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ABSTRACT
In a world of ad-hoc networks, highly interconnected mo-
bile devices and increasingly large supercomputer clusters,
students need models of computation that help them think
about dynamic and concurrent systems. Many of the tools
currently available for introducing students to concurrency
are difficult to use and are not intrinsically motivating. To
provide an authentic, hands-on, and enjoyable introduction
to concurrency, we have ported occam-π, a language whose
expressive powers are especially compelling for describing
communicating dynamic reactive processes, to the LEGO
Mindstorms.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming

General Terms
Human Factors, Languages

Keywords
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1. INTRODUCTION
This paper is about a philosophy of instruction and the

tools we have developed for teaching concurrency in the
context of this philosophy.

Our philosophy regarding instruction is that students
should have fun engaging in authentic, hands-on learning,
and they should look forward to those learning experiences.
When we say fun, we mean our students should find learning
to be enjoyable, challenging and enriching in obvious ways.
“Hands-on” means that the learning process is not passive
from the learner’s perspective (like a typical lecture), but
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active, requiring students to participate mentally and phys-
ically in the learning process. We define authentic learning
experiences as those that are true unto themselves; they are
not contrived. And when a student walks into our class-
room, we want them to look forward to the lesson—even if
they don’t know what it is going to be.

Our goal is to remain true to our philosophy, and at the
same time develop a platform upon which we can explore
concurrency and parallelism with our students. We believe
the LEGO r©MindstormsTM provides an ideal starting point
in this regard. Little robots have to deal with big problems,
and the problems students face programming these robots
are real: navigating around a room, while reading from
multiple sensors and communicating with other little robots
is an obvious goal, but a difficult task nevertheless. In
bringing occam-π[5] to the Mindstorms, we believe we can
explore concurrency more deeply, more tangibly and more
enjoyably than with the technologies otherwise available to
us.

We begin our paper with a brief introduction to occam-π
and the run-time environment that we have developed for
use in our own classrooms. We then examine a number of
other tools and methods for teaching concurrency in section
three; in particular, we consider these tools through the lens
of our own philosophy of instruction. Lastly, we provide a
worked example demonstrating occam-π’s expressiveness on
the LEGO Mindstorms, and close with a brief discussion of
future directions of our work.

2. BACKGROUND
occam-π is a new, explicitly concurrent language, which

combines the best features of the Communicating Sequential
Process (CSP) algebra, first introduced by Professor Sir
Tony Hoare in 1985[15], and the π-calculus, developed by
Robin Milner[22]. occam-π has a small number of syntactic
constructs (like Scheme) and uses indentation to denote
logical blocks of code (like Python). Modeled closely on
the CSP algebra, occam-π compilers provide guarantees
about the run-time behavior of programs. For example,
it is not possible for data race-hazards to take place at
run-time. Additionally, one of the defining features of the
language is the ability to express non-deterministic choice
over communications channels. For example, it is possible to
easily respond to any one of many sensors on a little robot.
This process of alternating over communications channels
(as expressed by the ALT construct) is demonstrated in our
worked example in section four.



The CSP model of concurrency provides a clear and sim-
ple framework for expressing parallel programs. This is
accomplished through the use of unidirectional, point-to-
point, blocking channels through which data is passed from
one process to another while executing in parallel. Uni-
directional, point-to-point channels are part of what make
occam-π a safer language for programming concurrently.
Additionally, because all communications block, each com-
munication becomes an explicit synchronization point in
our program. This makes it unnecessary to use spin locks,
semaphores, and other error-prone constructs commonly
employed when writing parallel programs in other languages.

The CSP model of communicating processes is widely used
today: Erlang[2] and Handel-C[3], for example, both build
on concepts that originated in CSP. Additionally, occam-π
is continually evolving in the form of KRoC –the Kent Re-
targetable occam-π Compiler[4, 32]. Our efforts extend this
work: we have built the Transterpreter, a virtual machine
interpreting a byte-code that includes instructions directly
supporting CSP primitives for concurrency[16]. The byte-
codes generated are an integral step of the KRoC compiler,
thereby providing the Transterpreter with an existing and
proven tool-chain.

Written in strict ANSI C, the Transterpreter runs on all
major operating systems and architectures. Because of the
Transterpreter’s small memory footprint (roughly 5Kb), it is
well suited to embedded applications. In addition to being
able to execute occam-π programs on Macintosh OS X,
Linux, Solaris and Windows, we planned from the beginning
for our software to run on small devices like the LEGO
Mindstorms.

Because of the extremely portable nature of the Transter-
preter, we can execute the exact same occam-π program on
the LEGO Mindstorms as we would in our simulator or on
larger robotics platforms. The Transterpreter also offers an
excellent run-time environment for exploring concurrency;
in this regard, occam-π is a language that allows students
to develop their skills in concurrency over examples that
range from real-time systems to high performance clusters
and grid-like architectures.

3. TEACHING CONCURRENCY
Motivation matters. We believe students should have fun

exploring authentic tasks in constructive ways[17]. In this
section, we examine some pedagogic approaches to intro-
ducing concurrency, from the perspective of our beliefs that
learning should be fun, authentic and constructive.

3.1 Learning should be fun
In their paper “Using robotics to motivate back door

learning,” Marion Petre and Blaine Price studied children
using the LEGO Mindstorms in robotics competitions[25].
Their research echoes what Fred Martin[21] and others[7]
have observed in their own work: little robots can provide a
focus for learning and collaboration. It is this engaging, mo-
tivational element that we feel is missing from languages like
SR[1] and Oz[29] that have been developed for introducing
concurrency to students.

Micro-worlds have often filled this motivational void in the
past. StarLogo, developed by Mitchel Resnick and others at
the MIT Media Labs, is a massively parallel micro-world de-
signed to help children explore and play with decentralized
systems[27]. occam-π, like LOGO, is a small and simple

language, designed originally for use in embedded systems.
We believe the use of the Transterpreter on the Mindstorms
will provide us with an environment and metaphor for ex-
ploring concurrency in the real world.

3.2 Learning should be authentic
Many students studying operating systems encounter the

dining philosophers problem[15]. Invented by Dijkstra, this
problem may involve (for example) five philosophers who
share five chopsticks and one plate of spaghetti. They sit,
they think, and they eat, repeating this process indefinitely.
Problems arise when one philosopher is infinitely refused
the use of a chopstick, by another greedy philosopher, who
always pick up their chopstick immediately after putting it
down. This will lead to starvation of the first philosopher.
Another bad condition, known as deadlock, can occur when
everyone picks up one chopstick and no one can pick up the
second needed to eat the spaghetti; this leads the philoso-
phers to wait indefinitely for the second chopstick to become
available. A number of pedagogic environments have been
developed to allow students to explore this problem, visually
or otherwise[20, 28].

The dining philosophers problem is authentic in that it
accurately captures the problem of sharing resources (like
memory and disk) by two or more simultaneous processes
in a computing system. However, the problem lacks real-
world authenticity: it is an analogy. When programming
a LEGO Mindstorms equipped with multiple sensors, pro-
cess starvation, deadlock, livelock and race-hazards are real
problems. Failing to read from one of two light sensors may
prevent a robot from following a line, or cause it to wan-
der off a student’s work surface (sometimes much to their
delight). We think using a language like occam-π on the
LEGO Mindstorms introduces students to the challenges
and delights of concurrent real-time system design; and it
provides a powerful tool for executing those designs.

3.3 Learning should be constructive
We agree with Einstein when he said: “Things should

be made as simple as possible—but no simpler.” Relevant
here is that there is no reason why learning to program
in the concurrent paradigm should be any more difficult
than learning any other paradigm. Too many approaches to
teaching concurrency are too complex, introduced too late
and their value is therefore obscured.

Many examples exist where industry-standard libraries
like PVM[13] or OpenMP[31] have been employed in the
classroom[10, 18, 24]. However, all of these industrial-
strength packages suffer from the same problem: while their
primitives may be few and simple, correct and safe applica-
tion of them can be surprisingly hard. They are designed
for professional software engineers, not first-year undergrad-
uates; the usability issues that can result from this mismatch
may have a significant impact on what students can accom-
plish[9].

In an attempt to deal with this dissonance, pedagogic li-
braries like ThreadMentor[8] have been developed—but all
of these (industrial and pedagogic alike) suffer from a larger
problem. Libraries provide students with primitives for im-
plementing concurrency in their programs, but they do not
help students to design solutions with concurrency in mind.
These libraries represent the imposing of one computational
paradigm (concurrency) in a fundamentally serial paradigm.



occam-π, on the other hand, has concurrency built into the
heart of its language, by design, that makes it natural to
express ideas about processes, networks, communication,
time-outs, non-deterministic choice etc. Furthermore, we
only ever need to think about one component process at
a time, so that there is true compositionally and, hence,
scalability.

Our goal is to make students fluent in concurrent design
and implementation, not to teach them how to use one set
of primitives for concurrency before they fundamentally un-
derstand the paradigm. We encourage students by giving
them programming tasks that are fundamentally concur-
rent in nature: programming little robots, for example. In
this respect, we appreciate Lynn Andrea Stein’s work in
“Rethinking CS101,” which involves motivating students to
think about agent—and event—based computing sooner,
rather than later, in the curriculum[30].

3.4 Learning on the LEGO
Our implementation of occam-π for the Mindstorms opens

new possibilities for the teaching and learning of concurrent
programming using this small robotics platform. Languages
like Not Quite C (NQC)[6] and ROBOLAB[26] provide basic
multitasking facilities that students can use, although inter-
process communication is difficult and awkward at best. The
implementation of Ada for the Mindstorms, developed by
Fagin et al., translates Ada programs to NQC, and therefore
shares many of NQC’s limitations[11]. Despite the existence
of concurrency primitives in Ada, Ada/Mindstorms does not
currently take advantage of these. Tasking is however a fu-
ture goal for the Ada/Mindstorms environment[12].

Unlike many languages available for the Mindstorms, our
implementation of occam-π will be complete. At the time of
writing, all core concurrency mechanisms have been imple-
mented. Capabilities for dynamic memory, mobile processes
and channels (allowing the creation of dynamically evolving
process networks) are currently work in progress. Other
complete languages do exist for the Mindstorms. pbForth
is a complete Forth implementation for the Mindstorms by
Ralph Hempel[14]. There also exists a complete environ-
ment for programming the Mindstorms in C, BrickOS, writ-
ten by Markus Noga[23]. BrickOS requires GCC to build C
programs for the Mindstorms, which is a non-trivial envi-
ronment to set up and maintain. We would hesitate to use
it in the classroom. However, we have made extensive use
of BrickOS in our own work, as we host the Transterpreter
within it.

We believe Klassner’s work on Mnet, a LISP environment
for the LEGO Mindstorms, is motivated by concerns re-
garding authenticity similar to our own[19]. In teaching the
fundamentals of classic AI (search, planning, etc.), it is much
more interesting to do the work on real robots as opposed to
working in a virtual microworld. Further comparison, how-
ever, is unfair to both projects: Frank Klassner is interested
in motivating students studying AI, while we are looking
for an authentic environment for studying concurrency in
real-time systems.

4. OCCAM-PI ON THE MINDSTORMS
We have discussed occam-π and the Transterpreter, and

how our pedagogic goals relate to other approaches to teach-
ing concurrency. We have also discussed how the Transter-
preter relates to other languages and environments available

for the Mindstorms, and will now provide a worked example
to further ground this discussion in the technologies we are
making available to the larger computer science education
community.

In all the languages and environments available for the
Mindstorms, a robot that can bump-and-wander its way
around a room is a simple task. A more difficult challenge
is to build a robot which allows the bump-and-wander robot
to be interrupted, if it reverses into an obstacle, during its
timed reversal sequence. The robot this example is using has
two bump sensors, one in front and one at the back. When
the robot bumps into an obstacle at the front, it starts a
reverse turn. The reverse turn can be interrupted either
by a time-out, or at any time the robot reverses into an
obstacle, which would be detected by the triggering of the
back bump sensor. Due to the use of two separate conditions
for termination of the robot’s reversal, implementing this
program can be a difficult task in many other languages.

occam-π is a language of communicating processes. The
primary mechanism for these communications are channels,
which are unidirectional, synchronizing, unbuffered pipes
through which data (or references to data) can be safely
passed. These channels can carry everything from single
booleans to complex structured data, and serve as explicit
synchronization points in occam-π programs, and guaran-
tee the complete absence of data race-hazards, a property
enforced by the compiler.

controller wheels
motors

main

touch1?

touch3?

touch2?

dirA!
spdA!
dirB!
spdB!
dirC!
spdC!

Figure 1: A simple process diagram

1 #INCLUDE "legolib.inc"
2 PROTOCOL Motors IS BYTE; BYTE; BYTE; BYTE:
3 VAL INT backupTime IS 1000:
4
5 PROCmain ()
6 CHAN Motors motors:
7 PAR
8 controller (touch1?, touch3?, motors!)
9 wheels (motors?, dirA!, spdA!,

10 dirC!, spdC!)
11 :

Figure 2: main gets things started

Figure 1 is a simple process diagram that we might de-
velop with our students to represent a collection of processes
on a Mindstorms—just two in this example.

There is a controller process, containing the control
logic, and a wheels process, used to mediate communica-
tion with the motors. There are also three external input
channels, one for each touch sensor, and six external output
channels, that directly drive actuators on the wheel motors.
These external channels are provided by our legolib—see fig-
ure 2 (line 1). There is also one internal channel, motors,
carrying information between the two processes.

Figure 2 lists the top-down presentation of this system.
We start by specifying the main process that declares the



internal channel, and creates and starts the two concurrent
sub-processes. Of interest is the declaration of the Motors

protocol (line 2), which declares that all communications
over a channel of type Motors will involve sending four
bytes: left motor direction, right motor direction, left motor
speed, right motor speed; the channel variable motors is
locally declared in the procedure main on line 6.On line 7, we
spawn two processes in parallel using the PAR construct: the
controlling process, and the process that drives the wheels.

In creating the controller and wheels processes, we see
that each have been passed a different end of the motors

channel. The end of the channel passed to each process is
signified by a ‘?’ suffix (for reading) or ‘!’ suffix (for writ-
ing). We will use this motors channel to set the direction
and speed of the two motors attached to the LEGO Mind-
storms. Messages passed set the direction and speed of the
two motors connected, as programmed by the wheels PROC

(figure 3).

1 PROCwheels ( CHAN Motors moto?,
2 CHAN BYTE dirA!, spdA!, dirC!, spdC!)
3 WHILE TRUE
4 BYTE dLeft, sLeft, dRight, sRight:
5 SEQ
6 moto ? dLeft; sLeft; dRight; sRight
7 PAR
8 dirA ! dLeft
9 spdA ! sLeft

10 dirC ! dRight
11 spdC ! sRight
12 :

Figure 3: wheels handles motor control

A common idiom in occam-π programs is for each process
to contain an infinite loop (line 3); in a language that is
inherently concurrent, this is not a problem. We see on
line 1 the parameter moto?, which is our motor control
channel; the other end of this channel is connected to the
controller process (this fact is not relevant to the design
and implementation of this process however). In SEQuence
(line 5), we read in four bytes from the moto channel (line
6), and then in PARallel we set the direction and speed of
motors attached to ports A and C on the Mindstorms by
the relevant channel communications.

1 PROCcontroller ( CHAN BOOL touchFront?,
2 touchBack?, CHAN Motors moto!)
3 WHILE TRUE
4 BOOL touched:
5 TIMER clock:
6 INT curTime:
7 SEQ
8 moto ! FWD; FULL; FWD; FULL
9 touchFront ? touched

10 moto ! BWD; HALF; BWD; FULL
11 clock ? curTime
12 ALT
13 touchBack ? touched
14 SKIP
15 clock ? AFTER curTime PLUS backupTime
16 SKIP
17 :

Figure 4: controller is the interesting bit

In figure 4 we see the controller process; this PROCess
does all of the “work” in our example. On lines 1-2, are the
parameters—in this case, two input channel ends from the
touch sensors and the output end of the motors channel. On

line 3 is the idiomatic infinite loop, followed by three local
variable declarations. The clock defined on line 5 has a
special type, a TIMER. This is treated as a read-only channel
from which the current system time (in milliseconds for this
platform) is always available.

We begin by moving forward (line 8); we accomplish this
by sending library-defined constants for direction and speed
down the channel motors, which given its PROTOCOL must
take four bytes of information. Sending data down a channel
is accomplished via the syntax

< channel > ! < valexp >

where the result of the value expression on the right-hand
side is sent down the channel (as long as the compile-time
type check passes).

In the next line, we take advantage of the fact that occam-
π channels are synchronized; the controller process will
block on line 9 until the touchFront channel becomes ready
with a value—meaning the touch sensor has been pressed.
Here, we see the occam-π syntax for reading from a channel,

< channel > ? < variable >

where a value is read from the channel into the variable
provided.

Once the touchFront channel is triggered, line 10 tells the
motors to run in reverse (at different speeds, so we pivot),
and the interesting part of the program begins.

The ALT construct (line 12) provides for passive waiting
for one of two or more events to become ready; it allows the
expression of the non-deterministic behavior of a process.
In this case, we are waiting for either the back touch sensor
(touchBack, line 13) or the clock (line 15). In particular,
we are watching to see if a number of milliseconds equal to
the variable backupTime (line 3, figure 2) have elapsed since
the time this process first read the clock on line 11.

If either the touch sensor or the time-out on the clock
becomes ready for communication, we do the same thing in
both cases: we drop out of the ALT with the SKIP instruction
(a no-op). This takes us up to the top of the loop, where
we once again set the motors moving in a forward direction,
and begin the process all over again.

For information, the source-code for the above occam-π
program, is 42 lines long. A Java solution, programmed
by an expert colleague, using a standard OO event-driven
paradigm, occupies 165 lines.

5. CONCLUSIONS AND FUTURE WORK
The Mindstorms is an excellent introductory platform for

introducing students to the issues involved in developing
concurrent and parallel programs. It is an authentic appli-
cation of these ideas, as even small robots have big prob-
lems dealing with the immediacy and concurrency of the
real world.

Our plans for future work are driven by technological,
pedagogic and research concerns. The Transterpreter will
continue to grow until it supports the full extent of occam-
π. Additionally, we look forward to experimenting with
the Transterpreter as a platform for exploring grid com-
puting in the context of dynamic clusters—another nat-
ural application of occam-π. We have begun collecting
resources for teaching and programming with occam-π at
www.transterpreter.org, intended for use by instructors



and students interested in our work. Lastly, more research
of this nature regarding the use of robotics for motivation
and concurrency in the curriculum is absolutely necessary.
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