SENIOR THESIS

SCcHOOL OF COMPUTER SCIENCE

Towards Computational Offloading in Mobile
Device Clouds

Author
Afnan Fahim
afahim@qatar.cmu.edu

Advisors
Khaled A. Harras
Abderrahmen Mtibaa

CARNEGIE MELLON UNIVERSITY IN QATAR

Abstract

It is common practice for mobile devices to offload computationally heavy tasks off to a cloud, which
has greater computational resources. We consider an environment in which computational offloading is
conducted amongst mobile devices. We call such an environment a mobile device cloud (MDC). In this
work, we first make the case for computational offloading in MDCs by quantitatively highlighting the gain
in computation time and energy consumption that can be achieved by offloading tasks to nearby devices.
We do this by emulating network conditions that exist for different communication technologies provided
by modern mobile devices. We then present an MDC experimental platform that allows the creation and
offloading of tasks by a mobile device to nearby devices. Such a platform consists of an energy testbed
that measures power consumed on mobile devices, an offloading API, and an MDCloud Android application
deployable across MDC devices. Finally, we create and utilize an MDC testbed, which consists of four
Android devices and energy measurement equipment, in order to validate our emulation results and qualify
the gain in time and energy in a real deployed environment. Using this test bed we show up to 50% gain in
time and 26% gain in energy by employing task offload in MDC’s versus executing tasks locally.

Contents

1 Introduction 5
2 Related Work 6
3 Making the case for Offloading in MDC 7
3.1 Emulation Testbed L e 7
311 Client L 8

3.1.2 0 Server . .o e 8

3.1.3 Traffic Shaper L 9

3.1.4 Testbed Implementation L e 9

3.2 Experimental Methodology L 9
3.3 Results. 10
3.3.1 Case of Low Computation (10 MFLOP) 10

3.3.2 Case of Moderate Computation (30 MFLOP) 10

3.3.3 Case of High Computation (60 MFLOP) 10

3.3.4 Summary of Results 11

4 MDC Experimental Platform 12
4.1 Enmergy Test Bed e 12
4.2 APL . e 13
4.3 MDCloud Application e 14

5 The MDC Testbed 15
5.1 Corroborating Emulation L 16
5.1.1 Case of Moderate Computation (30 MFLOP) 16

5.1.2 Case of High Computation (60 MFLOP) 16

5.2 Offloading to Multiple Devices 17
5.3 Offload Distribution 17
5.4 Computation vs. Communication 19

6 Summary & Ongoing Work 19
Appendices 21
A Mapping Everyday Applications to MFLOPs 21
A.1 Method to calculate MFLOPs of an application 21
A.2 Mappings of Applications to MFLOPs 21

List of Figures

T W N~

~N

Scenarios for offloading computation 5
A high level architecture of our Emulation Testbed 7
Data vs Time Emulation e 11
Data vs Energy Emulation oo 11
Snapshot of (a) our Energy testbed along with (b) power consumption results for different com-

munication technologies. L L 13
Screenshot of MDCloud Application 15
MDC Testbed - A Scenario e 16
Data vs Energy Emulation oo 18

List of Tables

1 Power Consumption of Sending Data using Wireless Technologies [1]

2 Mapping Tasks to MFLOP

1 Introduction

It is common practice for mobile devices to offload computationally heavy tasks to a cloud, which has greater
computational resources. Solutions have been presented that partition any given task into separate parts which
are then offloaded to a cloud so as to minimize the time required to carry out the task [2]. However, this type of
offloading is expensive due to high energy costs as a result of high latency which exists between the cloud and
the offloading mobile device. As an answer to this problem, ‘Cloudlets’ were proposed: smaller clouds placed
closer to users which would make mobile task offloading less expensive in terms of energy consumption and
execution latency [3]. The idea of reducing communication costs by executing closer to the offloader device was
then extended to introduce mobile device cloud computing - where the idea is to offload tasks to nearby devices,
be they mobile or stationary - so as to reduce communication costs and latency [4].

Mobile devices are becoming more and more powerful. In addition, recent studies forecast that, by 2014,
mobile usage will take over desktop usage [5]. Similarly, mobile devices are increasingly becoming resource
intensive, and with the advent of wearable computing devices like the Pebble and Google Glass, the need for
task offloading is even more severe since these devices come with limited processing capabilities [6]. Thus a
solution that would allow such devices to save time and energy by offloading to nearby devices rather than
offloading to the cloud has many practical implications.

In this document we propose task offloading in a network of connected mobile devices, which we call a mobile
device cloud (MDC). We define the device offloading computation as the offloader, and a device carrying out
computation on behalf of another device as the offloadee. We define a task as a combination of data taken as
input, and computation that the task needs to perform on this data in order to yield a result. An application is
comprised of many such tasks, and the more data and computation intensive these tasks are, the more energy
is required to perform them, and the more time it takes to complete these tasks. Figure 1 shows three options
for computational offloading. Namely, a device can offload to a cloud which is far away, to a cloudlet which is
a smaller set of servers located inside a building, nearby coffeshops, etc., or to an MDC. Each of these different
choices offers different trade offs that need to be considered when making the decision of which platform to
offload to.

Attempts have already been made to minimize the time or energy loss by offloading these heavy tasks to the
cloud [2], or a nearby cloudlet [3]. Mobile device cloud computing attempts to not only overcome the potential
unavailability of such infrastructures, but also save time and energy by offloading appropriate tasks to a nearby

v v v

Low RTT Medium RTT High RTT

s
L
b .iii aiii P |
P i
! J ' SHPSHP
Mobile Device LJV“ | o

Cloud (4] Cloudlets [3] Cloud (2]

Offloader
Device

ecccccccc(eccccccccs

Figure 1: Scenarios for offloading computation

set of mobile devices that can carry them out on behalf of the offloader.

This work investigates the potential gain in energy and time which can be achieved by offloading computation
among devices in an MDC. Answering this question involves surveying different communication technologies
are available to computational devices, and finding out what their trade offs are in terms of bandwidth, RTT,
etc. We perform a set of experiments that emulate environments with the same network characteristics as
those provided by these communication techniques so as to be able to determine whether it makes sense to (1)
offload computation at all and (2) if so, for what combinations of data and computation should these tasks be
offloaded so as to conserve time and energy. Using the emulation test bed, we show potential gain in both time
and energy, up to 50% and 23% respectively, which can be achieved by offloading to other mobile devices in an
MDC.

We propose an experimental platform that allows carrying out testing in the context of MDC’s. This
platform consists of an energy testbed, an API with which MDC applications can be built, and a sample
MDCloud application. We utilize this platform to create a test bed which allows us to measure the energy
being consumed while a device is performing different tasks using different communication technologies, as well
as the time taken to offload tasks to other devices and receive the result. We also use this test bed to carry out
experimentation allowing us to obtain insights into what kind of tasks should be offloaded and in what scenarios
is it better to offload tasks to a mobile device cloud versus executing it on the offloader device itself. Using
the testbed, we have shown that it is possible to gain in time and energy, up to 50% and 26% respectively, by
offloading within MDC'’s, as opposed to executing tasks on the offloader itself.

The remainder of this thesis is organized as follows. Section II outlines related work regarding mobile cloud
computing and offloading in mobile device clouds. We make the case for mobile device cloud computing in
Section ITI. We outline the design of the MDC platform that we have built in Section IV. We present the results
and findings of experimentation carried out using a tesbed built on this platform in Section V. Finally, we
discuss our conclusions and on going work in Section VI.

2 Related Work

With the rise in demand for computational resources by mobile applications, various solutions for computation
offloading to more powerful surrogate machines, known as cyber foraging, have been proposed [7]. Most relevant
recent solutions include CloneCloud [2] and MAUI [8]. CloneCloud decides, for any given task, whether to
execute this task locally or to offload it to a remote cloud. It does not rely on developer effort, and by carrying
out static and dynamic analysis, it partitions any given application into tasks that can be offloaded to other
devices. It aims to minimizes the execution time of an application by offloading some of its constituent tasks off
to a cloud, while executing the rest locally. MAUTI relies on developer effort to convert mobile applications in a
managed code environment to better support fine-grained real-time offload decision making; it also considers the
possibility of offloading to different types of high-end infrastructures depending on their RT'T in order to conserve
energy. The impact of large RTT’s on power consumption when offloading computation is further examined and
utilized as an incentive for bringing resource-rich computational infrastructure, known as Cloudlets [3] closer to
mobile devices.

Serendipity [4] and Cirrus [9] devise solutions and architectures for making mobile device clouds possible.
Cirrus looks into the spectrum of devices that can be used as part of a mobile device cloud, and proposes a holistic
solution to cyber foraging which involves offloading not only to other mobile devices, but also to computers
installed on moving vehicles or placed in different areas of a building. Serendipity is the first work that aims to
develop and test a system that handles task allocation in mobile device clouds, and use emulation to explore the
possible speedups gained and energy conserved using offloading in mobile device clouds. However, Serendipity
does not consider all the technologies available to mobile devices in the present day, and it does not consider
different cases of data and computation to see which ones are energy and time efficient as compared to others.

Also, Serendipity only focuses on mobile-to-mobile offloading and does not consider the other two scenarios
of offloading to a cloudlet or a cloud. As opposed to this approach, our work considers the full spectrum of
communication technologies available to mobile devices today, and also considers all the different infrastructures
a mobile device can offload tasks to (Figure 1). For these combinations of communication technologies and
infrastructures, our work identifies what combinations of data and combination are most efficient in terms of
time and energy conservation, and confirms these insights by evidence from real world experimentation.

3 Making the case for Offloading in MDC

In this section, we investigate what combinations of data and computation would make a task suitable for
offloading versus executing locally, considering the different communication technologies available. A variety
of methods exist to carry out our investigation. We list four methods: (i) analytical modeling, (ii) network
simulation, (iii) network emulation, and (iv) real world experiments.

The potentials and limitations for each method have been widely discussed in the literature [10]. Simulation,
while offering a high degree of freedom and reproducibility, is mainly criticized for inaccuracies in capturing
realistic mobility and wireless medium characteristics. Real world testbeds, however, are very much limited
with respect to scale and induce high management overhead.

Because the emulation approach provides a balance between simulation and real world experiments, we
implement an emulation testbed as a first step towards evaluating the potential gain of data and computation
offloading in mobile environments. This testbed evaluates the gain achieved using any of the available communi-
cation technologies for different combinations of data and computation. We identify five types of communication
technologies that could be used to offload tasks, namely, Bluetooth 3.0, Bluetooth 4.0, WiFi Direct, WiFi and
3G. We consider offloading to all three scenarios as shown in Figure 1, namely, to an MDC, cloudlet, or a cloud.

3.1 Emulation Testbed

We implement an emulation testbed as shown in Figure 2 in order to test task offloading in the context
of MDC’s. This testbed allows us to measure the energy consumed and time taken to complete tasks being
offloaded from one mobile device to another. It consists of (1) a client, (2) a server and (3) a traffic shaper.
These components are outlined below.

Client Traffic _Server

| JavaApp |
|® @
I

Data_ _Com _gutltlogl ______
Daﬂioﬂeis@ IP Firewalls H_ Computation

L FreeBSD | | FreeBSD]

Figure 2: A high level architecture of our Emulation Testbed

3.1.1 Client

The Client application represents an offloader device in an MDC. It is a Java Sockets based application which
allows a user to define tasks as combinations of Data and Computation (in MB and MFLOP respectively).
Once such tasks are created, they are sent to a server to be executed. Computation which is carried out on
the server is abstracted as a number of additions of different predefined matrices composed of floating points.
Data being sent to the server is represented as String objects of fixed lengths the size of which is equal to the
specified data size in MB.

This application sends a user-specified percentage of the defined task to a Server application (described
below) at a predefined IP address and port number, i.e., it sends the calculated MFLOP value representing
the computation to be offloaded, and a String object the size of which equals the data to be offloaded. The
client application keeps track of the total time it takes to complete the offload operation, and receives the server
computation time (how much time it took to execute the task by the Server application). The Client application
carries out each offload operation three times and calculates the average total offload time and average server
computation time. It then writes these times to a file.

The client application logs the time taken to (1) offload and (2) compute the task, as well as the calculated
energy consumed by the offload operation. We only take the energy consumed due to communication into
consideration. We define completion time as the total time to send data, carry out computations on each
of the connected devices in parallel, and receive the result from each. We defineenergy consumed as the
communication energy that is spent while offloading the task to the offloadee device, and it includes both the
energy spent by the offloader to send the task as well as the energy spent by the offloadee to receive the task.
We calculate the energy consumed by multiplying the communication time with the corresponding power value
in Table 1. These values have been taken from work carried out by Friedman et. al. [1], and information present
in the specification documents provided by the manufacturers of the chip set being used by the respective
communication technology [11]. Friedman et. al have devised an experimental platform to measure the energy
consumed by a mobile device while the device performs different tasks. We assume that the energy required to
send and receive data using the communication technology is the same, and thus use the power measurements
for sending operations only when calculating energy.

3.1.2 Server

The Server application represents an offloadee device in an MDC. The Server application is also a Java Sockets
based application. It listens for any tasks that the client application might offload to it. Once it receives a
task sent by the client application, it executes the task and measures how much time it takes to carry out the
computation. It then sends this time value back to the Client application and continues listening for other
tasks. In our work, we do not emulate the computation capability of the offloadee device, and this is something
we are considering as future work.

Technology ~ Power (mW)

Bluetooth 4.0 50
Bluetooth 3.0 520
WiFi Ad Hoc 1548
WiFi 1568
3G 2500

Table 1: Power Consumption of Sending Data using Wireless Technologies [1]

3.1.3 Traffic Shaper

The main goal of the traffic shaper is to emulate the network conditions that are provided by the different
communication technologies as well as the offloadee destination that we consider in our experimentation. All
the packets going from the Client application to the Server application first go through a traffic shaper. Once
the packets go through the traffic shaper, a certain level of RT'T and bandwidth constraint are introduced to
the connection which exists between the Client and the Server to emulate the network conditions provided by
the type of technology being emulated. We use bandwidth values from the work carried out by Friedman et.
al [1] as well as specification documents provided by technology developers [11]. In case of RTT, we actually
measure the RTT that exists for each of the communication technologies, as well as the RTT that exists when
communicating with a Cloud. These measurements are carried out by pinging a server listening on each of the
technologies and infrastructures that we are considering five times, and taking a average of the time it takes to
ping the server and receive the result. Since Cloudlets are not widely available, we pick two cases of RTT’s, of
15ms and 30ms. We assume that no packet loss exists in the connections that we are emulating.

We consider two choices for building a setup that allowed us to emulate the environment - namely - NIST
Net [12] and Dummynet [13].

NIST Net is implemented as a kernel module extension to the Linux operating system, and is a general
purpose tool for emulating network performance. It allows any computer to be converted into a router and this
box can then be used to vary network conditions between different connected devices. We installed NIST Net
on a VMWare virtual machine running on an Ubuntu machine. It was very challenging to work with NIST
Net since it is a kernel module and was thus implemented on top of specific Ubuntu kernels, which aren’t
supported anymore. Since 2005, NIST decided to stop maintaining this software [14], and thus researchers have
been relying on a combination of patches for different versions of Ubuntu kernel - and even these patches are
outdated. In light of all these problems, we then decided to look into other emulation methods.

Dummynet is also implemented as a kernel module, on top of Free BSD, and is still supported by the
FreeBSD Foundation. It is built on top of the IP Firewall framework, and using it, any connection coming
in or going out of the system can be altered to introduce packet loss, latency, and bandwidth limitations in
the connection. Since these functionalities fit our requirements, we decided to move forward with this piece of
software as our emulation tool.

3.1.4 Testbed Implementation

The client application runs on an Intel Core 2 Duo machine running on Ubuntu 12.04 LTS. We call this machine
the host machine. The server application runs on a virtual machine which is hosted on top of the host machine
which runs the client application. This virtual machine runs FreeBSD. We install dummynet (the trafficshaper)
as a kernel module in the virual machine that runs the server application. The high level architecture of our
testbed, with the client, server and traffic shaper, can be seen in Figure 2.

3.2 Experimental Methodology

In our experiments, we vary the computational size (denoted by MFLOP) and data being sent (denoted by MB).
We measure the completion time and the energy consumed for these different combinations of computational
size and data being offloaded to another device. In each of the experiments we offload half the computation
and carry out the rest of the computation on the offloader device itself.

We note that 10, 30 and 60 MFLOP correspond to computational complexities of low, medium and highly
complex applications. A detailed method to estimate the MFLOP of a given application is given in Appendix
A. For each of these three cases we vary the data being offloaded along with the task (0 - 30 MB at intervals

of 2 MB). For each of these cases we measure the time taken to carry out the task offload, and use this time to
calculate how much energy was consumed by the task offload operation.

3.3 Results

The results of the emulated experiments are outlined in Figures 3 and 4. We present results for three cases
of computation - low, medium and high. Each of these cases corresponds to a certain value of computation
in MFLOP, as described in the previous section on Experimental Methodology. These results provide us with
insights into the potential gains in time and energy that can be achieved by offloading in MDC’s.

3.3.1 Case of Low Computation (10 MFLOP)

The first set of experiments deals with offloading tasks of low computational intensity - the same as that of a
10 move chess game. The results for this experiment are given in Figures 3(a) and 4(a). Figure 3(a) shows
that in terms of time, gains can be made by offloading versus executing locally. We can see that the ”Local
Execution” line crosses with the offload time at a certain point. We can thus infer that, for tasks made up
of data greater than this point, it is better to execute such tasks locally since these tasks would consume less
time being executed locally versus being executed in parallel using task offload. Specifically, we find it efficient
in terms of time to offload tasks of less than 8 MB using Bluetooth, WiFi, or Cloudlets, and in this way it is
possible to achieve up to 50% gain in time by offloading to one device.

In terms of energy, Figure 4(a) shows less of a gain to be made in terms of energy. As we can see, the
horizontal line only intersects with one of the communication technologies (Bluetooth), and the potential gain
that can be made in terms of energy by offloading a task of such low computation is very low, and applicable
only to a small data size. Specifically, for tasks less than 15 MB, energy can be conserved by offloading using
Bluetooth, by up to 25%; above that value, it is more energy efficient to execute the task locally. Also, we see
that up to 80% gain in energy can be achieved by using Bluetooth 4.

3.3.2 Case of Moderate Computation (30 MFLOP)

The second set of experiments deals with moderate computational intensity, the same as popular video games,
as shown in Appendix A, Table 2. In the case of moderate sized computation, as shown in Figure 3(b), we see
that because we have now increased computation, we can now save more time by offloading. In terms of time,
we now see that for tasks with data sizes up to 5 MB, we see gain of up to 40% gain in time by offloading to
another device for any of the different technologies and infrastructures that we have considered. In addition,
for all the data sizes we have considered (up to 30 MB), except for offloading to the Cloud, time gain is seen by
offloading using any of the communication technologies and infrastructures that we have considered.

In terms of energy, as seen in Figure 4(b), up to 44% gain in energy was registered by offloading using
Bluetooth. We also see that the line denoting local execution doesn’t cross the line denoting Bluetooth execution,
thus showing that now for all the data sizes that we have considered, in terms of energy, gain was registered by
offloading the task rather than executing it locally.

3.3.3 Case of High Computation (60 MFLOP)

The third case deals with high computation - the same complexity as that of an application recognizing objects
from a live video feed (See Appendix A, Table 2). In the case of a large sized computation (as shown in
Figure 3(c)), we observe that with the larger amounts of computation, there is a greater potential for saving
time by offloading than executing locally. For data sizes of of less than 5 MB, it makes sense to offload, as up to
50% time can be conserved as is the case in WiFi Ad-hoc, Bluetooth 4 and offloading to a nearby cloudlet. For

10

Data Size vs Time (10 MFLOP) Data Size vs Time (30 MFLOP) Data Size vs Time (60 MFLOP)

BT4-RTT 3ms —— E BT4-RTT 3ms —— BT4-RTT 3ms ——
T RTT 60ms. BT- RTT 60ms BT- RTT 60ms
3G-Cloud - RTT 300ms -—-x. . 3G-Cloud - RTT 300ms --x. 3G-Cloud - RTT 300ms --x.
WiFi-Adhoc - RTT 2ms & I WiFi-Adhoc - RTT 2ms & WiFi-Adhoc - RTT 2ms & x

251 WiFiCloudlet - RTT 15ms . x* 4 35 WiFCloudlet - RTT 15ms o 45 _sWiFtGloudlat- RTL1SMS. s & s a4 s s

WiFi-Cloudet - RTT 30ms. I . WiFi-Cloudet - RTT 30ms. * WiFi-Cloudet - RTT 30ms. ¥
WiFi-Cloud - RTT 225ms - -e:¢ - WiFi-Cloud - RTT 225ms - -s- WiFi-Cloud - RTT 225ms - -s-

ocal Execuligne &~ o Local Execution — -~ -

lime (s)
¥
lime (s)
¥
lime (s)

i - e
i

o 15 B % E) o s o 15) o i) % W
Data Size (MB) Data Size (MB) Data Size (MB)

(a) Low Computation (b) Moderate Computation (c) High Computation

Figure 3: Completion time for (a) Low, (b) Medium and (¢) High computationally intensive tasks.

Data Size vs Energy (10 MFLOP) Data Size vs Energy (30 MFLOP) Data Size vs Energy (60 MFLOP)

i %0 120
BT4-ATT 3ms —— o BT4-ATT 3ms —— x BT4-RTT3ms ——

o4
ok
H

x 100 |

Energy (J)
Energy (J)
Energy (J)

25 30 o 5 25 30) 5 1 25 30

0 15 20
Data Size (MB)

(a) Low Computation (b) Moderate Computation (c) High Computation

0 15 20 10 15 20
Data Size (MB) Data Size (MB)

Figure 4: Energy consumed by (a) Low, (b) Medium and (c¢) High computationally intensive tasks.

data sizes greater than 5 MB, it time can still be gained by offloading, but not to the cloud, since offloading to
the cloud has very high latency costs associated with it. It also needs to be noted that for all the technologies,
the time it takes to complete the offload operation steadily increases as data size increases so for potentially very
data-intensive tasks greater than the upper limit we considered (30 MB),time can be conserved if we execute
them locally versus offloading them to the cloud.

In terms of energy (Figure 4(c)), for data sizes less than 2 MB, it makes sense to offload the computation
to any communication technology or infrastructure available, and a maximum gain of 23% in energy can be
observed. Above 5 MB, it still makes sense to offload but not to the cloud, because the latency associated with
offloading to the cloud shrouds the potential gain that can be achieved by offloading to a MDC.

3.3.4 Summary of Results

Amongst all the graphs in Figure 3, we can see that there is a lot of time gain in offloading to an MDC rather
than offloading to a cloud. We have registered up to 80% savings in time by offloading to an MDC as opposed to
offloading to the cloud. We have also registered up to 20% savings in time by offloading to an MDC as opposed
to a cloudlet located nearby. Gains for offloading to a cloud are significantly lesser and apply to fewer cases of
data. Similar insights can be seen about energy gains. As it can be seen across Figure 4, for computationally
less intensive tasks, energy can be gained by executing them locally versus offloading, and the gains are up to
80%. However we have only registered a maximum of 50% gain in energy that can be achieved by offloading to a
cloudlet, and no gain at all by offloading to a cloud. With these results we can decide, given the computational
complexity of the task, and the availability of different communication technologies and infrastructures, whether
to offload the task or execute locally.

11

4 MDC Experimental Platform

Researchers in mobile cloud computing resort to implementing or migrating representative resource heavy
applications on mobile devices over which they evaluate new architectures, task scheduling algorithms, or
different offloading techniques. Since appropriate, flexible, and open source mobile applications are not easily
accessible, this approach is time consuming and takes the focus away from the main research contributions.
Even with the effort exerted in integrating research contributions with representative applications, results are
coarse grained, potentially application dependent, and take away the ability of evaluating future applications
that might not exist yet.

Based on this observation, we believe there is a need for a generic flexible platform that can be utilized by
researchers to freely test mobile cloud computing resource sharing and offloading solutions. This tool should
decouple two main components that characterize any mobile application: the amount of data as well as the
computational load that any task or job will require. These two components of the application should also be
easily broken down into distributable sub-tasks that researchers can control in real-time. Similar to simulations,
this flexibility in the generic platform allows researchers to test their solutions over a fine-grained range of
parameters that can represent a wider spectrum of current and future applications.

We introduce our mobile device cloud (MDC) experimental platform for mobile cloud computing research.
Our platform consists of (1) an energy test bed, (2) an API for mobile-to-mobile task offloading, and (3) an
Android application built using the API to carry out experimentation on real world MDC'’s.

The platform makes way for further research in the context of MDC’s. It can be used, for instance, to test
various offloading strategies, and identifying the best solutions for saving on time and energy in the context of
real world MDC’s. One particular work uses the platform to maximize the lifetime of an MDC by sharing of
tasks among the network connected devices[15], where lifetime is defined as the time it takes for at least one of
the devices of an MDC to deplete its battery.

4.1 Energy Test Bed

In order to calculate the energy consumed by different operations carried out by a device in a mobile device
cloud, we need to know the power taken for each of the different operations that the device performs. We
create an energy test bed to be able to make these measurements. As shown in Figure 5(a), we create this by
removing the battery from the device being tested and soldering wires connected to a power supply from which
voltage is supplied. The power supply that we use comes with a built in ammeter and voltmeter. We then
provide a constant voltage according to the manufacturer specifications and power the device on. Using the
current and voltage readings from the ammeter and voltmeter respectively, we are able to determine the power
being consumed by the phone at any instance. Figure 5(a) shows a Samsung Galaxy SII device connected to
the power supply. In the particular scenario shown in this figure, the device is consuming current of 3.6 A and
Voltage of 0.14 V, and this means that the instantaneous power being consumed by the device is 0.504 W.

We carry out different tasks on the device and measure the power being consumed for each of these tasks.
All of these tasks are carried out for a minute each to account for system load fluctuations, and for each of the
tasks, a base reading is taken before performing the task itself. Thus the power being consumed by the specific
task can be calculated by subtracting the base value from the total power being consumed while the task is
being performed. We carry out such experiments for all of the communication technologies we have identified
above, apart from Bluetooth 4.0 since support for it is not currently available on Android phones. The testing
is carried out on Samsung Galaxy SII and SIII phones.

Figure 5(b) compares different energy measurements while performing wireless transfers using Bluetooth
(BT) and WiFi Direct (WiFi D.) between two Samsung SIT devices and two Samsung SIIT devices. We send the
same data size using both Bluetooth and WiFi Direct, and show that Bluetooth is 80% to 120% more energy

12

1000 -
i
800 ig; .
— X/
Lo)
T 00t X T
I o
[8 ot
% 400 o w i
* S 7 e % b
200 + i b 5 &2 K S S I
o e Lo Lo 19 Lol
oy i o i o st o
0 po e B e P s s i W
% %/(\ 6))3 &o /% . 7 %O ,%
Y A C o3 7 70 (S
& % % N . Y, 4,
K T R ” Q &,
e S & ’),)Q O O
. 5
(a) Energy Testbed (b) Results from Energy Testbed

Figure 5: Snapshot of (a) our Energy testbed along with (b) power consumption results for different communi-
cation technologies.

efficient than WiFi Direct. Moreover, we notice that sending data costs 10% to 25% more energy than receiving
data independently of the wireless communication used. This plot confirms the fact that WiFi Direct is an
energy expensive technology; in fact, SIII with WiFi Direct radio on and connected to another SIII, consumes
almost the same energy than SIII sending via Bluetooth to another SIII device. We note that the Samsung SII
does not implement WiFi Direct, so we plot only the SIII measurements in Figure 5.

4.2 API

For researchers to carry out experimentation on MDC’s, a set of functionalities needs to be provided to test
different offloading strategies. We develop an API that allows task definition and sending and receiving of tasks
using different communication technologies. We implement the API using Java and the Android framework.
Below we have defined the different features of this APIL.

e PreOffloader - Allows a user to specify a task as a composition of data (in MB) and computation (in
MFLOP). It supports user data entry using the phone’s interface, or creation of multiple tasks dynamically.

e LocalExecutor - Runs as a service in a background process. It takes in a task and executes it on the
offloader device itself, before returning the task to the TaskOffloader class.

e BluetoothOffloader - Takes as input a task and a percentage of how much of that task needs to be
offloaded. It divides the percentage of the task to be offloaded amongst devices paired with the offloader
devic. Following this, it sends the offloadee portions of the task via bluetooth, and then executes the tasks
on the offloadee devices and itself in parallel.

13

e WiFiDirectOffloader - Works in a similar fashion as the BluetoothOffloader , except that it uses
WiFi Direct to offload the tasks. Execution is also carried out in parallel.

e RemoteOffloader - The RemoteOffloader sends a task to a given IP address. We used this functionality
to offload tasks to a Cloudlet or a Cloud based device.

Implementation Details - The API runs the fraction of the task that needs to be executed locally in a
separate thread in the background using Android’s IntentService facility, and once the local execution of the
computation is completed, the time taken to run this computation is written to a file. Parallel to this execution,
another thread divides the computation and data into as many parts as offloadee devices in the mobile cloud,
creates as many threads as these devices, and uses each of these threads to offload to each offloadee device its
share of the task. The sending and receiving of tasks for each communication technology is carried out by using
ServerSocket and Socket on top the relevant API for each of the technologies provided by Android.

Since the devices being used in our mobile device cloud run on multi core processors, we want to leverage
that in order to make sure phones with more processing capabilities executed the code in more efficient ways so
that offloadee computation time can be reduced. This would help us test the scenario where a device with less
computational capability offloads to a set of more powerful devices. In order to achieve maximum performance
gain when executing computation in parallel, we uses AsychTasks, a functionality provided by Android through
which we set high priority to the threads carrying out the computations. This optimization, however, does not
show much reduction in computational time, but this is the maximum gain we obtain given the options that
Android’s 4.1 version provides developers with.

Usage - So far we have implemented this API on the Android framework. This application can be installed
on any number of devices in a mobile device cloud. It can be used to set up a mobile device cloud where
one device is an offloader and the rest of the devices are offloadees. The application’s interface can then be
used to specify how much data and computation needs to processed, and what percentage of these should be
offloaded and what percentage should be executed locally. The interface also allows choosing the communication
technology that should be used in order to offload the task and receive the result.

4.3 MDCloud Application

We implement an application called MDCloud that uses the API described above, and runs on Android 4.1.
The interface of the application allows a user to create a task by specifying the amount of computation and
data (in MFLOP and MB, respectively). It also allows the user to select the communication technology to be
used to offload the task from among a list of choices given in a drop down menu. This list also contains ‘Cloud’
and ‘Cloudlet’ options using which the user can offload to one of those infrastructures hosted at specified IP
addresses. In addition, the interface also provides two seek-bars that allow the user to specify what percentage
of computation and data should be offloaded, and the remaining percentage is executed locally. Once the task
has been offloaded, the application keeps track of the time it takes to get the result from all the offloadees, as
well as the time it takes for each offloadee to complete it’s assigned computation.

This platform allows users to generate tasks with different computational loads (measured in total floating
point operations and denoted in MFLOP) and relevant data input (measured and denoted in MB). It also
provides APIs that enable building more specialized applications that can offload sub-tasks, set by the user,
using various wireless technologies, such as WiFi, Bluetooth, or WiFi Direct. The MDC platform enables the
application to log the total response time for each task (i.e., the time when the task was initiated to the time
when the results are sent back to the initiating user). It also logs the computational time for every device as
well as the data transfer time separately.

The application allows the user to select the number of connected devices from a pool of devices within
its proximity, as well as the amount of data and computational load to be offloaded to each connected device.

14

®

I8 MDCloud

Computation (MFLOP)
10

Data {MB)
2

Bluetoath

WiFiDirect Send

Bluetooth
Virtual Machine
Cloudlet

Cloud

Execute Locally
% Compulation Olfloaded: 40%

% Data Cffloaded: 50%

Figure 6: Screenshot of MDCloud Application

When the user executes a task generation and offloading scenario by pressing the send button, the original
task is, therefore, fragmented and the selected percentages are offloaded to remote devices as specified by the
user. The remaining sub-tasks are executed locally. We install the application on multiple phones and use the
application of offload tasks from one phone to multiple offloadees. More details on the scenarios under which
we test the MDCloud application can be seen in the next section.

A screen shot of one of the uses of the application can be seen in Figure 6. In the particular scenario pictured
in this figure, the application is set up to ofload 10 MFLOP of computation and 20 MB of data using Bluetooth,
where 40% of the computation and 50% of the data would be offloaded to the remote paired devices while the
rest would be executed locally.

5 The MDC Testbed

We create an experimentation testbed which uses the MDC platform to gain insights into the energy and time
tradeoffs when offloading in real world MDC’s. Our experimental testbed consists of two Samsung Galaxy SII
and two Samsung Galaxy SIIT phones, all running the MDCloud application we have described in the previous
section. A snapshot describing the testbed can be seen in Figure 7. In the particular scenario pictured in the
figure, a MDC consisting of two devices has been set up, where one of the devices (the SIII) is offloading a task
to another device (the SII), and the power being consumed by SII is being measured.

Using the MDCloud Application, we attempt to obtain practical insights useful for making offloading deci-
sions in mobile device clouds. We thus define four scenarios, and using their results, make conclusions about
what strategy would be good for developing an offloading algorithm. In all of these scenarios we chose Bluetooth
as the standard communication technology, because of its widespread availability in almost all modern smart
devices.

15

Figure 7: MDC Testbed - A Scenario

5.1 Corroborating Emulation

In this scenario, we consider the case of two devices in a mobile device cloud, where one device is the offloader
and the other is an offloadee. We consider moderate and high computation (30 and 60 MFLOP, respectively),
and we vary data between 0 and 20 MB. In all cases, we divide the task into two equal parts: one for offloading
and the other for executing locally. These experiments are of similar nature to the ones carried out using the
emulation testbed as outlined in Section III. The idea is to corroborate the findings of the emulated testbed to
see if similar results are achieved, to be able to justify that our emulated testbed mimicked real world MDC’s
testbed correctly.

5.1.1 Case of Moderate Computation (30 MFLOP)

The results for this experiment can be seen in Figures 8(c) and 8(a), where we have plotted data on the
horizontal axis and time and energy on the vertical axes. As can be seen, for tasks less than 3 MB, up to 40%
gain in time and up to 20% gain in energy can be achieved by offloading half of the task to another device
in the MDC. However, since the computation is negligible, we see that in Figure 8(a), the lines denoting time
consumed by offloading crosses the line denoting time taken by local computation earlier in the graph, showing
that only for a small subset of the experiment does it make sense in terms of time conservation to offload versus
executing locally. Similarly in the case of energy (Figure 8(a)), the data component of a task that can actually
show a conservation in energy has a very small upper limit.

5.1.2 Case of High Computation (60 MFLOP)

The results for this experiment can be seen in Figures 8(d) and 8(b) where we have plotted data on the
horizontal axis and time and energy on the vertical axes. For a higher MFLOP value, we see a larger gain in

16

both energy and time conservation that we can achieve by offloading the task to another device. We see that
we can gain up to 50% gain in time and 26% gain in energy by offloading half of the task to another device.

As observed, the crossing that is seen in the graphs 8(d) and 8(b) has shifted horizontally. This means that
since we are now considering higher computation, a larger set of tasks can show a gain in both time and energy
in case we offload them to another device in an MDC, and these tasks can now have a higher upper limit for
the amount of data that they are composed of.

What we have seen in these two experiments corroborates what we saw in the emulation experiments we ran
in Section ITI. We can thus confirm that in the case of real world MDC'’s it is definitely possible to gain time
and energy by offloading to other devices.

5.2 Offloading to Multiple Devices

In this scenario, we consider the case of three devices in a mobile device cloud, where one device is the offloader
and the remaining two are offloadees. We consider a task of fixed computation size (60 MFLOP), and we very
the data from 5 MB, 10 MB and 20 MB. We carry out two experiments. In the first experiment, we offload
half the task to another device and execute the rest of the task locally. This first experiment has already been
carried out in section 5.1.2. In the second experiment we divide the offloaded task equally among the offloader
and two offloadee devices such that each device carries out 33% of the task. We measure the time consumed
in each of these different experiments. The goal of this experiment is to determine if gain in time can be maid
by offloading a task to multiple devices instead of just one.

The results can be seen in Figure 8(b). From our experiment, we can see up to 40% gain in time by offloading
to two devices as compared to one. We can also see that for higher data values, the distance between the time
taken to execute on one device and the time taken to execute on two devices is narrowing. This is because for
higher data values, the overhead that comes from having a lot of data being sent mitigates the potential gain
that can be made by distributing the computation among multiple devices.

5.3 OfHoad Distribution

We now consider the case of a mobile device cloud consisting of two devices, where one is the offloader and the
other is the offloadee. We offload different tasks composed of a fixed amount of computation (60 MFLOP), and
we vary the data from 0 to 5 MB.We carry out five experiments, one for each data size. In each experiment, we
vary the percentage of computation that is being offloaded to the offloadee device, between 0% and 100%. The
goal of this experiment is to determine the optimal percentage to offload so as to maximize gain in time and
energy. Determining such optimal distribution in runtime will be investigated in future work. We also calculate
the energy being consumed in each of these experiments to see what is the optimum offload percentage which
ensures maximum gain in time and energy.

The results for time measurements can be seen in Figure 8(e). As we can see, for lower data values (1-4
MB), there line that represents the time taken is in the shape of a curve. In all these cases, the lowest time it
took to complete the offload operation is when 20% of the task was offloaded to the offloadee device and the
rest was executed locally. We can also see that by varying the percentage of the task that is being offloaded
versus being executed locally, we can see up to 51% gain in the time it takes to complete the offload operation.

The results for energy calculations for the above set of experiments can be seen in Figure 8(f). We can see
that for all the data values that we have considered, the most gain in energy is made by offloading 100% of the
task to another device. We can also see that up to 16% conservation in energy can be achieved by offloading
the whole task to the offloadee device versus executing the whole task locally.

17

Data vs Time - 60 MFLOP

80
~Total Time 140 -
70 - -=Total Energy
100 - :
~Local 120 | —-One Device
Computation - Local Computation 60 - ~Local
801 100 7 . Two Devices Computation
= ___:50 4
- 1] =
£ e Fa0
[£ 2
40 - E 60 - S0 |
20 - / “] / 20 - /
20 - 10 +
0
0 5 10 20 0 0
Data (MB) 0 5 10 20 0 5 10 20
Data (MB)

(a) Data vs Time - 30 MFLOP

(b) Data vs Time - 60 MFLOP

Data (MB)

(c) Data vs Energy - 30 MFLOP

100 - 60 - Optimum Splitting (Energy) - 60 MFLOP
%0 | 35
80 | -=Total Energy 50 - \
30 -
70 1 ocal Computation 40 - \
S 60 - = 1 “\\\.
= =
B s 2 e
: g | T
S 40 - = 215
/ 1 ~1MB -=2MB
30 1 0 #1MB 10 |
20 + 2 MB “3MB 4MB
] 5
10 - 10 3 MB —5MB
o 0
0 0 20 40 60 80 100
0 5 10 20 1 N 3 4 s 6 Offload Percentage (%)
Data (MB)

(d) Data vs Energy - 60 MFLOP

Computation Offload Percentage
(e) Optimal Offload w.r.t Time
140 -

120 -

B Communication Time
m Computation Time

{1, 1} {20,1} {20,10} {1,20}

{MFLOP, MB}

{20, 20}

(f) Optimal Offload w.r.t. Energy

(g) Computation vs Communication

Figure 8: Results from MDC Testbed Experiments

18

5.4 Computation vs. Communication

We consider the case of a mobile device cloud consisting of two devices, where one is the offloader and the other
is the offloadee. We offload different tasks composed of different amounts of data and computation. We define
low, medium and high data as 1 MB, 10 MB and 20 MB respectively, and we define low and high computation
as 1 MFLOP and 20 MFLOP. The goal of this experiment is to determine which factor (data or computation)
consumes more energy during the offload operation.

The results of this experiment can be seen in Figure 8(g). For these common tasks that we have considered,
what we observe is that communication can take up to 100 times more time than computation does. We also
see that an increase in 20 MB of data inside a task can cost 4 times more time than increasing 20 MFLOP of
computation in the task being considered.

This analysis shows that the bottleneck when it comes to offloading is the data that the task is composed of,
and not the computation. Having more computation provides avenues for more gain to be achieved in terms of
time of time and energy conservation, while having more data means a reduction in the energy and time that
can be achieved by offloading tasks into an MDC.

6 Summary & Ongoing Work

In this work we have shown that mobile devices can be used to save both time and energy when it comes to
executing computationally heavy tasks. We have shown a potential gain in both time and energy, up to 50%
and 23% respectively, which can be achieved by offloading to other mobile devices in an MDC. We have also
corroborated these results by carrying out experimentation on our MDC test bed. Our results present different
insights into the factors that affect the offloading decision by carrying out further testing on our MDC test bed.

We provide an API that allows algorithms for offloading decisions to be tested on an actual mobile device
cloud consisting on multiple devices. We have also used the MDC platform to carry out experiments that have
given us insights into how to decide whether to offload a particular task or not, and what potential strategies
could be used to make this decision. We have shown up to 50% gain in time and 26% gain in energy by
offloading, and these results corroborate what we learned from our emulation testbed results.

In the future we would like to publish the MDC API that we have built so that other researchers in the
field of mobile cloud computing can create testbeds and experiment different offloading strategies. We plan to
enhance the MDC Application interface so that it allows us to specify different percentages of tasks to be sent to
different devices, according to the characteristics of the devices. We also intend to carry out real world mobile
cloud computing experiments by giving devices running the MDC Application to different students on campus
to keep with them throughout the day and evaluating gains in time and energy by employing task offloading.

While we have looked into making offloading decisions based on the contents of the task at hand, we would
also like to explore which device a task should be offloaded to given information about the devices that are
part of an MDC. We believe that leveraging social context and contact history of the device holder and the
device itself to determine which devices are most likely to respond the fastest and thus result in the most energy
efficient offloading choice, to be a promising direction of research. For each of the different strategies used to
determine which device a task should be offloaded to, we would then run simulations against actual contact
history data sets to discover which of the strategies are most energy/time efficient in real world situations.

References

[1] R. Friedman, A. Kogan, and Y. Krivolapov, “On power and throughput tradeoffs of wifi and bluetooth in smart-
phones,” in INFOCOM, 2011 Proceedings IEEFE, 2011, pp. 900-908.

19

2l

B3l

(4]

[10]

(1]
(12]

(13]
(14]

(15]

[16]

B.-G. Chun, S. Thm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud: elastic execution between mobile device
and cloud,” in Proceedings of the sizth conference on Computer systems, ser. EuroSys '11. New York, NY, USA:
ACM, 2011, pp. 301-314. [Online]. Available: http://doi.acm.org/10.1145/1966445.1966473

M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for vm-based cloudlets in mobile computing,”
Pervasive Computing, IEEE, vol. 8, no. 4, pp. 14-23, 2009.

C. Shi, V. Lakafosis, M. H. Ammar, and E. W. Zegura, “Serendipity: enabling remote computing among intermit-
tently connected mobile devices,” in MobiHoc, 2012, pp. 145-154.

(2013) Microsoft tag survey. [Online]. Available: http://www.digitalbuzzblog.com/wp-content/uploads/2011/04/
2011-mobile-statistics.jpg

(2013) Techcrunch google glass api article. [Online]. Available: http://techcrunch.com/2013/04/15/
google-releases-glass-mirror-api-developer-guides-details-best-practices/

J. Flinn, “Cyber foraging: Bridging mobile and cloud computing,” Synthesis Lectures on Mobile and Pervasive
Computing, vol. 7, no. 2, pp. 1-103, 2012.

E. Cuervo, A. Balasubramanian, D. ki Cho, A. Wolman, S. Saroiu, R. Chandra, and P. Bahl, “Maui: making
smartphones last longer with code offload,” in MobiSys’10, 2010, pp. 49-62.

C. Shi, M. H. Ammar, E. W. Zegura, and M. Naik, “Computing in cirrus clouds: the challenge of intermittent
connectivity,” in Proceedings of the first edition of the MCC workshop on Mobile cloud computing, ser. MCC ’12.
New York, NY, USA: ACM, 2012, pp. 23-28. [Online]. Available: http://doi.acm.org/10.1145/2342509.2342515

R. Jain, “The art of computer system performance analysis: techniques for experimental design, measurement,
simulation and modeling,” New York: John Willey, 1991.

(2013) Bluetooth low energy. [Online]. Available: http://en.wikipedia.org/wiki/Bluetooth_low_energy

M. Carson and D. Santay, “Nist net: a linux-based network emulation tool,” SIGCOMM Comput. Commun. Rev.,
vol. 33, no. 3, pp. 111-126, Jul. 2003. [Online]. Available: http://doi.acm.org/10.1145/956993.957007

L. Rizzo, “Dummynet: a simple approach to the evaluation of network protocols,” SIGCOMM Comput. Commun.
Rev., vol. 27, no. 1, pp. 31-41, Jan. 1997. [Online]. Available: http://doi.acm.org/10.1145/251007.251012

(2013) Nist net home page. [Online]. Available: http://www-x.antd.nist.gov/nistnet/

A. Mtibaa, A. Fahim, K. Harras, and M. Ammar, “Towards resource sharing in mobile device clouds: Power balanc-
ing across mobile devices,” in Proceedings of the second edition of the MCC workshop on Mobile cloud computing,
ser. MCC ’13. New York, NY, USA: ACM, 2013.

J. J. Dongarra, P. Luszczek, and A. Petitet, “The linpack benchmark: past, present and future,”
Concurrency and Computation: Practice and Ezperience, vol. 15, no. 9, pp. 803-820, 2003. [Online]. Available:
http://dx.doi.org/10.1002/cpe.728

20

Appendices

A Mapping Everyday Applications to MFLOPs

In order to figure out what MFLOP values can be considered as ”low”, "medium” and ”high”, we need a
mechanism to measure the MFLOP values used by common applications adopted in our every day lives. We
have outlined this mechanism below.

A.1 Method to calculate MFLOPs of an application

Our mobile testbed is implemented on the Android platform. We use a benchmarking application called Linpack
[16] which stress tests the CPU and provides the number of MFLOP that the CPU is able to handle. While
this benchmarking operation is running, we note down the CPU load - a functionality provided by Android
Developer Tools. We calculate the ”MFLOP per unit load” by dividing the total MFLOP consumed in the
benchmarking process by the load. Using this value, we are then able to run any arbitrary application and
measure how many MFLOPs are being consumed by an application by multiplying the CPU load with the
MFLOP load per unit.

A.2 Mappings of Applications to MFLOPs

We used the above method to measure MFLOP values of most common everyday applications on the Android
platform. For each of the three categories we are considering in this thesis, we identify one application that
corresponds to that category. We have identified a chess game called Chess for Android as a low compute
intensive application. For this game, we measure MFLOP when the application is making a move in high
difficulty mode. For a moderate sized computation application, we identify a common video game called Angry
Birds Space. For this category of high computation we identify an object recognition application called Google
Goggles (running in continuous mode, where the application identifies objects in real time from a live video
input). We install these applications on a Samsung Galaxy SIIT device. We use the above method to measure
the MFLOP values being consumed by each of these applications. We carry out each experiment three times
and take an average of the computed MFLOP value. The results for these experiments can be seen in Table 2.

Table 2: Mapping Tasks to MFLOP

Application MFLOP
Chess Game 10
Video Game 30

Object Recognition in Video Feed 60

21

