.1), (3.1), and follow the entailment procedwreve concluder ¢ 71 vV
o~ /.

Thereforeq; ® m = 7.

Caser = U. Based onp operator, the result of, & = is U if both -, andr, ares.
71 =0 meansr k¢ m ~ O.
Follow the entailment procedure:, we have:

PSAT(T) A (3.b.1)
UNSAT(T A 71) (3.b.2)

Similarly, with , = U we have:

PSAT(m) A (3.b.17)
UNSAT(7 A m2) (3.b.3)

From (3.b.2) and (3.b.3), we have:

UNSAT(7 A 1) A UNSAT(7 A T2)

(=7 V —my) A (- V —mrg)

-1V (- A —mrg)

-V =(my V mg)

=(m A (m1 V m2))

UNSAT(7 A (71 V 72)) (3.2)

4

From (3.b.1), (3.2) and follow the entailment procedusewe concluder ¢ m; V
w9 ~ O. Thereforey; & = = 7.



Caser = T. Based ons operator, the result af, & m is U if one of them ¢, ) is
T, and another is neither nor./. We assume; = T andr is neitherL nor./.
=T meansr kg m ~ T.
Follow the entailment procedure:, we have:

PSAT(m A —7m1) A (3.c.1)
PSAT(m A 71) (3.c.2)

72 IS neitherL nor,/, thenw ¢ m ~ t andt # L At # /. Follow the entailment
procedure-c, we have:

PSAT() A (3.c.1)
PSAT(m A —7g) (3.c.3)

We provepsat(r A —(m1 V m2)) by contradiction. Assume(r A —(m1 V 2)).

_I

(m A =(m1 v m2))
(m A =1y A —mra)
=((m A =) A (7 A —mra))
(m A=) V= (1 A —ma) (3.¢.4)

-

J

(3.c.4)contradicts withboth (3.c.2) and (3.c.3). Hence, we conclude:
m A —(m V) (3.3)
From (3.c.2), we have:

PSAT(m A 71)
= PSAT((m A1) V (7 A7)
= PsAT((m A (m1 V 72)) (3.4)

From (3.3), (3.4), and follow the entailment procedudgewe concluder ¢ m; V
w9 ~» 1. Thereforer @ 7 = 7.

B Proof of the Soundness of the Structural Rules foig

We prove Theorem 1 inductively on the structural rules tigiau operator® operator
and operator.

B.1 JOIN (L) Operator

[EE-[U JOIN]]

m b T~ T

mo bg T Ty
mVmbgr~rTtandriUmn =171

We prove Theorem 1 by the case analysis on the returned



Caser = L. The proof is similar to the proof of the soundness of the joioperator
for k¢ (see A.1).

Caser = /. The proof is similar to the proof of the soundness of the joioperator
for ¢ (see A.1).

Caser = T. Based on the lattice of program status,l » = T if either, = T or
= T.Assumer; = T.
71 = T meansr; g m~ T. Follow the entailment procedure;, we have:

PSAT(m1 A =) (4.a.1)
From (4.a.1), we have:

= PSAT((m1 A —m) V (w2 A =)
= psat((m V m2) A —) (4.1)

From (4.1) and follow the entailment procedtiiewe concluder; Vg o m~> T.
Thereforer Uy = 7.

B.2 COMPOSE (®) Operator

[EE-[® COMPOSE]]
ThE T~ T

Th 79~ T
Thkgm Ame~Tandr @ =17

We prove Theorem 1 by the case analysis on the returried /, G, T).

Caser = L The proof is similar to the proof of the soundness of the inperator
for ¢ (see A.2).

Caser = 4/ The proof is similar to the proof of the soundness of the jpinperator
for ¢ (see A.2).

Caser = T Based ong operator;r; ® = =T if either; = T or . = T. Assume
T1 = T.
= T meansr g 7 ~ T. Follow the entailment procedure;, we have:

PSAT(m A =) (5.a.1)
From (5.a.1) we have:

PSAT(m A —71)

= PSAT((?T A=m1) V(T A —me))
PSAT(7 A (-1 V —72))

PSAT(7 A (71 A 72)) (5.1)

From (5.1), and follow the entailment procedurewe concluder kg i Ao~ T
Hencern @ m = 7.



B.3 UNION (&) Operator

[EE-[® UNION]]
ThE T~ T
ThE Ty~ Ty
Thkgm Vm~rTandr @ =171

We prove Theorem 1 by the case analysis on the returned

Caser = L The proof is similar to the proof of the soundness of the jpinperator
for ¢ (see A.3).

Caser = / The proof is similar to the proof of the soundness of the jinperator
for ¢ (see A.3).

Caser = T Based onp operatory; @ 72 =T ifbothm =T andr, =T
71 = T meansr Fg m; ~ T. Follow the entailment procedure:, we have:

PSAT(m A —7ry) (6.a.1)
Similarly, with - = T, we have:
PSAT(m A 1) (6.a.2)
We proveesat(m A =(m1 V 72)) by contradiction. Assume we havér A —=(m1 V 72)).
(m A=V 72))
Eﬂ' A =Ty A -7

=((m A —m1) A (A —mrg))
=(m A=) V(A o) (6.1)

-

J

(6.1) contradicts with botlf6.a.1) and (6.a.2). Hence, we conclude:
PSAT(m A —(m1 V 72)) (6.2)

From (6.2) and follow the entailment procedusewe concluder kg my Vg ~ T
Hencer @ = = 7.



