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Towards computer‑aided 
severity assessment via deep 
neural networks for geographic 
and opacity extent scoring 
of SARS‑CoV‑2 chest X‑rays
A. Wong1,2*, Z. Q. Lin1,2*, L. Wang1,2, A. G. Chung2, B. Shen3, A. Abbasi3, 
M. Hoshmand‑Kochi3 & T. Q. Duong3

A critical step in effective care and treatment planning for severe acute respiratory syndrome 
coronavirus 2 (SARS‑CoV‑2), the cause for the coronavirus disease 2019 (COVID‑19) pandemic, is 
the assessment of the severity of disease progression. Chest x‑rays (CXRs) are often used to assess 
SARS‑CoV‑2 severity, with two important assessment metrics being extent of lung involvement and 
degree of opacity. In this proof‑of‑concept study, we assess the feasibility of computer‑aided scoring 
of CXRs of SARS‑CoV‑2 lung disease severity using a deep learning system. Data consisted of 396 
CXRs from SARS‑CoV‑2 positive patient cases. Geographic extent and opacity extent were scored by 
two board‑certified expert chest radiologists (with 20+ years of experience) and a 2nd‑year radiology 
resident. The deep neural networks used in this study, which we name COVID‑Net S, are based on 
a COVID‑Net network architecture. 100 versions of the network were independently learned (50 to 
perform geographic extent scoring and 50 to perform opacity extent scoring) using random subsets 
of CXRs from the study, and we evaluated the networks using stratified Monte Carlo cross‑validation 
experiments. The COVID‑Net S deep neural networks yielded R 2 of 0.664± 0.032 and 0.635± 0.044 
between predicted scores and radiologist scores for geographic extent and opacity extent, 
respectively, in stratified Monte Carlo cross‑validation experiments. The best performing COVID‑
Net S networks achieved R 2 of 0.739 and 0.741 between predicted scores and radiologist scores for 
geographic extent and opacity extent, respectively. The results are promising and suggest that the 
use of deep neural networks on CXRs could be an effective tool for computer‑aided assessment of 
SARS‑CoV‑2 lung disease severity, although additional studies are needed before adoption for routine 
clinical use.

As the coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2), continues around the world, radiology has seen growing importance in providing clini-
cal insights for aiding the diagnosis, treatment, and management of the disease. Much of early literature have 
focused on imaging features presented in computed tomography (CT) scans of SARS-CoV-2 positive patients 
given its use in China during the earlier stages of the global  pandemic1–7; however, the low availability of CT 
scanners in many parts of the world due to its high costs, the high risk of SARS-CoV-2 transmission during 
patient transport to/from CT imaging suites, and long decontamination times between scans have limited the 
use of CT scans for SARS-CoV-2 diagnosis and treatment planning. A number of recent studies have illustrated 
the growing interest and usage of chest x-ray (CXR) imaging around the  world8–15, with some studies foreseeing 
a greater reliance on portable  CXR9 and the high value of portable CXR for critically ill  patients16. Compared to 
CT scanners, CXR imaging systems are widely available around the world due to their relatively low cost, and 
have comparatively faster decontamination times; in addition, the existence of portable CXR units means that 
imaging can occur within an isolation room and, thus, greatly reduce transmission  risk8,9,17. Furthermore, CXR 
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imaging is frequently performed for patients with respiratory complaints as part of standard  procedure18, and 
have been shown to give valuable insights on disease  progression10. In the context of detecting SARS-CoV-2, CXR 
imaging can also be useful in situations where patients with initial negative reverse transcription–polymerase 
chain reaction (RT-PCR) results, the current gold standard for viral testing, revisit the emergency department 
with worsening  symptoms17.

Several studies have investigated imaging features presented in CXR images of SARS-CoV-2 positive 
 patients13,14,19, with commonly found features being bilateral abnormalities, ground-glass opacity, and intersti-
tial abnormalities. Leveraging the presence of these imaging features in combination with the ability to observe 
their progression and extent over the duration of disease onset, an important role that CXR assessment has in 
aiding with disease treatment and management is in determining the severity of a patient’s condition. As such, a 
number of recent studies have focused on severity  scoring10–12, where the goal is to quantify SARS-CoV-2 lung 
disease severity. Disease severity scoring can help with determining the best course of treatment and manage-
ment given a SARS-CoV-2 case (e.g., at-home quarantine, oxygen therapy, ventilation, etc.), allowing for the 
individualized treatment of each patient.

We hypothesise that deep learning could potentially be a valuable tool for enabling computer-aided severity 
scoring of SARS-CoV-2 lung severity using CXRs of SARS-CoV-2 positive patients. Using CXR training data 
acquired from a global pool of SARS-CoV-2 positive patients, deep neural networks can learn to identify the 
important imaging features within a CXR image indicative of SARS-CoV-2, and output scores for quantifying 
the severity of a patient’s disease progression. In this study, we assess the feasibility of computer-aided severity 
scoring of SARS-CoV-2 lung severity using deep learning by developing, training, and validating 100 versions 
of a deep neural network we name COVID-Net S (50 for performing geographic extent scoring and 50 for 
performing opacity scoring) using stratified Monte Carlo cross-validation experiments on data consisting of 
396 CXRs from positive patient cases. Two board-certified chest radiologists and a radiology resident assess the 
results achieved by the deep neural networks.

Materials and methods
Data preparation and radiological scoring. The primary goal of this study is to assess the feasibility of 
computer-aided severity scoring of SARS-CoV-2 using deep learning. To this end, we develop and evaluate deep 
neural networks that can score CXRs of patients with SARS-CoV-2. Data consisted of CXR data pertaining to 
SARS-CoV-2 positive  cases20–22. In this study specifically, the 396 CXRs from the studies used here represent a 
patient population of 267 patients between 12 and 88 years old around the world. The CXR data were acquired 
using a range of X-ray imaging equipment types and acquisition protocols that are representative of routine 
imaging practice (including supine and upright, posterioranterior and anteriorposterior).

Radiological scoring was performed by two board-certified chest radiologists with 20+ years of experience 
(A.A. and M.H.) and a 2nd-year radiology resident (B.S.) to stage SARS-CoV-2 disease severity using a score 
system adapted from Wong et al.10 and Warren et al.11. The two assessment metrics scored in the radiological 
scoring are geographic extent and opacity extent. More specifically, for geographic extent, the extent of lung 
involvement by ground glass opacity or consolidation of each lung (with the right and left lung scored sepa-
rately) is scored as: 0 = no involvement; 1 = < 25%; 2 = 25–50%; 3 = 50–75%; 4 = >75% involvement. The scores 
are then added together, and the total geographic extent score ranges from 0 to 8 (right + left lung). For opacity 
extent, the degree of opacity was similarly scored for the right and left lung separately as: 0 = no opacity; 1 = 
ground glass opacity; 2 = mix of consolidation and ground glass opacity (less than 50% consolidation); 3 = mix 
of consolidation and ground glass opacity (more than 50% consolidation); 4 = complete white-out. The scores 
are similarly added together, and the total opacity extent score ranges from 0 to 8 (right + left lung). The mean 
scores are then calculated across the radiologists and used to train the deep neural networks. The inter-reader 
agreement assessed by intra-class correlation coefficient was 0.92 (95% CI: 0.91–0.93) for the geographic extent 
scores, and 0.87 (95% CI: 0.85–0.89) for the opacity extent scores.

After radiological scoring, all CXR data used in this study underwent data processing to facilitate the train-
ing of deep neural networks. To discourage the deep neural networks from learning irrelevant visual cues when 
making severity scoring predictions, the top 8% of the CXR data were cropped to remove boundary artifacts 
and embedded metadata outside of the patient region of interest. Furthermore, all CXR data were resized to 
the same data dimensions to enable training of the deep neural networks in this study. Finally, the geographic 
extent scores (with a dynamic range of 0 to 8) and opacity extent scores (with a dynamic range of 0 to 8) were 
re-mapped to a unified dynamic range from 0 to 1.

Model development. The development of the deep neural network architecture for computer-aided sever-
ity scoring is important as it dictates the sequence of mathematical operations that maps the input CXR data to 
the predicted severity scores (e.g., geographic extent score and opacity extent score). Specifically, the architecture 
of the deep neural network will affect the efficiency and effectiveness with which it is able to learn the underly-
ing parameters and operations in this complex, hierarchical mapping. In this study, the architecture of the deep 
neural networks used to evaluate the feasibility of computer-aided severity scoring of SARS-CoV-2 lung disease 
severity, which we name COVID-Net S, is based on the COVID-Net deep neural network  architecture23, which 
was found to achieve state-of-the-art performance in SARS-CoV-2 detection. The last layers of the COVID-
Net architecture are replaced with a set of new layers (a 128 neuron dense layer, a 3 neuron dense layer, and a 
single output score prediction layer) to enable the prediction of severity scores corresponding to scores within 
the dynamic range of 0 to 1. These scores can be mapped back to the original dynamic ranges of geographic 
extent score and opacity extent score used during radiological scoring. Figure 1 presents an overview of this 
COVID-Net S network architecture and is publicly available for open access at https:// github. com/ linda wangg/ 

https://github.com/lindawangg/COVID-Net
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COVID- Net. The network architecture consists of projection–expansion–projection design patterns for high 
representational capacity while maintaining computational efficiency, selective long-range connectivity to 
improve learning efficiency, and high architectural diversity.

To improve the performance of the deep neural networks, a technique known as transfer  learning24 is used 
to initialize the deep neural network parameters in this study using the parameters from deep neural networks 
trained on COVIDx, a dataset introduced in the Wang  study23 containing 13,975 CXR images across 13,870 
patient cases consisting of healthy patients and patients with different forms of pneumonia (e.g., viral, bacte-
rial, etc.). Statistical distribution details of COVIDx can be found in the Wang  study23. We also leverage data 
 augmentation25 in this study to improve the performance of the deep neural networks, which consists of syn-
thesizing new training samples by applying randomly generated translations, rotations, horizontal flips, zooms, 
intensity shifts, cutout, and Gaussian noise to the CXR data in the training set to increase data diversity and 
allow the deep neural networks to learn improved robustness. The proposed deep neural networks were trained 
using an Adam optimizer with image size of 480 × 480 , batch size of 32, learning rate of 4e–4, 30 epochs, and 
mean squared error as the loss function. All of the model development was conducted using Python, OpenCV, 
and the Keras deep learning library with a TensorFlow backend.

Cross‑validation and performance evaluation. To evaluate the efficacy of the COVID-Net S deep 
neural networks developed for computer-aided severity scoring of SARS-CoV-2 lung disease severity, stratified 
Monte Carlo cross-validation26 was conducted. For geographic extent and opacity extent independently, 100 
different deep neural networks (50 for geographic extent scoring and 50 for opacity extent scoring) were learned 
using 100 different random subsets of CXR data from the study (50 for geographic and 50 for opacity). Each of 
the 100 different deep neural networks was then tested on 100 different subsets of CXR data that was held out 
from the learning process. For each trial, a random subset consisting of 80% of the CXR data was used to train a 
deep neural network, with the remaining 20% of the CXR data held out and used for testing.

To quantify the performance of the deep neural networks learned in this study, we compute the coefficient of 
determination, R 2 , between predicted scores outputted by the deep neural networks and scores by expert radi-
ologists for both geographic extent and opacity extent in the test sub-set of CXR data for each trial. To present a 
quantitative summary for the cross-validation results, the R 2 was averaged over the trials for geographic extent 
and opacity extent independently, resulting in means and standard deviations across the cross-validation results.

Ethics approval. The study has received ethics clearance from the University of Waterloo (42235). All 
experimental protocols were approved by University of Waterloo. All methods were carried out in accordance 
with University of Waterloo ethics guidelines and regulations. Informed consent was obtained from all partici-
pants.

Results
Demographic and imaging protocol variables. Table 1 summarizes the demographic variables and 
imaging protocol variables of the CXR data used in this study. Note that the majority of the patient cases are from 
Europe and Asia, and reflects the earlier rise of the COVID-19 pandemic in those two continents. In addition, 

Figure 1.  Flowchart of the overall architecture of the COVID-Net S deep neural networks for predicting SARS-
CoV-2 severity scores.
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the majority of the cases are above the age of 50, with the mean age being 57.5, and is consistent with the greater 
effect of SARS-CoV-2 on the older population.

Geographic extent and opacity extent analysis at different degrees of severity. Figure 2 shows 
a number of illustrative SARS-CoV-2 patient cases used in this study with different degrees of geographic extent 
and opacity extent present in the CXRs, with the distribution of geographic and extent scoring for the patient 
cases shown in Fig. 3. Several observations and insights can be gained from looking at the CXRs of these past 
SARS-CoV-2 patient cases. First, it can be observed that the geographic extent of lung involvement by ground 
glass opacity or lung consolidation have a strong relationship with the degree of lung opacity. In the SARS-
CoV-2 patient cases shown here, a visible increase in geographic extent is accompanied by a visible increase in 
lung opacity. This relationship between geographic extent and degree of opacity may be useful as a distinguishing 
property of SARS-CoV-2 infection when reading CXRs. Second, looking at the SARS-CoV-2 patient cases with 
low lung severity, it can be observed that the signs of ground glass opacity or lung consolidation can be quite sub-
tle to the human eye, making them difficult to identify visually. This observation gives insights into the potential 
challenges involving radiologist readings of patients at very early stages of SARS-CoV-2 infection, given that the 
extent of ground glass opacity and/or consolidation in the lungs is less prevalent for visual identification. How-
ever, it also brings to light the potential for the use of artificial intelligence for computer-aided decision-making 
for SARS-CoV-2, with past  work23 demonstrating the ability of deep learning systems to learn and identify such 
subtle imaging features in CXRs for SARS-CoV-2 detection, and this study assessing the feasibility of deep learn-
ing systems for SARS-CoV-2 lung severity scoring.

Coefficient of determination analysis. Examining the R 2 between predicted scores from the COVID-
Net S deep neural networks and the radiologist scores for the 100 experiments (50 deep neural networks for 
geographic extent scoring and 50 deep neural networks for opacity extent scoring) led to number of observa-
tions. First, the deep neural networks yielded R 2 of 0.664 ± 0.032 and 0.635 ± 0.044 for geographic extent and 
opacity extent, respectively, in the stratified Monte Carlo cross-validation experiments (see Table 2). Second, the 

Table 1.  Summary of demographic variables and imaging protocol variables of CXR data used in this study. 
Age, sex, and geographic location statistics are expressed on a patient level, while imaging view and imaging 
position statistics are expressed on an image level.

Mean ± std 57.5 ± 16.1

Age

< 20 1 (0.4%)

20–29 4(1.5%)

30–39 13 (4.9%)

40–49 20(7.5%)

50–59 26 (9.7%)

60–69 24 (9.0%)

70–79 29 (10.9%)

80–89 10(3.7%)

90+ 0 (0.0%)

Unknown 140(52.4%)

Sex

Male 117 (43.8%)

Female 62 (23.2%)

Unknown 88 (33%)

Geographic location

Asia 29 (10.9%)

North America 5 (1.9%)

Europe 196 (73.4%)

Australia 1 (0.3%)

Unknown 36 (13.5%)

Imaging view

PA 151(56.6%)

AP 104 (38.9%)

Unknown 12(4.5%)

Imaging position

Supine 20 (7.5%)

Upright 235 (88.0%)

Unknown 12 (4.5%)
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Figure 2.  Illustrative SARS-CoV-2 patient cases used in this study with different degrees of geographic extent 
and opacity extent present in the CXRs. (Top row) CXRs exhibiting low, medium, and high geographic extent 
of lung involvement by ground glass opacity or lung consolidation with respective geographic extent scoring of 
1.3, 4.3, and 8.0; (Bottom row) CXRs exhibiting low, medium, and high degree of lung opacity with respective 
opacity extent scoring of 1.0, 4.0, and 6.0.

Figure 3.  Distribution of geographic and opacity extent scores for patient cases used in this study.
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best performing networks achieved R 2 of 0.739 and 0.741 between predicted scores and radiologist scores for 
geographic extent and opacity extent, respectively (see Fig. 4 for scatter plots of predicted scores vs. radiologist 
scores for these networks). Third, the results show that the mean R 2 between predicted scores and radiologist 
scores for geographic extent is higher than that for opacity extent.

Discussion
In this study, we hypothesised that computer-aided deep learning algorithms can accurately predict lung disease 
severity on CXRs associated with SARS-CoV-2 infection against expert chest radiologist ground truths, and the 
experimental results of study support this hypothesis. Results from the stratified Monte Carlo cross-validation 
experiments showed that the learned COVID-Net S deep neural networks could achieve mean R 2 between 
predicted scores and radiologist scores for geographic extent and opacity extent greater than 0.5 when evalu-
ated for 100 different subsets of CXR data from the study (50 for geographic extent scoring and 50 for opacity 
extent scoring).

Severity scoring for SARS-CoV-2 has gained recent attention due to the rise and continued prevalence of 
the COVID-19 pandemic across the globe, and the need to assess the severity of a patient who is SARS-CoV-2 
positive is crucial for determining the best course of action regarding treatment and care. Several severity scoring 
mechanisms have recently been proposed for the severity assessment of SARS-CoV-2. Wong et al.10 introduced a 
scoring scheme for severity quantification of SARS-CoV-2 by adapting and simplifying the Radiographic Assess-
ment of Lung Edema (RALE) score introduced by Warren et al.11. Toussie et al.12 introduced a scoring scheme 
where each lung was divided into three zones (for a total of six zones) and each zone was assigned a binary 
score based on opacity, with the final severity score being the aggregate of the scores from the different zones. 
Borghesi and  Maroldi27 introduced a scoring scheme where, similar to Toussie et al., each lung was divided into 
three zones, but each zone was instead assigned a score from 0 to 3 based on interstitial and alveolar infiltrates. 
Considering the large quantity of patients that are being screened due to the COVID-19 pandemic and the need 
for expert radiologists to assess the severity of each patient, the use of artificial intelligence for computer-aided 
severity scoring has strong potential to assist in clinical workflow efficiency given the situation.

Table 2.  Summary of R 2 between predicted scores from the COVID-Net S deep neural networks and the 
radiologist scores for the 100 experiments (50 deep neural networks for geographic extent scoring and 50 deep 
neural networks for opacity extent scoring).

R2

Geographic extent Opacity extent

Mean 0.664 0.635

Std 0.032 0.044

Figure 4.  Scatter plots of predicted scores vs. radiologist scores for the best performing networks for geographic 
extent and opacity extent scoring.
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This study has a few limitations. First, the data were obtained from various sources and could exhibit bias. 
Second, disease severity is based on radiologist ground truths, and functional outcomes such as measures of 
lung function or mortality were not available. Third, the image quality of the CXRs can vary. Note that although 
some CXRs have lower resolution, they are observed to be of acceptable diagnostic quality. Fourth and finally, 
future studies should investigate longitudinal changes in disease severity.

In conclusion, our results support the hypothesis that the use of deep neural networks on CXRs can be an 
effective tool for computer-aided assessment of lung disease severity, although additional studies are needed 
before adoption for routine clinical use. This tool may be helpful in ER and ICU settings for triaging patients into 
general admission or ICU, as well as determining when to put SARS-CoV-2 patients on a mechanical ventilator 
and when to extubate.
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