
Towards Computing with Proteins
Ron Unger1* and John Moult2

1Faculty of Life Science, Bar-Ilan University, Ramat-Gan, Israel
2Center for Advanced Research in Biotechnology, University of Maryland, Rockville, Maryland

ABSTRACT Can proteins be used as computa-
tional devices to address difficult computational
problems? In recent years there has been much
interest in biological computing, that is, building a
general purpose computer from biological mol-
ecules. Most of the current efforts are based on DNA
because of its ability to self-hybridize. The exquisite
selectivity and specificity of complex protein-based
networks motivated us to suggest that similar prin-
ciples can be used to devise biological systems that
will be able to directly implement any logical circuit
as a parallel asynchronous computation. Such de-
vices, powered by ATP molecules, would be able to
perform, for medical applications, digital computa-
tion with natural interface to biological input condi-
tions. We discuss how to design protein molecules
that would serve as the basic computational ele-
ment by functioning as a NAND logical gate, utiliz-
ing DNA tags for recognition, and phosphorylation
and exonuclease reactions for information process-
ing. A solution of these elements could carry out
effective computation. Finally, the model and its
robustness to errors were tested in a computer
simulation. Proteins 2006;63:53–64.
© 2006 Wiley-Liss, Inc.

INTRODUCTION

In recent years there has been significant interest in
exploring the possibilities of biological computation. A
large number of studies have investigated various ideas
for using biological molecules to carry out various types of
calculations and computations.1–6

Biological systems perform computations in living organ-
isms on multiple levels, from the cognitive to the molecu-
lar. Examples range from the brain’s ability to perform
numerical calculations or analyze images to the immune
system’s ability to identify intruders. Other cellular activi-
ties, such as maintaining homeostatic levels of vital param-
eters and controlling expression levels of genes, are also
forms of computation.

In contrast to these natural processes, the term biologi-
cal computation usually suggests the use of biological
molecules to carry out a general-purpose computation,
that is, a computation that can be considered to be a digital
computation outside the realm of the biological world. One
of the ultimate goals is to build a computer, quite similar
in its basic operation to current silicon-based machines,
with its underlying hardware (or better said, wetware)
based on biological components.

Considering the superb performance of silicon-based
computers, one can question the need for biological alterna-
tives. The advantages of a biological computer might be
related to smaller size (Angstroms vs. microns), much
lower energy consumption [the model we present here
requires hydrolysis of several ATP molecules per basic
logical operation (about 10�19 J), compared with more
than 10�9 J per operation for current supercomputers1],
and ease of production of the components by genetic
engineering. However, biological systems have significant
disadvantages compared to silicon-based systems, includ-
ing slower speed of computation (gigahertz for silicon-
based computers compared with microseconds to millisec-
onds for biological reactions), durability (most biological
components have limited half-lives), and reliability (most
biological reactions are prone to a nonnegligible error
rates).

Thus, it is reasonable to suggest that the appropriate
use of biological computational devices will be in environ-
ments where they naturally belong, for example, in medi-
cine, where such devices can be encapsulated within a
semipermeable membrane, and installed inside a living
body. In such a device, inputs might be biological signals
and the output might trigger biological processes. A biologi-
cal device would also have the significant advantage of
being able to use internal energy resources, like ATP
molecules, rather then being dependent on external or
rechargeable energy sources. An example might be an
insulin regulation system, where the input would reflect
glucose levels and oxygen demand, and the output would
be used to trigger insulin production onsite. Such a
biological system may offer several advantages over cur-
rent continuous pump systems,7 which are based on
standard electronics. In this mode, a biological computer
offers a useful combination of natural interface to biologi-
cal processes with the strength of digital computation to
achieve accuracy and precision.

Most of the current studies of biological computation
have focused on DNA-based systems. In such systems, the
underlying computational element is the hybridization of
single-stranded DNA molecules to a complementary strand
with high specificity. The computational paradigm takes
advantage of the huge number of available DNA molecules

*Correspondence to: Ron Unger, Faculty of Life Sciences, Bar-Ilan
University, Ramat-Gan, 52900, Israel. E-mail: ron@biomodel.
os.biu.ac.il

Received 26 April 2005; Accepted 29 September 2005

Published online 24 January 2006 in Wiley InterScience
(www.interscience.wiley.com). DOI: 10.1002/prot.20886

PROTEINS: Structure, Function, and Bioinformatics 63:53–64 (2006)

© 2006 WILEY-LISS, INC.



to carry out, in effect, a parallel exhaustive search of the
solution space. This idea originated with the pioneering
study of Adelman1 on solving the Hamiltonian path prob-
lem. It has been shown to work on other NP-hard computa-
tional problems, for which no efficient polynomial time
algorithm is likely. (For a recent example of solving a
3-SAT problem, see Braich et al.3 ). These studies clearly
demonstrated that DNA-based computations are feasible.
Nevertheless, these methods require the use of an exponen-
tial number (in the size of the problem) of molecules. While
this exponential dependency may be unavoidable in deal-
ing with NP-hard problems, it will lead to a very inefficient
solution to more tractable problems, where a more direct
and efficient approach might be more appropriate. In
addition, these systems require specific encoding and
implementation for each problem, and thus, in a practical
sense, they do not offer a way of utilizing such procedures
as a generic way to solve general computational problems.

In an advance from DNA-only based computation, the
Shapiro group4,5 demonstrated how a finite automaton can
be built from restriction enzymes and ligases working on
input presented as double-stranded DNA. The automaton
was able to distinguish between strings with an odd versus
an even number of input symbols. The computational
devices described by Shapiro and colleagues4,5 are finite
automata. The authors consider this as a first step towards
building a Turing machine based on biological compo-
nents. A Turing machine8 is a general computational
device which is the abstraction of all other known digital
computational devices. While the model and its biological
implementation are elegant, Turing machines are not
efficient computational devices, and programs written for
Turing machines are long and cumbersome.

Recently, these authors6 have demonstrated that their
approach can be used in a biological and medical setup
when they design a system where the inputs are mRNA
molecules which are marker for diseases. After a digital
computation which depends on the input, the output of the
system is the production of a single-strand DNA molecule
with therapeutic effects.

Various other possibilities for biological devices for
digital computing have been explored. One direction is
focused on designing biological wires. Braun and col-
leagues9 demonstrated that silver-plated DNA strands
can be used as conducting wires. RecA was used10 to bind
to DNA in a sequence-dependent manner and thus control
the conductivity patterns of DNA molecules. This ap-
proach may lead to a hard wire (or wet wire) form of
biological computing. Nevertheless, such a system will
depend on a conventional power supply and regular elec-
tronic switching devices. In contrast, our aim is to design a
biological computing system where the biological elements
operate in a way similar to their natural biological counter-
parts, that is, to design a system based on interactions of
diffusing molecules that compute by changing their bio-
chemical state.

There is at least one well-described natural example in
which biological reactions are used to achieve a switching
effect: In the chemotaxis system, phosphorylation and

methylation were shown to work together to achieve a
switching effect on bacterial mobility.11 This system is
composed of several proteins with sophisticated feedback
mechanisms. Recently, attention was drawn to demonstrat-
ing that switching networks can be designed and engi-
neered. A significant achievement in this direction is
described by Elowitz and Liebler,12 where three transcrip-
tional repressor systems were used to create an artificial
oscillating network in E. coli. The network periodically,
typically with periods of hours, triggered the synthesis of
green fluorescent protein as a single cell read-out of its
state. In Gardner and colleagues13 a toggle switch was
constructed from two repressible promoters arranged in a
mutually inhibitory network. The switch can be flipped
sharply between stable states using transient chemical or
thermal stimuli.

Several possibilities for an elementary biology-based
switching unit have been explored. One scheme uses
rhodopsin molecules and their ability to change conforma-
tion in response to light. Such molecules have been shown
to be particularly useful in building biological memory
elements.14 Another possibility that has been explored is
to use a modified form of ribonuclease A, in which the
molecular switch is constructed from a nonnatural amino-
acid side-chain, containing an electron donor group and an
electron acceptor group, connected to one another with a
conjugated double bond bridge. The switching mechanism
is based on azonium-hydrazo tautomerization, by which a
charge separation induced in the excited state causing a
rearrangement of the electronic structure of the molecule,
resulting in the exchange of locations of single and double
bonds. This rearrangement of bonds leads to different
three-dimensional conformations of the switch, one of
which blocks access to the enzyme active site, effectively
providing an on/off switch.15,16 While this switch design is
very elegant, it is not clear how such elements can be
hooked together to form a computing network.

In an inspiring paper, Bray17 suggested the use of
proteins as computational devices. Bray pointed out the
diversity of roles proteins play in processing information in
living cells, and suggested various possibilities for utiliz-
ing proteins to perform computational tasks. Our model
explores in detail one of these possibilities: using proteins
as logical gates and circuits. Logical gates are the basic
components of digital computers, and building gates and
circuits from proteins could open the way to general
computing based on biological molecules.

In considering the practical steps necessary for the
implementation of protein-based logical gates, one must
address the following questions:

1. How can logical gates (i.e., switching) be implemented
by a protein-based system?

2. How can wiring between gates be implemented?
3. What are the tokens of the computations? That is, how

is the information in the computation conveyed through
the process from input to output?

4. Because biological systems and reactions vary in time,

54 R. UNGER AND J. MOULT



how can the timing of the computation(s) be synchro-
nized?

5. What are the expected errors in the process and how
can these errors be contained?

6. How can the design of such a computation device be
automated such that for any regular electronic circuit,
its biological equivalent can be efficiently constructed?

In this article, we present a detailed model that ad-
dresses these questions, and discuss a computer simula-
tion that tests the model.

In selecting the biological mechanism on which to base a
computational device, we have considered the following
issues: First and foremost, we need a system in which the
switching is binary, and can toggle between two well-
defined and well-separated states. Second, we prefer a
system in which the basic element is a single molecule and
not itself a network. Third, we prefer a system which
utilizes proteins that have a natural function close to that
required in the computation. Thus, it should be possible to
tap into the repertoire of natural reactions in order to find
the most suitable starting point for the design. Fourth, we
require a system in which reactions can be easily chained
together to achieve a flow of computation.

We first schematically describe the system we have
designed, and then turn to a more detailed account of how
the biological reactions chosen can be used to implement
the scheme. These reactions are certainly not the only

possibilities for implementing a general design of a compu-
tational network, and we also suggest some possible
alternative mechanisms. Regardless of the actual reac-
tions that are ultimately used in engineering a practical
implementation, the model proposed here is a general one,
in the sense that the same design can be used to perform
any logical calculation via biological computation.

THE MODEL
Boolean Algebra and Choice of Gates

Boolean algebra deals with calculating truth values
(TRUE or FALSE) of logical statements and is the underly-
ing mathematical tool of any digital circuit. Every Boolean
function can be expressed using the two gates of AND and
NOT (or OR and NOT). However, to keep our design
simple and uniform, we prefer to use logic that is based on
a single universal gate that can be combined to express
any function. The NAND gate is one such gate (XOR is the
other). A NAND gate outputs 1 unless its two inputs are 1,
in which case its output is 0. NAND is universal because it
can express the standard gates, AND and NOT:

NOT A � (A NAND A)

A AND B � (A NAND B) NAND (A NAND B).

An example of logical network based on NAND gates is
shown in Figure 1. This circuit will be discussed in more
detail later, but its general features are common to all

Fig. 1. The Boolean majority function expressed as a network of NAND gates. The output is true if at least
two of the three inputs (A,B,C) are true. (Top) The function expressed in terms of the binary NAND operations
(N stands for NAND). (Bottom left) The truth table of the function. For every combination of the input binary
parameters A, B, and C the function output value is shown under the M column. (Bottom right) A logical circuit,
using NAND gates that implements the function. Note that each input bit (either A, B, or C) is fed-in into the
network via more than one input gate. A trace of the computation for the instance boxed in the truth table is
shown. We propose to implement such networks by using protein complexes which function as NAND gates
and DNA tags that function as connections between gates.

TOWARDS COMPUTING WITH PROTEINS 55



logical circuits. Note that each gate has two input and one
output ports, gates are wired in layers in such a way that
the output of one gate is the input to the next gate, and the
computation propagates from the input layer to the output
element according to Boolean arithmetic, as implemented
by the gates.

An Abstract Molecular Computation Scheme

In this section we describe, in abstract terms, the design
of a biomolecular system that is capable of carrying out a
computation that follows the logic of a Boolean circuit
based on NAND gates. In the next section we will discuss
specific biological reactions that can implement this de-
sign.

A single species of molecule will carry out the NAND
gate logic, and thereby form the basis of the computation.
To achieve this goal, the molecule must perform three
tasks. The first is recognition, that is, only the appropri-
ate molecules may recognize and interact with each other.
For this purpose, the design requires that each molecule
have three recognition sites, two to recognize incoming
molecules (i.e., input sites) and one to recognize the target
molecule (i.e., an output site). The second task is synchro-
nization, that is, interactions must occur only between
active molecules, those that are at the appropriate stage of
the computation. To enable synchronization, the design
requires that the recognition sites are initially blocked or
inactive, and become active at a desired time during the
computation. The third task is the actual computation,
that is, the change in the state of the molecules such that
they will carry the correct logical value. To this end, we
require a two-state mechanism that provides reversible
modification of the molecule, such that one state repre-
sents 0 and the other state represents 1.

The basic element will therefore be a molecule that
includes two catalytic domains, performing the tasks of
activation and computation, and three recognition tags to
enable recognition of the molecule by the specific computa-
tional elements with which it must interact in the logical
circuit. The tags are encoded such that an output tag of a
given element will recognize the input tag of its designed
target. Thus, a pair of complementary tags provide a
“wire” connecting the output of one gate with the input of
another. All molecules in the network have the same
catalytic domains, but have different tag sequences that
uniquely define their input and output interactions. Two
tags are used to define input interactions and one is used to
define an output interaction. The input tags are always
active and ready to receive a signal. The output tag is
initially blocked. This block is removed once the molecule
acquires its logical value (either 0 or 1). The computation
will take place when two active input molecules bind the
element, and will depend on the logical state of the input
molecules. Following the logic of a NAND gate, the output
molecule will obtain the value of 0 only when both input
molecules are 1; in all other cases the output molecule will
assume the value of 1.

Computation takes place in a solution containing all the
required molecules, which are allowed to diffuse freely.

Molecules will collide randomly, but only molecules that
have complimentary tags will associate to form complexes
which can transfer information. At the start of the compu-
tation, only the molecules that represent input to the
system, that is, the first layer in the circuit, have an
accessible output tag. Thus, only these molecules can
interact effectively with their targets. All other molecules
will have their output tags inaccessible, preventing them
from interacting with additional elements before they
receive a valid input signal; however, their input tags will
be accessible, making them available to receive signals
from molecules that have already been activated. In
subsequent phases, only molecules that have acquired an
accessible output tag can interact further.

Because each molecule has two accessible input tags,
three molecule complexes will form. Within each complex,
the computation and the synchronization steps will take
place. The computation will set the logical state of the
output molecule depending on the logical state of the two
input molecules according to the logic of a NAND gate, and
synchronization is provided through activation of the
output molecule by making its output tag accessible. Over
time the output molecule will diffuse and find its target
molecule, allowing the process to continue until the logical
state of the molecules in the final phase of the computation
is determined.

As mentioned above, each basic element is characterized
by the specific combination of its input and out tags.
Multiple identical copies (on the order of 109, see below) of
each element are present in the system. Thus, for example,
in Figure 1, if element number 15 is required to interact
with element number 19, any one of the active copies of
element number 15 can interact with any one of the copies
of elements 19, based on their complementary tags. As we
discuss below, this parallelism can be used to facilitate
error detection and correction.

The Biological Implementation

The model proposed above is based on general ideas but
must be implemented using specific biological processes
and reactions. In this section, we suggest one set of
reactions that could, in principle, carry out the tasks
required. We discuss the feasibility of these reactions in a
separate section below.

Recognition will be achieved through hybridization of
complementary DNA tags. Each tag is composed of a
single-stranded DNA oligomer that is covalently attached
to the protein part of the molecules. Binding of complemen-
tary tags will provide a localization effect, effectively
enabling the logical computation for a single gate. In a
sense, these tags are used as wires in this diffusive
network. To achieve synchronization, the output DNA
tags will be blocked by a complimentary DNA strand,
which is removed only after the associated gate is formed.
The removal is achieved by activation of an appropriate
exonuclease that will digest the blocking strand, thereby
exposing the output tag and render it active.

To achieve the computation we propose to include a
phosphorylation domain that is capable of performing a

56 R. UNGER AND J. MOULT



conditional phosphorylation reaction, such that the logical
state of the output molecule (i.e., whether phosphorylated
or not) will be dependent on the phosphorylation state of
the two input molecules. The phosphorylation state of the
input molecules is configured to reflect the desired input
logic. See Figure 2 for a schematic view of the basic
computational element.

Computation takes place in a solution containing a
mixture of all the molecules, which are allowed to diffuse
freely. Molecules will collide randomly, but only molecules
that have complimentary DNA tags will associate by
hybridization to form complexes with significant half lives.
The input molecules, that is, the first layer of the circuit,
are set as follows. Their output DNA tags are exposed,
rendering them active; their input tags are covered prevent-
ing them from interacting. Their phosphorylation state
reflects their logic value; we arbitrarily set phosphorylated
molecules to the logical value of 1, and dephosphorylated
molecules to 0. All other molecules will have their output
tags inactive, preventing them from interacting with addi-
tional elements before they receive the proper input signal,
and their input tags exposed making them available to
receive signals from active molecules. The phosphoryla-
tion state of the non-input elements is set initially to be
dephosphorylated, that is, logical value 0. In subsequent
phases only molecules that have acquired an activated
output tag (e.g., with the blocking oligomer removed in
previous phases), can interact further.

Note that the biological gate is somewhat different from
an electronic gate. An electronic gate is a single element
that receives two input signals, calculates the appropriate
logical function and produces an output signal. The biologi-
cal gate is actually a complex that includes three mol-
ecules, two input molecules and one output molecule.

Each complex forms in two stages. First, one input
molecule hybridizes to the first input tag of the target
element to form an inactive complex. Upon binding of the
second input molecule to the second input tag, the compu-
tational complex will became active and perform the
following reactions: The two input molecules will interact
to form an active dimer that will phosphorylate the target
molecule if so required by the NAND logic, that is, the
target (output) element will be phosphorylated unless
both its input molecules are phosphorylated.

In addition, an exonuclease reaction will be activated as
a result of association of the two input molecules, digesting
the cover of the output tag and leaving the tag exposed,
thus making the output tag available for hybridization
with the input tag of the next element in the circuit.

A schematic diagram of the interaction is shown in
Figure 3.

After some time, the computational complex dissociates,
and the activated output molecule seeks its own target,
encoded by the complimentarity of its output tag with the
sequence of an input tag of another molecule. (Note that
we do not require dissociation to precede formation of the
subsequent complex formation). The process will continue,
through successive layers of gates, until the final output
gate molecules are processed. The result of the computa-

tion may then be read from the phosphorylation state of
these output molecules.

There are many identical copies of each computational
element, that is, molecules that have the same combina-
tion of input and output tags. These molecules are inter-
changeable and each copy can interact with any copy of its
designated target molecule. Thus, parallel computation of
the same circuit is carried out by a large number of
molecules. This redundancy can be utilized as described
below to achieve a high degree of robustness in the
computation.

An Example — The Majority Circuit

To make the model more concrete, we discuss a simple
example, a biological implementation of a circuit that
calculates the majority function of its three inputs, dis-
cussed earlier. Figure 1 gives the truth table and the
logical design for this circuit. The output is 1 if at least two
of its three inputs are 1, otherwise it is 0. While this is a
very simple calculation that can be performed by many
analog processes, we will not exploit this simplicity. As will
be clear from the presentation, the same approach can be
used to implement any logical circuit, regardless of its
complexity.

This circuit has 19 elements. Elements 1 to 10 are inputs
consisting of molecules similar to the rest of the computa-
tional elements, the only difference being that they have
preset phosphorylation states, reflecting the required logi-
cal values. Gate 19 is the output gate. Thus, the system
consists of 19 elements, each with the same protein
component, capable of performing the phosphorylation
and the exonuclease reactions, but each carrying different
DNA tags. There are many copies of each of these elements
present in the system.

For the boxed instance in Figure 1, variables A and C
have the value of 0, and B has the value 1. Hence, the
computation is initialed by setting input elements 2,4,6,8
corresponding to A, and 1,5,9 corresponding to C to a
dephosphorylated state while elements corresponding to B
(3,7,10) will be phosphorylated. All non-input elements
will be dephosphorylated. The input elements (1–10) have
active output tags. All the other elements have their
output tags blocked and their input tags active. Wiring is
achieved by providing appropriate pairs of complementary
tags. For example, the output tag of element 1 is compli-
mentary to one of the input tags of element 11, and the
output tag of element 11 is complimentary to the input tag
of element 16, and so on. In the first computation layer, no
element has its two input elements in state 1 (i.e., phosphor-
ylated), so that phosphrylation reactions take place in all
elements. In the second layer the inputs to element 16,
provided by the output of elements 11 and 12, are both 1.
Similarly, the inputs to element 17, provided by the
outputs to elements 13 and 14, are both 1. Thus, elements
16 and 17 will not be phosphorylated. The computation
propagates in this way until the final output element
(number 19) forms a complex with elements 15 and 18.
Activation of the output tag of element 19 signifies comple-
tion of the computation, and the result may be read off by,

TOWARDS COMPUTING WITH PROTEINS 57



for example, examination of a fluorescent probe attached
to that tag.

Feasibility of the Model

While the ultimate proof of the feasibility of a design is
its effective implementation, the basic biochemical mol-
ecules and reactions needed to implement this model are
mostly within the realm of current protein engineering
capabilities.

Volume and concentrations

In order to minimize the formation of incorrect interac-
tions the system will be established at the most dilute

concentration possible. We assume that a prototype sys-
tem might have a volume of 1 mL. As we discuss below, we
intend to utilize redundancy in terms of multiple copies of
each element to allow for error correction. To achieve this
purpose, we consider 107 copies of each molecule to be
reasonable. Assuming a system size of the order of 1000
gates, this will amount to 1010 molecules in a volume of 1
mL, which is a concentration on the order of 0.1 nM, a
suitably dilute system.

Recognition Tags

The design calls for the use of single-stranded DNA tags
to produce high specificity associations between the appro-

Fig. 2. A schematic view of the basic computational element. The
protein molecule has two enzymatic domains to facilitate activation and
computation. We propose these to be an exonuclease domain and a
kinase domain, respectively. In addition, each molecule has three DNA
tags to provide recognition properties, two for the input and one for output
(capitol letters). The output tag will be initially blocked by a complimentary
oligomer, rendering it inactive until the appropriate stage of the
computation.

Fig. 3. A schematic view of activation of a gate complex. (A) The process starts with two molecules with
complimentary active tags (shown in lowercase letters) defusing freely in search of the appropriate target. Note
that the output tag of the target molecule is blocked by a matching oligomer, and that the target molecule is set
by default to the dephosphorylated (white) (i.e., set to the 0) state. (B) The tags of the input molecules hybridize
to the input tags of the target. (C) Once the two input molecules are tethered to their target, localization causes
these molecules to form an active dimer. (D) The conditional phosphorylation reaction, representing the NAND
gate: Only if both input molecules are phosphorylated (in the 1 state, red) is the target molecule not
phosphorylated. In all other combinations, like the one shown here, the output molecule is phosphorylated (i.e.,
set to the 1 state, red). (E). Formation of the complex (regardless of its phosphorylation state) activates the
output tag as a result of exonuclease digestion of the blocking oligomer, exposing the single stranded output
sequence. (F) The output molecule diffuses in search of its own target.

Fig. 4. A schematic view of recognition tags attached to the protein
part of the active molecule. Two input recognition sequences are shown
(red) separated by linker sequence (blue). The output tag is covered by a
matching strand which blocks accessibility until an exonuclease is used to
digest the cover. The exonuclease will only digest the DNA cover and will
leave the tag DNA (or PNA, see text) intact.

58 R. UNGER AND J. MOULT



priate gate elements. We are not aware of the use of DNA
tags to associate pairs of proteins, but the necessary
chemistry for fusing protein and DNA is established, for
example, by covalent attachment of the DNA strand to
cysteine residues.18,19 The association constants between
complementary DNA strands are also well understood and
predictable,20 forming the basis of temperature dependent
melting, as used in PCR and cloning reactions. Synthesis
of DNA oligomers is a routine process, partly because of
these applications. For our prototype system, tags of about
20 base pairs having binding constants in the 0.1 pM
range, would ensure almost complete complex formation
at the 0.1 nM concentration of gate elements proposed. As
discussed below, selectivity of tag binding is achieved by
ensuring at least eight mismatches between any pair of
noncoupled tags.

An alternative is to use PNAs (peptide nucleic acids),
which have a peptidelike backbone with side-chains mim-
icking DNA bases. PNA is recognized by DNA binding
proteins and as a single strand can hybridize to complemen-
tary DNA or PNA molecules with high specificity.21,22

PNA tags can be attached via a peptide bond to the termini
of proteins, as well as via a cystine side chain.22 An
advantage compared with DNA is that PNA is not digested
by nucleases. Note that DNA would still be used to make
the covers that initially block the output tags, so that the
exonuclease will be able to digest them at the appropriate
time.

Each gate element carries three tags. These tags can
attached to three different sites, as shown schematically in
Figure 2, or more conveniently, fused together with short
linkers and attached to one terminus of the protein (see
Fig. 4). An advantage of this arrangement is that it
permits easy automated translation of any logical circuit
into its biological equivalent (see below).

Activation of output tags

The output DNA tag of each gate must be blocked from
premature association with the element to which it is
wired until the logical operation of the gate is complete.
The proposed mechanism for ensuring this is to block the
tag with a complementary oligomer until activation is
required. Activation is carried out by an exonuclease,
which digests the complementary blocking strand. Correct
timing is achieved by employing a nuclease that is func-
tional only as a dimer. The dimer interface must be
engineered so that significant dimer formation only occurs
when the gate complex has been formed. Several commer-
cially available dimeric or tetrameric exonucleases, for
example, Lambda exo and exo III,23 have the ability to
digest double-strand DNA, leaving a single intact strand.
In fact, a similar idea is used in a product called TaqMan
that is designed for quantitative PCR measurements in
which an oligonucleotide is digested by a DNA polymer-
ase.24

Gate logic

Logical states are represented by the phosphorylation
state of the protein components. There are two possible

conventions: phosphorylation represents 0, or phosphory-
lation represents 1. NAND logic can be implemented for
the former convention by employing a phosphatase activ-
ity (removal of a phosphate from the output element if both
input elements are phosphorylated) or a kinase for the
latter convention (addition of a phosphate to the output
element unless both input elements are phosphorylated).
In biology, control mechanisms seem to rely much more
frequently on kinases than on phosphatases, and so there
is a much richer choice of possible kinase enzymes to
employ. Thus, we have decided to base the model on kinase
activity. We require a kinase system with the following
properties: First, the enzyme must be active only as a
dimer. Second, the dimeric form of the enzyme must be
able to phosporylate other monomers. That is, the dimer of
molecules should add a phosphate to a monomeric form of
the same molecule. Third, it exerts negative control, that
is, it is inactive only when both subunits are phosphoray-
lated.

Because many kinases are active as dimers, and many
are autocatalytic, the first two requirements are relatively
easy to achieve. The third one poses an engineering
challenge. Negative control of kinases (i.e., kinases that
work only when they are not phosphorylated) seems to be
relatively rare. It is much more common for kinases to be
activated by phosphorylation. However, at least one such
case, which might serve as a starting point for the design,
has been reported,25,26 DRP-1 of the DAP-kinase family of
Ca2�/calmodulin (CaM)-regulated Ser/Thr kinases. These
molecules function as positive mediators of programmed
cell death. The protein combines two of our desired proper-
ties — it is active only as a dimer, and it is most active
when unphosphorylated. When the two subunits are phos-
phorylated (on Ser308) there is a very significant reduction
of its phosphorylation activity. While Ser308 is autophospho-
rylated by the enzyme, its primary phosphorylation target
is another protein, a myosin light chain (MLC). Additional
control is provided by calcium-dependent calmodulin bind-
ing. Thus, substantial protein engineering would be re-
quired to produce a suitable kinase, starting from DRP-1,
or from other proteins. Although challenging, we believe
such engineering is possible.

The suggestion presented here concentrates on using
NAND gates because NAND is a universal gate that can be
used as a single type of gate needed to implement any
logical computation. It might turn out that it is simpler,
protein engineering wise, to design two different biological
molecules, one that emulates for example the function of a
NOT gate and one that emulates the function of an AND
gate. (NOT and AND gates, taken together, allow univer-
sal computation.) Such a pair of gates would require a
different cascade of signaling events than the one de-
scribed here.

Activation by localization

A key feature of the design is high, effective local
concentration of molecules as a result of the complementa-
rity of the tags. The enzymatic reaction is tuned such that
the tag tethered molecules will be highly active, while

TOWARDS COMPUTING WITH PROTEINS 59



freely diffusing ones will be essentially inactive. This is
achieved by control of dimerization. Binding of tags to the
complementary sequences on a target molecule increases
the local effective concentration. Assuming a protein diam-
eter of about 50 Å, and the connecting DNA tether to be of
about 250 Å (three tags of about 20 bp each and linkers),
the two molecules will be contained within a sphere of
about 108 Å3. The effective concentration will then be of
the order of 10 �M. This is 100,000-fold higher than that of
the free molecules in the solution (0.1 nM). A dimer
association constant of 1 �M will therefore ensure almost
complete formation of active enzyme for tag hybridized
molecules. At the same time, it would guarantee a very low
amount of dimerization for untagged complemented mol-
ecules: At 0.1 nM concentration, only 1 in 10,000 molecules
will be in dimeric form at any time at equilibrium. Similar
localization principles have been evoked to explain enzyme
rate enhancements,27 and form the basis of methods of
detecting naturally occurring protein–protein interac-
tions, for example, in yeast two-hybrid assays.28

Timing within a gate

The output tag of a gate must not be activated until its
logical operation is complete. That is, the kinase must add
a phosphate to the output element, if required, before the
exonuclease exposes enough of the output tag for associa-
tion with the input of the next gate to occur. Indeed, typical
turn over rate for kinases are around 100 to 1000 per
second (see, for example, Rose and Dube29) while an
exonuclease would cleave a mask of 20 bp in about 1 to
5 s.30

Speed of computation

How rapidly can these circuits carry out a computation?
As mentioned above, digestion of the mask can be com-
pleted 1 to 5 s. With 107 copies of each element in a volume
of 1 mL, collision rates are significantly faster than that.
The phosphorylation rate is also significantly faster. Thus,
the exonucealse step is rate limiting. So, a system of a
thousand gates, which would have about 10 layers, is
expected to complete computation in less than a minute.

Initialization and Resetting of the System

For a prototype system, we propose the following initial-
ization and resetting steps: A solution of identical un-
tagged and unphosphorylated monomeric molecules is
prepared at the required concentration for computation.
An aliquot containing sufficient molecules for the input
layer is removed. The necessary tags are synthesized in
two batches — one containing tags of the input layer
(where the input tags have to be blocked and output tags
exposed), the other containing all other tags (where the
output tags should be exposed and output tags blocked).
The appropriate tags are blocked to prevent premature
hybridization between tags. The tags, already appropri-
ately blocked, are introduced into the solutions under
ligating conditions and are attached to the protein mol-
ecules.

Input elements to be initialized to the logical state 1 are
identified by means of their common input tag sequence. A

convenient mechanism would be to immobilize the appro-
priate set of complementary tags on a bead. The bead is
then used to extract the corresponding elements from the
solution of input layer elements, and to introduce them
into a solution containing activated kinase molecules.
Following phosphorylation, the elements are released back
into the input layer solution by elevating the temperature
to melt the tag complexes (as in a PCR reaction). Similar
immobilization methods have been developed for DNA
microarray preparation. This procedure facilitates reset-
ting of the input layer for subsequent computations with
different input values.

Computation is begun by adding the input layer solution
to the main solution. The unmasked output tags on the
input elements will permit formation of the first layer of
complexes. Thereafter, the computation will run to comple-
tion automatically.

Activated output molecules can be isolated using the
appropriate complementary tags mounted on a bead. Mass
spectroscopy then provides a convenient means of determin-
ing their phosphorylation states.

For each logical formula, a new combination of tags
needs to be assembled. This is not needed for another
computation of the same formula with different input
values. A computing solution can be prepared for another
round of computation by resetting all elements to the
unphosphorylated state (using a phosphatase immobilized
on a bead), introducing a new set of masking tags, and
setting input element phosphorylation states as required.

Possible Sources of Error

One of the most obvious problems to be addressed in
considering computation using biological reactions is that
of error in the process. While we have selected reactions
that are of inherent high fidelity, biological processes are
never error proof, and reactions might occur between
incorrect reactants or produce an incorrect product.

The computational model presented here is sensitive to
such problems because it is a tight computation, in the
sense that an error in the outcome of any reaction in the
circuit may lead to an incorrect result presented at the
output gate.

Several types of error are possible, and could arise in
recognition, synchronization, or computation:
Recognition: Hybridization of unmatched tags. In prin-
ciple, the specificity of tag recognition can be made as high
as desired, by increasing the length of the tags. As noted
earlier, quite short tags (approximately 20 bases) are
sufficient to achieve an appropriate binding constant. This
size will still enable reliable distinction between tags and
prevent cross-hybridization. Coding theory (see, for ex-
ample, Van Lint31) provides upper and lower limits to the
number of code words that differ by a given number of
mismatches. For example, for tags of 20 bases, a lower
bound on the number of different tags with at least eight
mismatches to any other tag is over 5000 tags and the
upper bound is over 33,000,000 tags. Even the lower bound
would be enough for our prototype system.

60 R. UNGER AND J. MOULT



Synchronization: Dimerization to form an active com-
plex may occur spontaneously between molecules even
without hybridization of tags. As discussed earlier, the
localization provided by tag binding can be exploited to
reduce this to a low level, on the order of 1 in 10,000
complexes in the prototype.

Computation: Kinase action causing phosphorylation
inconsistent with the logic of a NAND gate. With an active
site split between the components of the active dimer,
accidental enzymic phosphorylation can be reduced to
near the spontaneous level observed in the absence of
enzyme.

Computation: Failure to phosphorylate when that reac-
tion is the correct logical outcome. The primary cause
would be dissociation of one or both of the input molecule
tags before the enzymatic reaction takes place. There are
then two possible situations. In the first, detachment could
occur before full processing of the output tag mask by the
exonuclease. In this case, an active complex will eventu-
ally reform, and the reaction will again have an opportu-
nity to take place. In the other situation, detachment of an
input molecule may take place after full mask processing,
but before phosphorylation. In that situation, an error
would be propagated. The chances of this occurring can in
principle be reduced by decreasing the catalytic rate of the
exonuclease.

Synchronization: Spontaneous dissociation of the tag-
masking oligomer not aided by the action of the exonucle-
ase. Because the concentration of tag masks in solution is
close to zero, either a very strong interaction and/or a very
long half life between the mask and its complementary tag
is needed. This is important because detached tags may
associate with output tags on equivalent elements where
processing is complete. Spontaneous dissociation can be
reduced by making the mask complementarity longer.
However, this is probably not necessary because atomic
force microscopy data32 suggest that half-lives of DNA
complexes are sufficiently long to minimize tag transfer.

Robustness to errors

It is clear that some errors are unavoidable in such a
system, and thus a certain proportion of molecules will
carry an incorrect value. On the other hand, in this model,
robustness may be achieved by utilizing the fact that the
same computation is performed by a large number of
molecules. The redundancy of molecules carrying the
result provides a mechanism for eliminating errors. For a
network with N elements, and an error rate per gate of e,
the probability of a correct computation is (1�e)N. If the
value of e is sufficiently small, a majority vote can be used
to obtain a correct result. For example, a system with 100
gates and an error rate of 0.001 per gate would produce
highly reliable majority vote results. For cases where the
size of e is incompatible with the system size, it is not
sufficient to take a majority vote on the final results, and
the end result of the computation is dependent on obtain-
ing the correct result at each stage. A correction mecha-
nism can be based on the observation that the phosphory-
lation state of active molecules representing the same gate

(i.e., copies of the same gate) should all carry the same
value. Different values signify that one of the molecules
carries an incorrect result. Because there is no way to
know which one carries the correct result, the simple
solution would be to eliminate both. The key here is to
contain the error in such a way that it will not propagate
further along the computation. Such a comparison might
be implemented, for example, by a methylation reaction
that would be triggered when two active, similarly tagged,
molecules with different phosphorylation states interact.
Methylation would then block participation of molecules in
further interactions.

Automation and Production

The prototype system has a single protein molecular
species, containing a kinase and a nuclease domain. A fully
developed system would have additional protein compo-
nents for error control and system resetting. These pro-
teins can be produced using conventional protein expres-
sion and purification procedures, and used in the
construction of all circuits. The DNA tags are circuit
specific, and provide wiring between gates. A circuit would
first be designed using standard gate notation. Two comple-
mentary tag sequences would be chosen for each wire
connecting the output of one gate to the input of another.
The sequences are random, with constraints on composi-
tion to ensure appropriate binding constants. Once all tag
sequences for a circuit have been generated, an iterative
procedure is run, checking to see that no two tags are too
similar in sequence, and if they are, generating a new
sequence for one of them. Such a library of tags can be
prepared in advance and used for all circuits.

The conversion of an electronic circuit to a set of tag
oligomer sequences can be fully automatic. The three tag
sequences for each gate are combined into one string, with
suitable linker regions between them and at the ends.
These sequences will be approximately 80 nucleotides long
in total, and so can be produced by the same high through-
put procedures used in cloing and PCR. Stochometric
amounts of protein and oligomers are then mixed, under
conditions that lead to linkage between DNA and protein.
In the system we outlined there are N � 107 protein
molecules, and 107 copies of each tag oligomer (where N is
the number of gates in the circuit). It is not necessary to
have exact numbers. Excess oligomers or protein are not
expected to interfere with the function of the circuit.

COMPUTER SIMULATION

We have performed a computer simulation to ensure
that the basic design is logically consistent, and evaluated
its performance and robustness to errors.

Two types of circuit were simulated. One is a generic
type whose architecture is of a full binary tree, that is, a
layered structure where each gate is connected to two
gates in the previous layer. A system of N levels will thus
have 2N � 1 gates. This allows for simple scalability of the
system and simple measurements of the effect of varying
parameters. All the input gates were set to the same
logical value. (The logic of such a network of NAND gates

TOWARDS COMPUTING WITH PROTEINS 61



makes the result of the calculation alternate between
levels, that is, if a system of N levels results in 1, then a
system of N � 1 levels will results in 0.) The other circuit
that was tested was the Majority function described ear-
lier. Simulations were done on a two dimensional grid of
600�600 cells in which molecules where allowed to diffuse
between cells. Total computation time is defined as the
number of steps required for 50% of all the output gates to
be activated. Various conditions were investigated.

Performance

First, we tested the effect of diffusion rates in terms of
the maximal step size (in grid units) a molecule can take in
a single step. Then, we tested the effect of changing the
circuit size, and finally we tested the effect of changing the
number of copies of each gate that participates in the
system. The results for the binary tree are shown in Fig-
ure 5.

In the first experiment with a binary tree network, the
number of copies of each gate was set to 100, and we used a
network with 5 levels (i.e., 31 gates). The diffusion rate
(the size of the diffusion step in lattice units) was varied
from 6 to 60. (i.e., for a diffusion rate d, �x, and �y were
changed by a randomly chosen value between 0 and d). As
expected, the computation time in terms of the number of
generations (each generation is one move of each molecule)
decreased significantly as the diffusion rate increased. In
the next experiment, the diffusion rate was set to 36 lattice
points per move, and the size of the circuit was changed.
Networks of depth 3 (i.e., binary trees with three layers,
containing seven gates) to depth 6 (63 gates) were investi-
gated. The computation time increased exponentially with
the depth of the circuit, whereas in a silicon-based compu-
tation, the time increases approximately linearly with the
circuit depth.

Next, we tested the time dependence on the level of
parallelism in the system in terms of the number of copies
of each gate. At a diffusion rate of 36 lattice points per
move it can be seen [Fig. 5(c)] that the performance
improves exponentially with the number of copies. This
property of the protein-based system offsets the exponen-
tial time dependence on gate depth. A simple extrapolation

suggests that with the intended number of copies (107)
circuits of depths of up to 20 could be handled. However,
notice that our requirement that 50% of the output ele-
ments will complete their computation before the result is
over determined. In practice, with 107 copies of the output
elements, even when 1% of the copies (i.e., 105) are
completed, the result can be reliably determined. This will
enable circuits with significantly greater depths.

Robustness to Errors

Next, we tested the performance of the network when
errors were introduced. We simulated errors, using a
single parameter that specifies the probability that the
result of a gate operation is not the correct NAND outcome.
The results, for the majority function, with 100 copies and
a diffusion rate of 36 (Table I) show the relationship
between error rate and circuit accuracy.

It can be seen that up to error rate of 10%, the output
accuracy is still reasonable and the correct answer can be
obtained by taking the majority result over the set of
output gates. If the overall error rate in each elementary
calculation is higher, the percentage of the correct answer
gets too close to 50% to allow reliable determination of the
outcome. Thus, it is necessary to employ an active mecha-
nism of error detection and elimination. We simulated a
method for error elimination in which every active mole-
cule undergoes a validation check, by comparing its output
value with another active copy of the same molecule, as
discussed above. Such a mechanism produces a dramatic

Fig. 5. The performance of the simulation with the binary tree circuit. Running time is measured as the
number of generations (a generation consists of moving every molecule once) until 50% of the output
molecules are activated. (a) Running time decreases exponentially in the diffusion rate, that is, in the distance
(in grid units) each element can move in one step. (b) Running time increases exponentially in the depth of the
circuit, but (c) decreases exponentially in the number of the copies for each molecule.

TABLE I. Relationship between Gate Error Rate and the
Fraction of Output Gates Providing the Correct

Logical Result

% Error rate
No Error Detection,

% Correct

Error Detection &
Elimination

% Correct % Yield

1 100 100 83
2 92 98 75
5 74 97 48
10 61 92 24
20 55 100 5

62 R. UNGER AND J. MOULT



improvement in the robustness of the results (Table I). The
success rate of the computation is above 90% up to the
highest error rate tested, 20%. This success is achieved at
the cost of eliminating some molecules and greater system
complexity. With the low number of copies used here, only
24% of molecules in the output layer remain when correct-
ing a 5% error rate, and only 5% remain with an error rate
of 20% (in the simulation, all of the remaining 5% of copies
yielded the correct answer, thus bringing the computation
back to perfect 100% accuracy, but this is probably an
artifact of the small final yield).

As discussed in the Robustness section, no single error
appears to significantly affect the final outcome (i.e., error
rates can be controlled to a very low level), and for small
circuits, at least, error correction should not be necessary.
However, error estimates are far from quantitative, so it is
reassuring that high error tolerance should be possible.

DISCUSSION

We now return to the questions raised in the introduc-
tion, concerning the possibility of computing with biologi-
cal components, and show how our model addresses each of
them.

1. How can logical gates (i.e., switching) be implemented
by a protein-based system? Logical operations are per-
formed by phosphorylation reactions that implement
the logic of a NAND gate.

2. How can wiring between gates be implemented? Wiring
is implemented by single-strand DNA tags that are
attached to each protein. A pair of complementary tags
wire the output of one gate to the input of another.

3. What are the tokens of the computation, that is, how is
the computation carried out from input to output? The
tokens of the computation are defusing molecules with
two different possible phosphorylation states. The phos-
phorylation state of these molecules carries the informa-
tion transferred from the input to the output of the
circuit.

4. Because the biological processes utilized in the system
vary in their reaction speed, how can the timing of the
computation be synchronized? Synchronization of the
network is achieved by blocking the output tags of each
molecule until that molecule has become associated
with the appropriate input molecules. Unblocking of
tags is performed by an exonuclease which is activated
upon complex formation.

5. What are the expected errors in the process and how
can these errors be contained? Problems that might
occur have been identified and discussed. Conditions
were identified to minimize the possibility of error in
each process. Furthermore, the redundancy in the
system (i.e., having 107 copies of the circuit) enables
reliable computation of the entire system even when
the individual reactions might be erroneous. If the error
at each stage were to become too large to be contained,
then more active error detection mechanisms could be
added. Possible approaches to this problem are de-
scribed.

6. How can the design of such a computation device be
automated such that it will possible to take a layout of a
regular electronic circuit and produce a biological
equivalent? The process of converting a logical circuit to
biological computation can be automated because the
design uses a single protein species to build all the
logical gates. Wiring between gates is created by synthe-
sizing appropriate DNA tags and attaching them to the
protein molecules, using standard technology.

Two major engineering challenges lay in the heart of the
system. One is attaching DNA (or PNA) tags to proteins
and their use to facilitate protein–protein interactions.
The second is engineering a dimeric negatively controlled
autokinase. While all of the protein engineering required
for the system are possible in principle, it obviously
requires, especially the second task, a great deal of develop-
ment in practice. Note however that once a working
system has been constructed, the same component design
can be used for any logical circuit, and thus any technologi-
cal improvement in the elementary processes will directly
benefit every computation.

Clearly, these are just the first steps towards computa-
tion with biological components. We believe there is a large
potential for such technology, especially in medical applica-
tions. We hope that the model presented here will stimu-
late further research in this field. Specifically we hope that
our ideas will encourage experimentalists to investigate
practical implementations.

ACKNOWLEDGMENT

We thank Zvi Kelman for very helpful ideas and discus-
sions regarding the possible role of an exonuclease in
synchronizing the computational process, and Adi Kimchi
for introducing us to the family of DAP-kinases. A patent
application is pending.

REFERENCES

1. Adelman LM. Molecular computation of solutions to combinatorial
problems. Science 266:1021–1024.

2. Yurke B, Turberfield AJ, Mills AP Jr, Simmel FC, Neumann JL. A
DNA-fuelled molecular machine made of DNA. Nature 2000;406:
605–608.

3. Braich RS, Chelyapov N, Johnson C, Rothemund PW, Adleman L.
Solution of a 20-variable 3-SAT problem on a DNA computer.
Science 2002;296:499–502.

4. Benenson Y, Paz-Elizur T, Adar R, Keinan E, Livneh Z, Shapiro E.
Programmable and autonomous computing machine made of
biomolecules. Nature 2001;414:430–434.

5. Benenson Y, Adar R, Paz-Elizur T, Livneh Z, Shapiro E. DNA
molecule provides a computing machine with both data and fuel.
Proc Natl Acad Sci U S A 2003;100:2191–2196.

6. Benenson Y, Gil B, Ben-Dor U, Adar R, Shapiro E. An autonomous
molecular computer for logical control of gene expression. Nature
2004;429:423–439.

7. Bode BW, Sabbah HT, Gross TM, Fredrickson LP, Davidson PC.
Diabetes management in the new millennium using insulin pump
therapy. Diabetes Metab Res Rev Suppl 1 2002:S14–S20.

8. Turing AM. On computable numbers, with an application to the
Entcheidungproblem. Proc Lond Math Soc II Ser 1936;42:230–
265.

9. Braun E, Eichen Y, Sivan U, Ben-Yoseph G. DNA-templated
assembly and electrode attachment of a conducting silver wire.
Nature 1998;391:775–778.

10. Keren K, Krueger M, Gilad R, Ben-Yoseph G, Sivan U, Braun E.

TOWARDS COMPUTING WITH PROTEINS 63



Sequence-specific molecular lithography on single DNA mol-
ecules. Science 2002;297:72–75.

11. Morton-Firth CJ, Shimizu TS, Bray D. A free-energy-based stochas-
tic simulation of the Tar receptor complex. J Mol Biol 1999;286:
1059–1074.

12. Elowitz MB, Leibler S. A synthetic oscillatory network of transcrip-
tional regulators. Nature 2000;403:335–338.

13. Gardner TS, Cantor CR, Collins JJ. Construction of a genetic
toggle switch in Escherichia coli. Nature 2002;403:339–342.

14. Chen Z, Govender D, Gross R, Birge R. Advances in protein-based
three-dimensional optical memories. Biosystems 1995;35:145–151.

15. Ashkenazi G, Ripoll DR, Lotan N, Scheraga HA. A molecular
switch for biochemical logic gates: conformational studies. Biosens
Bioelectron 1997;12:85–95.

16. Sivan S, Lotan N. A biochemical logic gate using an enzyme and
its inhibitor. 1. The inhibitor as switching element. Biotechnol
Prog 1999;15:964–970.

17. Bray D. Protein molecules as computational elements in living
cells. Nature 1995;376:307–312.

18. Corey DR, Schultz PG. Generation of a hybrid sequence-specific
single-stranded deoxyribonuclease. Science 1987;238:1401–1403.

19. Bruick RK, Dawson PE, Kent SB, Usman N, Joyce GF. Template-
directed ligation of peptides to oligonucleotides. Chem Biol 1996;3:
49–56.

20. SantaLucia J Jr. A unified view of polymer, dumbbell, and
oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl
Acad Sci U S A 1998;95:1460–1465.

21. Corey DR Peptide nucleic acids: expanding the scope of nucleic
acid recognition. Trends Biotechnol 1997;15:224–229.

22. Zhang X, Ishihara T, Corey DR. Strand invasion by mixed base

PNAs and a PNA-peptide chimera. Nucleic Acids Res 2000;28:
3332–3338.

23. New England Biolabs 2002–2003 catalog, p 107–108.
24. Holland PM, Abramson RD, Watson R, Gelfand DH. Detection of

specific polymerase chain reaction product by utilizing the 5�–3�
exonuclease activity of Thermus aquaticus DNA polymerase. Proc
Natl Acad Sci U S A 1991;88:7276–7280.

25. Shani G, Henis-Korenblit S, Jona G, Gileadi O, Eisenstein M, Ziv
T, Admon A, Kimchi A. Autophosphorylation restrains the apopto-
tic activity of DRP-1 kinase by controlling dimerization and
calmodulin binding. EMBO J 2001;20:1099–1113.

26. Shohat G, Shani G, Eisenstein M, Kimchi A. The DAP-kinase
family of proteins: study of a novel group of calcium-regulated
death-promoting kinases. Biochim Biophys Acta 2002;1600:45–
50.

27. Jencks WP. From chemistry to biochemistry to catalysis to
movement. Annu Rev Biochem 1997;66:1–18.

28. Golemis EA, Serebriiskii I, Law SF. The yeast two-hybrid system:
criteria for detecting physiologically significant protein–protein
interactions. Curr Issues Mol Biol 1999;1:31–45.

29. Rose ZB, Dube S. Rates of phosphorylation and dephosphorylation
of phosphoglycerate mutase and bisphosphoglycerate synthase.
J Biol Chem 1976;251:4817–4822.

30. Promega corporation, 1998. Erase-a-base technical manual. Avail-
able from: http://www.promega.com/tbs/tm006/tm006.pdf

31. Van Lint JH. Introduction to coding theory, 3rd ed., New York:
Springer-Verlag; 1999.

32. Pope LH, Davies MC, Laughton CA, Roberts CJ, Tendler SJ,
Williams PM. Force-induced melting of a short DNA double helix.
Eur Biophys J 2001;30:53–62.

64 R. UNGER AND J. MOULT


