
Towards Comprehensive and Collaborative
Forensics on Email Evidence†

Justin Paglierani, Mike Mabey and Gail-Joon Ahn
Arizona State University

{jpaglier,mmabey,gahn}@asu.edu

Abstract—The digital forensics community has neglected email
forensics as a process, despite the fact that email remains an
important tool in the commission of crime. At present, there
exists little support for discovering, acquiring, and analyzing web-
based email, despite its widespread use. In this paper we present
a systematic process for email forensics which we integrate into
the normal forensic analysis workflow, and which accommodates
the distinct characteristics of email evidence. Our process focuses
on detecting the presence of non-obvious artifacts related to
email accounts, retrieving the data from the service provider,
and representing email in a well-structured format based on
existing standards. As a result, developers and organizations can
collaboratively create and use analysis tools that can analyze
email evidence from any source in the same fashion and the
examiner can access additional data relevant to their forensic
cases.

Index Terms—Email, forensics, collaboration.

I. INTRODUCTION

The recent investigation of a senior U.S. intelligence official

reaffirmed the importance of email forensics [1]. The inves-

tigation relied on the simple inspection of the drafts folder

of a shared email account, but if the suspects had taken the

time to make their correspondence more clandestine, a more

sophisticated approach would have been necessary to discover

relevant email evidence. Current methodologies do not address

the possible intricacies introduced when an investigation centers

around the analysis of various email sources and, furthermore,

simple inspection does not aid an examiner in detecting the

presence of email which is not locally stored [2, pg. 471].

Consider a scenario in which a suspected computer criminal

has communicated with many parties about the nature and

means of their actions using various communication methods,

including locally stored emails and webmail accounts. When

an examiner seizes a suspect’s hard drive, only the locally

stored or cached email would be directly available and

the webmail accounts would remain undiscovered without

substantial manual effort. These missing portions of data could

lead to an incomplete investigation report with respect to

the suspected act. Even if evidence resides locally in diverse

formats, it is likely that an examiner would need separate tools

and methods to analyze each of them.

In addition, an emerging notion called the Internet of
Things [3] (IoT) presents an environment in which any number

†This work was partially supported by the grant from National Science
Foundation. All correspondences should be addressed to: Dr. Gail-Joon Ahn
at gahn@asu.edu.

of “things,” or devices, connect to each other through the

Internet. Such a model clearly presents an even greater

challenge for attempting manual analysis of device data or

behavior as part of an investigation.

We aim to provide a systematic and forensically sound

methodology for discovering, extracting, and analyzing evi-

dence from email which resides through emerging technologies.

Our approach has several unique properties to support collab-

orative email forensics. First, we propose a process-driven

email forensics approach comprised of several sub-tasks for

collaboratively analyzing email evidence. Since each examiner

has different capabilities, this process-driven workflow can help

them conduct forensics tasks more efficiently and effectively

by reducing the number of backlogged cases and allowing

for the sharing of work in a collaborative manner. Second,

we attempt to build pluggable modules so that our framework

can be realized as a service to multiple examiners without

asking them to alter their forensic environment or tools. Third,

multiple examiners and tools have their own regulatory report

and proprietary data format that have been critical barriers to

them collaborating with each other. Hence, we introduce an

extended XML-based format to represent email evidence with a

uniform and interoperable evidence container for collaborative

email forensics. We hope that with the aid of our approach,

the digital forensics community can begin establishing best

practice standards to acquire, process, authenticate, analyze,

and present this distinct family of evidence.

A. A Note on Legality

We emphasize that our approach requires special considera-

tion to laws regarding the search and seizure of evidence. In

many territories, it may be necessary to secure a subpoena or

warrant before using an approach like ours. However, in the

event that the necessary procedures have been followed and the

service provider remains uncooperative, our method provides

examiners with an alternative means of acquisition for the sake

of prompt response, as discussed by Richard Littlehale1 in

his testimony before the U.S. House Judiciary Subcommittee

on Crime, Terrorism, Homeland Security & Investigations on

March 19, 2013 [4]. We urge practitioners to consult proficient

legal counsel before utilizing the information contained herein.

1Assistant Special Agent in Charge, Technical Services Unit, Tennessee
Bureau of Investigation.

TABLE I: Predicted daily email traffic in billions from 2012-

2016 as published by the Radicati Group

Year 2012 2013 2014 2015 2016
Total worldwide

144.8 154.6 165.8 178.3 192.2
emails/day (B)

% Change — 7% 7% 8% 8%

II. RELATED WORK

In case there was ever any doubt as to how important

email is to private and corporate communication, the Executive

Summary [5] of the Radicati Group’s report titled “Email

Market, 2012-2016” states that the total number of worldwide

emails sent each day in 2012 was about 144.8 billion, with

steady growth predicted for years to come as shown in Table I.

Furthermore, the report states that “the installed base of

Corporate Webmail Clients is expected to grow from 629

million in 2012 to over 1 billion by year-end 2016.” Clearly

webmail is a significant communication medium.

As more interactions become digitized, ranging from com-

munications to finances, a number of forensic hurdles present

themselves [6]. Service-oriented computing presents an interest-

ing challenge, as we no longer see unified bodies of evidence

aggregated within traditional forensic mediums. Significant

research has gone into approaching specific services [7], [8], but

little work has gone into establishing a best practice approach to

such evidence starting with the initial acquisition of disk-based

evidence2.

Best practices have emerged in the forensic representation

of evidence. In particular, XML has become known as a

medium for the creation of well-structured forms of evidence

representation [9]. A well-known example of this is the Digital

Forensics XML (DFXML) format, used for representing disk

media as a combination of disk partitions, file systems, and file

metadata in XML [10]. These formats facilitate the storage,

authentication and analysis of evidence in various ways.

Improvements in the forensic analysis of email have largely

followed that of big data — recent contributions to the field

include statistical and machine learning techniques used to

facilitate stylometric analyses, author attribution, and more

into a cohesive analysis technique [11]. While these methods

improve the analytic process of email forensics, there still lacks

a holistic approach.

Similar to disk forensics, email also contains indexable

metadata, in the form of headers, which can be useful to

direct the focus of an analysis. From this metadata alone,

an examiner can detect communication flows and evidence

tampering, among other things. As shown by Banday in [12],

the email headers are a valuable source of information in a

forensic investigation involving email.

III. METHODOLOGY/FRAMEWORK

We seek to help reduce the disparity between the analysis

methods available for disk-based evidence and those available

2By “disk-based evidence” we mean to include all forms of digital evidence
that have more traditionally been part of an investigation, not just hard drives.

for web-based evidence such as email. To that end, our process

for the acquisition and storage of online evidence makes

available the means whereby analysis tools can handle and

analyze such evidence.

In brief, our process consists of discovering online credentials

from acquired evidence, mapping those credentials to their

corresponding services, extracting evidence from each service,

authenticating and processing that evidence into a standardized

representation format, and then performing the actual analysis.

Fig. 1 depicts this flow. We now discuss each part of the

process.

A. Initial Acquisition

As in any investigation, once the examiner has secured the

evidence, the first step is to acquire a “forensic copy,” which

for all purposes is an exact duplicate of the original. Forensic

copies serve as a protection for the original evidence since the

examiner works with these instead of the originals, allowing

them to perform analyses without the risk of compromising

the integrity of the evidence.

During the initial acquisition of a hard drive, the data that is

available is mostly limited to the structure of the drive as found

in the Master Boot Record (MBR) or in one of the Volume

Boot Records (VBRs). From these structures, the examiner

can also extract additional information about the file system

for a particular volume, but again this only provides structural

information, such as which sectors on the disk store parts

of a file. At this stage, there is no indication of where any

information related to the suspect’s online activity and accounts

may reside on the disk. For this reason, initial acquisition

requires the additional steps of credential discovery, evidence

mapping, and supplemental acquisition, as we will now describe

in Sections III-B, III-C, and III-D, respectively.

B. Credential Discovery

In our process we use the term “credential” to denote any data

which can identify the owner of the credential (e.g. the suspect)

in some useful way. The breadth of this definition allows for its

application without respect to the format in which the data is

stored or the type of service to which it is mapped. Also, while

other terms indicate a similar idea, such as “footprint” [13],

“fingerprint”, and “profile”, none of these convey their purpose

within our process, which is to reestablish a connection with

online services to extract evidence. To this end we define a

phase, “credential discovery”, in which we detect credentials

stored in a piece of evidence which an examiner can use to

further recover additional evidence for the investigation.

The formats of credentials range from simplistic (text files

containing user names and passwords) to complex (session

cookies), and discovering all types of credentials will require

an equally diverse set of approaches. Some possible credential

discovery approaches include:

• Brute force: Given a set of criteria (such as a regular

expression) for what may possibly be credentials, linearly

search the evidence, including any file slack or bad sectors.

Figure 1: The traditional forensic workflow combined with the email approach

This has the disadvantage of being neither intelligent nor

efficient.

• Search known locations: Search for files known to

regularly store credentials, such as key ring databases,

cookie files or databases, registry entries, etc. While more

efficient, this has a much narrower scope and may overlook

legitimate credentials.

• Heuristic-based: Using machine learning or similar tech-

niques, learn through past experiences and feedback from

the examiner what constitutes a usable credential when

investigating the raw data.

Practitioners may develop other approaches, and each

approach may have varying levels of success on different

data sets. As such, it may be necessary to use all available

approaches on each data set, depending on the computational

resources available. In the best case, a large-scale, distributed

system would be utilized with as many approaches as possible

including proprietary internal tools, remotely hosted tools,

and open source tools to discover the largest possible set

of credentials.

C. Evidence Mapping

Following the discovery of credentials, it is necessary to map

them to a source of evidence before performing any further

acquisition. In other words, this mapping determines what

online service the suspect accesses using the credential. De-

pending on the approach taken to discover a set of credentials,

the form in which they were stored, and any accompanying

data stored with the credentials, the difficulty of the mapping

process may vary. Examples include email addresses or cookies

which specify the domain to which they belong, spreadsheets

organized in a manner which makes this information evident

to an examiner, or a text file may store a user name and

password with no indication of the service for which they are

valid. Manual examination may be necessary to complete the

mapping process if this is the case.

D. Supplemental Acquisition

After mapping a credential to a service, the next step

is to acquire a forensically sound copy of the service’s

data. To help justify the use of certain acquisition methods

during this phase, it may be useful to draw parallels between

different types of traditional forensic acquisition and the

circumstances characterizing supplemental acquisition from

online sources. The two types of acquisition are static and

live, which correspond to acquiring data from unchanging or

volatile systems, respectively. When applied to performing

forensics on an email account, a static acquisition is equivalent

to acquiring data from stored Personal Storage Table (PST)

files, frozen accounts, or logs from journaling or Simple Mail

Transfer Protocol (SMTP) servers, whereas a live acquisition

is equivalent to acquisition performed on active email accounts

via Internet Message Access Protocol (IMAP) or using other

methods, running servers (SMTP, journaling, etc.), or webmail

services.

During the acquisition process, examiners must follow

established best practices for any data source from which

they extract evidence — this can be best achieved by defining

an engine that utilizes modules which meet the requirements of

the rules of evidence to acquire this data. To ensure the process

is repeatable, we treat this portion of the process as a black-box

engine which follows a set of steps to present the recovered data

in a source-agnostic form so that the next module in the engine

can process the evidence without regard to the source from

which it originates. This engine should reuse the credentials

previously discovered, acquire the most complete representation

of the email (including headers and body), and then store them

as a separate copy in an intermediate format for the purpose of

evidence processing into a format which examiners will later

use. Once these steps have become well defined, automation

becomes trivial and should be implemented as a means to

prove that the process is repeatable and forensically sound.

The nature of online storage requires careful consideration

of data integrity and authentication issues; it is infeasible to

represent the data exactly as stored at the remote location using

our process; however, the focus of this process hinges on the

text-based content of email evidence (including the headers

and the body of the message) and not on the structure of the

data stored on disk. As each email is a discrete, individually

identifiable piece of data, we assert that a checksum of the plain

text content of the original form of an email message is the most

useful check against data integrity. As the acquisition process is

automated, repeatable, and the data yielded is verifiable using

a hash, we present the evidence acquired in this phase as a

forensic copy of the evidence in an intermediate format.

E. Evidence Processing and Authentication

To increase the value of the intermediate representation

mentioned in the previous step, it is necessary to facilitate

a common evidence representation for the acquired data. To

simplify working with this data, the representation should retain

metadata about the data source as well as the data itself, so

as to clearly identify any specific characteristics of the data

that would be important during the reporting process. Using

a common representation also adds the benefit of being able

to develop tools which treat the evidence in a source-agnostic

manner, since the representation abstracts away the differences

between webmail and locally stored emails, simplifying the

development and validation/verification process of forensic

tools.

A well-structured format lends itself to the above goals,

allowing for easy searching, classification, and general use

of the evidence while providing an extra layer of abstraction

from the raw evidence to help maintain the forensic integrity

of the information. When using a structured representation,

an examiner can employ verification techniques (such as

schema verification) to prove the accurate representation of the

evidence. Such a format and verification techniques also lends

to the use of our process in a collaborative environment; for

example, an organization may provide its implementation of an

analysis tool remotely through a Service Oriented Architecture

(SOA) implementation or multiple organizations may create

separate, yet interoperable, tools using a common evidence

representation.

In order to properly authenticate the data after acquisition

and processing, the evidence representation format used should

store the checksum generated during the acquisition phase. By

storing this checksum, examiners will be able to confirm that

the integrity of the data has not changed since it was first

acquired, or if necessary and possible, they can perform a

subsequent acquisition against the online service to check for

changes to the available data or verify the accuracy of the first

acquisition attempt.

F. Analysis

The next step after acquiring, processing, and authenticating

the evidence is to perform forensic analyses that will be

informative for the purposes of the investigation. Since our

methodology only provides a process for the acquisition and

storage of supplemental evidence, the implementation of new

analysis tools is beyond the scope of this work. However,

our methodology reduces the amount of effort required for

analysis of online evidence in two ways. First, our methodology

removes the need to manually acquire supplemental evidence

as part of the examination workflow. The steps of discovering

credentials, mapping them to online services, acquiring data

from the service, and processing the data into a standard format

are all performed automatically, saving time while providing

increased breadth to the incident report.

Second, our methodology specifies that the standardized

data storage format should have a way by which to validate

its structure. Three benefits arise from this requirement:

1) acquired data in a validated format gives tool developers

confidence in the structure and type of the data; 2) developers

do not need to write analysis tools to handle multiple formats,

since it is possible to convert evidence to the format used in

the process, making tools more reusable; 3) a comparison of

the output from multiple tools allows for checking accuracy3

or for evaluating performance.

With these benefits, our approach provides significant advan-

tages in collaboratively discovering, collecting, and analyzing

evidence stored by online services.

IV. IMPLEMENTATION DETAILS

To demonstrate our framework, we now give the details

of our plugin-based forensics framework for online evidence,

called PlugsE4.

PlugsE is a framework implemented in Python meant to act

as the black box engine mentioned in Section III-D consisting

of separate modules to handle each step of the forensic process

and a backbone which integrates them into a seamless tool. It

has been developed with extensibility in mind, where adding a

specific implementation of any step in our process is achieved

by a system administrator manually adding entries to one of

four manifest files which specify to the PlugsE backbone the

name of the module, the type of data (DFXML file, Google

cookies, keyring file, etc.) it handles, as well as how to access

the module from a programmatic standpoint. The access vector

could be, for example, a command-line executable or a service

available via a Remote Procedure Call (RPC) interface such

as REST. PlugsE stores a manifest file for each step in the

forensic process and parses them to create a vector table which

the backbone uses to map the different types of data it is

presented with to a specific implementation of a step. Through

the use of these manifests, each step in the forensic process

can be viewed as a collection of modules which implement

differing approaches to the specific forensic task at hand.

Each module must both accept as input and return as output

JavaScript Object Notation (JSON) representations of the data

being acted upon coupled with logging information (start/end

times, checksums, module name and version), which aids in

providing a common representation of data within the system,

facilitating interoperability of modules written by different

developers, organizations, or even in distinct languages.

This modular approach offers a number of interesting

benefits including that a developer can implement a number

of data flows within our forensic process and a step in the

forensic process may be offloaded to a remote server via

RPC to a module provided by another organization in a SOA

fashion, with the backbone and examiner being oblivious to

the geographical location or implementation details of the web

service. These qualities may benefit a distributed, collaborative

approach to forensics, such as the one laid out in the CUFF

framework [15].

As a proof of concept, we now show how to use PlugsE

and our online evidence acquisition steps from Section III

to retrieve the contents of a Gmail account using cookies

containing session information that is still valid.

3As discussed in [14], validating forensic tools by comparing their output
is important, but requires executing the tools against the same evidence.

4Available at https://bitbucket.org/jpaglier/plugse

Figure 2: The PlugsE framework

A. Initial Acquisition

In our implementation, we make the assumption that an

examiner has already completed the work of initial acquisition

(as described in Section III-A) of a hard drive from a desktop

computer and created a forensic copy. Ideally, this would be

performed using a system such as the one presented in [15],

which allows for the analysis of evidence to automatically begin

after acquisition. Also, the modules in our implementation

depend on the DFXML representation of the evidence, so the

examiner (or the tools used by the examiner) must ensure its

creation in this phase.

B. Credential Discovery

With a forensic copy of the target device accessible, it is now

possible to begin searching for credentials. By creating a PlugsE

discovery module, Henson5, that searches for browser cookies

utilizing a Search known locations approach, we easily

discover the cookies for the Chrome browser on a Windows

machine at %USERPROFILE%\AppData\Local\Google\
Chrome\User Data\Default\Cookies. While other

browsers’ cookies are also in known locations, this file is

the focus of our proof of concept.

We adopt a straightforward approach to searching for the

existence of a known path. It takes as input a list of paths for

which to search. First, it decodes all of the paths, meaning it

resolves any Windows system variables to all matching explicit

paths. Then it splits each path into its subdirectories and iterates

through them, checking for their presence in a representation of

the filesystem’s structure created beforehand from the DFXML

file. If the full path exists, this is recorded for later use.

The complexity of our algorithm is O(n · m), where

n = |resolved paths| and m = |dir contents|6. We make

the assumption that the number of subdirectories in a given

path will be limited and add no more than a constant multiplier

to our algorithm’s complexity because we are searching for

known paths of common programs, meaning it does not

have the same capacity for expansion the way that n or

m do. For example, in the case of Chrome cookie files

in Windows 7, the path specified previously will resolve

to C:\User\<user name>\AppData\Local\Google\
Chrome\User Data\Default\Cookies, which is a to-

tal of 9 directories before reaching the target file (Cookies).

5Available at https://bitbucket.org/jpaglier/henson
6Due to the page limit, we omit the details of our algorithm.

[
{
"source":"dfxml://file37",
"format":"cookie",
"md5" :"1e6c344157eb14a79fefc07a9800695c",
"found" :"2013-02-28T16:55:42-07:00"
}

]

Figure 3: Initial mapping structure created by a discovery

module

After discovering the cookie database, the last task the

module performs is to store important information about

the possible credential source in a JSON file for use in the

Evidence Mapping phase. While the discovery module cannot

map the credential to a service because it did not search the

contents of the database for service-specific information, it

stores the source, format, checksum, and time of discovery of

the credential in a JSON file as illustrated in Fig. 3. With this,

PlugsE’s logging process has the information it needs and the

relevant evidence mapping modules know which files to use

when carrying out their discovery attempts. The module then

returns the JSON file to the main PlugsE process which passes

it to any modules registered for handling a cookie credential.

C. Evidence Mapping

Now that the cookies have been discovered, PlugsE invokes

all evidence mapping modules registered to work with cookie

databases, passing the possible credential sources to each of

them. In some cases, it may be necessary at this point for

the examiner to manually map the credentials to a service, as

mentioned in Section III-C. PlugsE will determine that this

is the case when one of two things happens: 1) no mapping

module has been registered to work with the source and format

of a credential, or 2) none of the registered modules were

successful in mapping it to a service.

In our example, identifying the cookies for a Gmail account

is straightforward because the fields shown in Fig. 4 will

be present. Our mapping module for PlugsE searches for

these fields and upon detecting them creates an entry in

the mapping table which identifies this cookie database as

containing credentials for Gmail. Fig. 5 shows what this entry

looks like. Although the complexity of our module depends on

the efficiency of the Python sqlite37 library, it only searches

7http://docs.python.org/2/library/sqlite3.html; complexity of individual oper-
ations not provided.

Figure 4: All the cookies created by logging in to Gmail

[
{
"domain":"mail.google.com",
"type" :"cookie",
"format":"sqlite",
"data" :"dfxml://file37"
},
{
"domain":"www.dropbox.com",
"type" :"plain",
"format":"user_pass",
"data" :["guy@email.com",

"12345"]
}
]

Figure 5: Mapping example with two entries. The data for the

first entry refers to Gmail credentials in a cookie database,

while the second has Dropbox login information

for a constant number of keys in the target and stops searching

when any key is not present, which means it contributes no

more than O(1) complexity to the library’s operations.

D. Supplemental Acquisition

As we mentioned in Section III-D, tool developers must

determine the best practice for acquiring data stored by a

distinct online service based on the type of credential(s)

discovered previously and the service’s features. For our

proof of concept with Gmail, we researched what features

are available when we only have the browser cookies to log

in. While the optimal acquisition method for retrieving a copy

of all emails is to do so via IMAP, cookies are specific to

the HTTP protocol and will not work to authenticate through

IMAP. If plain text credentials (user name and password) were

discovered, acquisition via IMAP would be possible.

Since we only have the browser cookies to work with in

our proof of concept, we have a limited ability to change

any account settings that will help the process of acquisition.

Fortunately, Gmail allows users to grant other Gmail addresses

access to their account without reentering their password. The

account that is granted access is called a “delegate” and can read

all the emails in the granter’s account as well as send emails

on their behalf. While Gmail does not provide IMAP access

to grantee accounts, creating the delegate prolongs access to

the target account past the two week expiration date of the

cookies, allowing for any needed follow-up acquisition.

With this understanding, we wrote a pair of tools in Python

to complete the supplemental acquisition. The first tool, which

we call Crumbler8, imports the cookie database from its native

SQLite format to a custom subclass of the common Cookie
Python object. The second tool automates the process of adding

a delegate to an account using the Selenium9 web driver. It

opens a browser and connects to Gmail, and as long as the

cookies are still valid it performs each of the steps for adding

a delegate as outlined in the Google help pages10, which takes

O(1) time. Once this process has completed, the grantee can

access the target account by logging in to Gmail, clicking on

their email address in the top right hand corner of the screen,

and selecting the target account from the list of accounts to

which they have access.

The final challenge to acquiring data from Gmail is that the

only method for retrieving the raw email data is to essentially

“screen scrape” the pages returned during a web session, parsing

through the HTML and using regular expression patterns or

searching through the Document Object Model (DOM) for the

desired elements. A tool is currently under development for

the purpose of downloading the contents of a Gmail account.

The messages should then be processed into a standard format,

as we discuss in the following section. We recognize that a

few circumstances have to be ideal in order for this acquisition

process to work, namely that the owner of the credentials is

always signed in, that the cookies have not yet expired and are

discoverable by some means, and that the notification banner

of having added the delegate account will not compromise

the investigation. It is inevitable to retain these circumstantial

dependencies. However, we also assert that those investigations

for which they do not hold have not lost access to evidence

that otherwise would have been accessible, while those for

which they do hold have gained access to a great source of

information11.

E. Evidence Processing and Authentication

To demonstrate our evidence processing phase, we must

convert our intermediate representations to a well-structured

format which follows the current best practices of the forensic

process. During the development of our proof of concept, we

surveyed the strengths and weaknesses of existing formats

and concluded that the mbox format [16] was the best suited

to our purposes. The mbox format is a flat-file, plain text

representation of email which is easy to parse and human

readable; these traits greatly reduce the time needed for

examination of evidence and development of tools, both of

8Available at https://bitbucket.org/mmabey/crumbler
9http://seleniumhq.org/
10http://support.google.com/mail/answer/138350
11Either way, to achieve comprehensive forensic analysis on email evidence,

we believe such an approach is necessary and beneficial.

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<mailbox type="mbox">

<message>
<Subject><![CDATA[[dovecot] Re: some problem with dovecot]]></Subject>
<Date>

<year>2003</year>
...

</Date>
<From>

<sender>
<alias><![CDATA[Jesse Peterson]]></alias>
<email>jpeterson275@attbi.com</email>

</sender>
</From>
<non-standard>

<X-Original-To>dovecot@procontrol.fi</X-Original-To>
</non-standard>
<byte_runs file_offset="1101673" len="2159"/>
<checksum>

<md5>8e4bb7462b991183cf5b2adc87970227</md5>
</checksum>

</message>
</mailbox>

Figure 6: An Abbreviated Sample of the EFXML Schema

which are costly in terms of resources and time. Furthermore,

normally mbox stores attachments in some form of directory

structure related to their messages so that attachment analysis

could be started as part of an automated process, separate

from the email data. Finally, using mbox is useful even when

processing the common PST format as tools from libPST12

provide the conversion. Finally, we assert that mbox is valid

for use as a forensic copy format as it is “output readable by

sight, shown to reflect the data accurately” and thus “is an

original” [2, pg. 162], so long as the acquisition process used

was sound.

A current trend in digital forensics is the use of XML as a

data representation format, allowing for a firm layer of abstrac-

tion “between feature extraction and analysis” and “a single,

XML-based output format for forensic analysis tools” [9]. For

evidence representation in existing methodologies, DFXML is

a standard to represent disk, partition, file system, and file data

in a unified manner [10]. A major benefit of DFXML is the

generality of its representation; regardless of disk geometry or

forensic copy format, the evidence is represented in the same

manner.

When analyzing email evidence, the most significant meta-

data is contained within the header of the email itself. Email

headers include information such as the sender and recipient

(From and To), unique message identifiers (Message-ID),

reply addresses (Reply-To), and more [17]. Even without

considering the content or body of emails, these headers have

been shown to be useful in forensic investigations as a means

to achieve author attribution, detect attempts to obfuscate

sequences of events during a time period of interest [12],

as well as identify communication flows and perform social

networking analysis.

Although DFXML is quite efficient for representing massive

12http://www.five-ten-sg.com/libpst/

amount of data from a filesystem, it is ill-suited for storing

the header information of emails, as file system metadata is

not closely related to the analysis of evidence contained within

email messages. While it could be extended to fit this purpose,

the resulting format would become overly encumbered and

its size efficiency greatly reduced. Because of this, we have

defined two new representations which are more suitable for

email forensics, but maintain some of the standard elements

introduced in DFXML, such as byte runs of discrete pieces

of evidence. We call these new formats Email Forensics

XML (EFXML) and Email Forensics Resource Description

Framework (EFRDF). While these two representations are func-

tionally equivalent, we designed them with different purposes in

mind. While EFXML lends itself mostly to syntactic reasoning

methods, EFRDF is meant to be used when examining the

highly semantic nature of information contained within email

evidence. More importantly, investigations utilizing multiple

bodies of email evidence which, when combined, may reveal

complex information flows through social interactions may

benefit from semantic analysis. EFRDF is based upon the

Resource Description Framework standard [18], a subset of

XML often used for semantic representations of data.

As email is text-based and can be easily represented in

XML without complicated encoding, EFXML and EFRDF

present many of the same benefits presented by Alink et al. [9]

and Garfinkel [10], including easy searching and classification

of information. As an added benefit of using an XML-based

format, EFXML and EFRDF have clearly defined schemas

which can verify the output from tools that generate these

formats. As an example of their differing, yet equivalent,

representations, a To field reading:

To: jsmith@gmail.com

would yield the EFXML element:

<To>
<recipient>

<email>jsmith@gmail.com</email>
</recipient>

</To>

or the EFRDF element:

<message:to>
<recipient:email>

jsmith@gmail.com
</recipient:email>

</message:to>

which accurately represent the “To” header field in a much more

structured manner, allowing for easily focusing on or excluding

messages based upon their apparent recipients. Similarly,

to reflect the data extraction capabilities provided by the

“byte runs” element in DFXML, we included a simplified

element which details the span of bytes within the mbox file

where the email resides and can be extracted from using tools

such as those designed for DFXML, the Unix command dd,

or other comparable programs. While line numbers would be

equally useful with regard to the mbox format, we decided

to use the “byte runs” field in each representation to follow

existing standards. An abbreviated sample of an EFXML

representation of a mailbox can be seen in Fig. 6.

We created two tools for parsing mbox files into correspond-

ing EFXML and EFRDF representations, named mbox2efxml13

and efxml2efrdf14. We loosely based mbox2efxml on Philip

Guo’s create mbox summary tool [19], but with comprehen-

sive support for the email headers specified in [17] and well-

formed XML through the use of the lxml library15.

Because the mbox2efxml tool only works with mbox

archives, it assumes that if the email was originally in a different

format, some tool has already made the conversion to mbox. For

example, libPST’s readpst16 tool reads in a PST file and outputs

a separate mbox file for each folder contained within the PST.

These separate files are then iterated over and each message

within them is processed. Our tool runs in O(m · n · q) time

where m = |mbox paths|, n = |messages| for all mailboxes,

and q = |headers| for all messages.

The efxml2efrdf tool works in a similar fashion to

mbox2efxml by reading in an EFXML file using the lxml

library and converting the contents to its EFRDF equivalent.

While leaving out the body of the email may limit the scope of

a semantic reasoning approach, we leave explorations into the

costs and benefits of its exclusion to future work, where we

will be able to further investigate the subtleties of a semantic

approach. The structure of EFXML and EFRDF as specified

in their schemas helps overcome one shortcoming of mbox as

it relates to forensics, which is that there is no way to add

metadata to the file. Of particular interest are the fields which

help maintain the chain of custody by storing information

13Available at https://bitbucket.org/jpaglier/efxml
14Available at https://bitbucket.org/jpaglier/efxml2efrdf
15http://lxml.de/index.html
16http://www.five-ten-sg.com/libpst/rn01re01.html

Figure 7: Conversion times of single mbox files in the Enron

data set by number of messages

on the name of the program that created the mbox, EFXML,

and/or EFRDF files; the version of the programs; the date and

time of their creation; the target email address; the size of

the mbox file; and MD5 and SHA1 checksums for the mbox

file. With this information, it is possible to keep track of how

the evidence was acquired, authentication information for the

entire set of emails17, and what programs handled the evidence

at what time, all of which are required by the rules of evidence.

F. Analysis

Our approach creates well-defined, structured, and verifiable

representations of email data. Since they are XML formats,

developers can easily craft tools and validate them using

common XML parsing libraries to facilitate the analysis process,

much like DFXML. Also, with the intermediate mbox format

and the EFXML/EFRDF abstractions, forensic analyses can be

carried out while the forensic copy remains intact, regardless

of the data source’s original storage format. The development

of analysis tools is beyond the scope of this paper.

V. EVALUATION

As differing implementations of each step of the forensic

process will vary based on data source, we focus mainly on two

factors: (1) the efficiency of EFXML and (2) the running time

of sample implementations of each step to show an example

of our process functioning in a useful manner.

Initially, a test of the Search known locations algorithm

was tested and was confirmed to be roughly linear, taking about

2 milliseconds for every 100 file objects listed in a DFXML

record. When the process was carried through to evidence

mapping, another 10 seconds per discovered Chrome cookie

database containing Gmail cookies was added.

To evaluate the Email Forensics XML format and the

evidence processing step, we designed an experiment which

17Unless the target account has been frozen by the provider, acquiring emails
from the same account at two different times will likely yield two distinct data
sets, preventing the checksums from matching. As such, the checksums are
provided for integrity checks against the same mbox archive to ensure it does
not change while being analyzed and not against past or future acquisitions.

Figure 8: Average Size of mbox and EFXML Representations

Relative to PST in the Enron Data (Normalized)

compares the size of Personal Storage Table (PST) files, their

respective mbox files, and their EFXML representations. The

PST files used were the publicly available Enron Corporation

email data18, which measures 8.70GB across 148 mailboxes,

containing a total of 517,431 messages and 3,299 folders (once

decompressed).This dataset does not include attachments or

certain redacted portions of the original data. Each PST file was

then converted into its respective mbox representation using

the readpst tool available through libPST, yielding 1.2GB of

text data. Then these mbox files were processed using the

mbox2efxml tool discussed in Section IV-E generating 614MB

of data after approximately 3.5 minutes of processing on an

Acer Aspire 4830T19.

When recording the time taken to process each mbox file

individually, as seen in Fig. 7, the average processing time

per message was 0.57ms. Fig. 7 also shows a roughly linear

increase in processing time with regard to the number of

messages, confirming our estimate of O(m ·n ·q) running time.

A comparison relative to mbox size, after conversion from PST,

is depicted in Fig. 8, which visually demonstrates that the file

sizes are positively correlated across this dataset. There was a

notable decrease in file size when converting from PST into

mbox, which may be explained by the block allocation scheme

used in the PST format.

Following the step of processing the evidence into EFXML,

a number of verification tasks were carried out including

reproducing checksums and comparing counts of messages

between the original and EFXML representations. Due to

the nature of email data, it is possible to observe a size

increase in particularly imperfect cases (e.g. where volume

of header data exceeds the volume of body data) after the

addition of the EFXML tags to the data20; however, our

evaluations point toward an average case which does not

approach this situation. Potential size decreases could be seen

when considering attachments in the body of evidence.

18Acquired from http://www.enrondata.org
19http://www.cnet.com/laptops/acer-aspire-timelinex-4830t/4505-3121 7-

35029979.html
20We did, in fact, encounter such a case using a sample acquired at

http://www.dovecot.org/tmp/dovecot-crlf

VI. DISCUSSION

We now discuss our work in relation to the two important

topics of the rules of evidence and collaboration.

A. Rules of Evidence

Any forensic framework must uphold the rules of evidence
(authenticity, admissibility, completeness, and accuracy/reliabil-

ity), which are the canonical guidelines for handling evidence.

The following is a discussion of how our approach supports

these important principles.

The authenticity of evidence from online sources relies on

the same arguments as other live acquisition methods, which

by nature are difficult to verify [20]. While our framework is

capable of facilitating the protection of evidence authenticity, it

remains an issue for developers to implement sound acquisition

plugins for PlugsE that capture an accurate representation of

the acquired data.

Admissibility implies two key concepts: 1) that the evidence

was acquired following proper procedures, and 2) that it

was handled properly after acquisition. As we discussed

in Section I-A, it is the responsibility of practitioners to

understand their duties with regard to the first item. However,

our framework facilitates the second item by using the EFXML

and EFRDF files to record details about the tools that acquired

and processed the evidence, which examiners can include in

chain of custody forms when necessary.

For evidence to be complete, the format into which it is

acquired needs to accurately reflect the original data, as we

mentioned in Section IV-E. Without cooperation from the

service provider, it is impossible to know the exact structure

of the original data, so we must instead focus on retaining the

available data using standards such as RFC 4021 [17] as a guide.

Even though our tools may omit newlines, control characters,

and other non-essential data during the processes of acquisition

and conversion to mbox, we preserve all the header information,

body text, and attachments, which are the portions of interest

and which will hold sway in a legal setting. Furthermore,

we reiterate that our approach provides examiners access

to relevant evidence not available after a simple acquisition

of a hard drive, aiding the examiner to form a more clear,

complete, and well-informed report on the suspect. We do,

however, feel that the algorithm discussed in Section IV-E

is costly and should be improved upon in future work. This

may be achieved through defining and extracting only specific

headers which reveal important information flows (reducing

a linear factor to a constant), using semantic reasoning to

determine which messages to focus on, or other yet unexplored

tactics. As EFXML and EFRDF are structured data formats,

they may facilitate these future approaches by simplifying the

development process of tools which utilize them and following

current trends in the forensics community [9].

Our implementation ensures the reliability and accuracy of

evidence it handles by measuring the integrity of each message

by taking its checksum during supplemental acquisition and

evidence processing. With this, an examiner may verify the

evidence has remained unchanged after each step of the process.

Also, because we provide schemas for EFXML and EFRDF,

developers can ensure the reliability of their own tools more

easily.

B. Collaboration

Our approach facilitates collaboration in many ways. First,

it presents a platform for tool developers that allows them

to focus on building their algorithms and modules correctly

without having to devote precious time to the acquisition of

email data or handling its native format, much the same way

that DFXML has done for disk forensics [21]. Second, the

use of language agnostic formats such as JSON, EFXML, and

EFRDF allows for interoperability between modules in the

system, allowing for both collaborative development and the

sharing of work among developers with different technical

backgrounds as well as allowing for organizations to provide

their implementations as SOA products without revealing the

intimate details of their methodologies, which may reveal trade

secrets or other proprietary information. The ability to share

work and tools allows for scenarios where different examiners

within one or more organizations can take responsibility for

different steps in the forensic process, which could be further

enhanced by use in a collaborative forensic system such as

CUFF [15]. Finally, the use of PlugsE manifest files gives the

system a degree of autonomy, where an administrator need

not have detailed programming expertise, and further increases

interoperability by abstracting the details of how modules are

accessed; to a practitioner the use of locally-hosted command

line tools becomes no different from using a remotely-hosted

SOA product accessed over an RPC protocol while logging

information contained within their outputs maintains the chain

of custody.

VII. CONCLUSION

In this paper, we have defined a general methodology for

carrying out email forensics and shown a proof of concept

implementation with evaluation results. In our approach, we

broadened the definition of credentials, identified methods for

discovering credentials, and demonstrated the need for a generic

evidence representation. Our implementation has shown an

example of credential discovery for Gmail accounts, a method

for reestablishing existing Gmail sessions, the steps needed to

carry out a supplemental acquisition, and a completed evidence

processing phase generating both an intermediate mbox rep-

resentation of email evidence and proposed EFXML/EFRDF

representations of email headers upon which further analysis

can be carried out while addressing the need to facilitate

collaboration amongst developers and organizations during

the creation of tools for forensic investigations as well as the

investigations themselves.

REFERENCES

[1] Fox News, “Petraeus resigns after affair with biographer turned up in fbi
probe, fox news confirms,” http://www.foxnews.com/, November 2012.

[2] B. Nelson, A. Phillips, F. Enfinger, and C. Steuart, Guide to computer
forensics and investigations. Boston, Mass: Thomson Course Technology,
2008.

[3] K. Ashton, “That ‘Internet of Things’ Thing,” RFiD Journal, vol. 22, pp.
97–114, July 2009.

[4] R. Littlehale. (2013, March) Hearing on ECPA part 1: Lawful access to
stored content, written testimony of Richard Littlehale. http://judiciary.
house.gov/hearings/113th/03192013 2/Littlehale%2003192013.pdf. Ten-
nessee Bureau of Investigation.

[5] Radicati Group, Inc., “Email Market, 2012-2016,”
http://www.radicati.com/wp/wp-content/uploads/2012/10/Email-Market-
2012-2016-Executive-Summary.pdf, October 2012.

[6] S. Greengard, “On the digital trail,” Communications of the ACM,
vol. 55, no. 11, pp. 19–21, November 2012. [Online]. Available:
http://doi.acm.org/10.1145/2366316.2366323

[7] G. Grispos, W. B. Glisson, and T. Storer, “Using smartphones as a proxy
for forensic evidence contained in cloud storage services,” in 46th Hawaii
International Conference on System Sciences, 2013, pp. 1–10.

[8] D. Quick and K.-K. R. Choo, “Dropbox analysis: Data remnants on
user machines,” Digital Investigation, vol. 10, no. 1, pp. 3 – 18,
2013. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S174228761300011X

[9] W. Alink, R. Bhoedjang, P. Boncz, and A. de Vries, “XIRAF–XML-
based indexing and querying for digital forensics,” Digital Investigation,
vol. 3, pp. S50–S58, 2006.

[10] S. Garfinkel, “Digital forensics XML and the DFXML toolset,” Digital
Investigation, vol. 8, no. 3–4, pp. 161–174, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1742287611000910

[11] R. Hadjidj and et al., “Towards an integrated e-mail forensic analysis
framework,” Digital Investigation, vol. 5, no. 3–4, pp. 124–137,
2009. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1742287609000036

[12] M. T. Banday, “Analyzing e-mail headers for forensic investigation,”
Journal of Digital Forensics, Security, and Law, vol. 6, pp. 49–64,
2011. [Online]. Available: http://www.jdfsl.org/subscriptions/abstracts/
JDFSL-V6N2-column-Banday.pdf

[13] S. Garfinkel and D. Cox, “Finding and archiving the internet footprint,”
in Digital Lives Research Conference: Personal Digital Archives for the
21st Century, February 2009.

[14] S. Garfinkel, P. Farrell, V. Roussev, and G. Dinolt, “Bringing
science to digital forensics with standardized forensic corpora,”
Digital Investigation, vol. 6, no. Supplement 1, pp. S2–
S11, 2009, the Proceedings of the Ninth Annual DFRWS
Conference. [Online]. Available: http://www.sciencedirect.com/science/
article/B7CW4-4X1HY5C-3/2/090ebc16025d598c775d87c8abbb7ae5

[15] M. Mabey and G.-J. Ahn, “Towards collaborative forensics: Preliminary
framework,” in Information Reuse and Integration (IRI), 2011 IEEE
International Conference on, 2011.

[16] E. Hall, “The application/mbox Media Type,” RFC 4155 (Informational),
Internet Engineering Task Force, Sep. 2005. [Online]. Available:
http://www.ietf.org/rfc/rfc4155.txt

[17] G. Klyne and J. Palme, “Registration of Mail and MIME Header
Fields,” RFC 4021 (Proposed Standard), Internet Engineering Task
Force, March 2005, updated by RFC 5322. [Online]. Available:
http://www.ietf.org/rfc/rfc4021.txt

[18] W3C, “RDF primer,” W3C Recommendation 10 February 2004,
W3C, February 2004. [Online]. Available: http://www.w3.org/TR/2004/
REC-rdf-primer-20040210/

[19] P. Guo, “Email analysis scripts for mbox mailbox files,” http://www.
pgbovine.net/mbox-analysis.htm, Sep. 2006.

[20] B. Schatz, “BodySnatcher: Towards reliable volatile memory acquisition
by software,” Digital Investigation, vol. 4, Supplement, no. 0, pp.
126–134, 2007. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1742287607000497

[21] S. Garfinkel, “Automating disk forensic processing with sleuthkit, xml
and python,” in Systematic Approaches to Digital Forensic Engineering,
2009. SADFE ’09. Fourth International IEEE Workshop on, 2009, pp.
73–84.

