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1 Introduction

The discovery of a Higgs like scalar at LHC, with couplings to the W±,Z in rough agree-

ment with the Standard Model (SM) expectation, allows the cut off scale of the Standard

Model Effective Field Theory (SMEFT) to be further separated from the electroweak vac-

cum expectation value (v̄T ) in the SMEFT.1 Nevertheless, expectations of naturalness still

motivate precision studies of the SMEFT. The aim is to search for patterns of deviations

that could be present as the low energy footprint of beyond the Standard Model (BSM)

physics. Further, a precise knowledge of the global constraint picture of the SMEFT is cru-

cially important to place any discovered state at LHC into the proper experimental context,

including the discovered 0+ scalar. The purpose of this paper is to advance this effort, by

further developing the analysis of model independent global constraints on the SMEFT.

Determining the global constraint picture in the general linear SMEFT is a challenge,

due to the complicated nature of this theory.2 The linear SMEFT is defined by the as-

sumption that the low energy limit of BSM physics is adequately described by an EFT

that assumes the observed 0+ scalar is embedded in the Higgs doublet, with the addition of

higher dimensional operators (L(5)+L(6)+· · · ) constructed out of the SU(3)×SU(2)×U(1)

invariant SM fields. This is the assumption we adopt in this paper. Based on this choice,

L(6) has been classified in refs. [15, 17]. Recently, L(7) has been classified in ref. [18]. We

will restrict our attention to the dimension six lepton and baryon number conserving oper-

ator corrections to the linear SMEFT in this paper, except when dimension eight operators

are used to characterize theoretical errors. Note that the dimension seven operators violate

Lepton number [18], as does L(5), and as such, these operators can be neglected for our

purposes, and not included in theoretical error estimates.

In this paper we advance the understanding of the global constraints on the lin-

ear SMEFT due to near Z pole data.3 We calculate dσ(ℓ+ℓ− → f̄f)/d cos θ where

f = {e, µ, τ, u, c, b, s, d} on and off the Z pole in the massless limit, to order O(v̄2T /Λ
2)

in the SMEFT. We emphasize the need for consistency in how these processes are treated,

and point out several corrections of L(6) to the SM that have been neglected in past global

constraint efforts.

Our main point is the following. When considering constraints on L(6), theoretical

calculations are never performed to arbitrary precision. As a result, bounds on L(6) in a

purely leading order analysis (of BSM effects) can not rise to an arbitrary level of constraint

in a self consistent way. Terms that are sub-leading in the power counting of the EFT

are neglected. Loop corrections involving higher dimensional operators are also generally

neglected when considering Electroweak precision data (EWPD). Further, the contributions

of BSM effects in processes that are sub-leading in the SM have also been neglected.

1Compared to the case where no 0+ scalar is present.
2For some past global constraint analyses and comments relevant to this work see refs. [1–14]. The

complexity of the theory is perhaps best illustrated by the fact that the non redundant basis of dimension-

six operators in the (linear) SMEFT given in ref. [15] has 2499 parameters [16].
3The qualifier “near” the Z pole is important as some interference effects vanish when data is taken ex-

actly on the Z pole. At LEPI a significant fraction of data (approximately 1/4th) is taken off the Z pole to

fit for the Z mass, total width and cross section as a function of center of mass collision energy s. The com-

bined data set includes this off pole data (approximately corrected to account for off pole γ−Z interference

effects in the SM). See ref. [19] for a description of the LEPI program. LEPII was run far off the Z pole.
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All of these assumptions are potentially problematic for consistent analyses, when very

strong bounds are argued to be obtained on L(6) in a naive leading order analysis. In this

paper, we argue that EWPD bounds on anomalous Z couplings that exceed the percent

level are challenged due to this litany of neglected corrections. The up side of considering

sub-leading corrections more consistently in the SMEFT is a relaxing of bounds on L(6),

when a truly general analysis is performed.

We discuss these issues and a more consistent approach to EWPD on and off the Z

pole in the SMEFT in section 4. It is essential to eventually also include the less precise

results of off Z pole data reported in LEPII in a global analysis of the SMEFT. Our

results are general enough to perform this analysis for LEPII data. In such an effort, some

of the interference effects that we highlight are only suppressed compared to the leading

order terms by M2
Z/v̄

2
T . For near Z pole data these interference effects scale as Γ2

Z/M
2
Z

(for γ − Z corrections) and Γ2
Z/v̄

2
T (for ψ4 − Z corrections) in the 2 → 2 scattering cross

sections. However, the latter effects lead to corrections relatively suppressed by ΓZ MZ/v̄
2
T ,

compared to the leading effects of dimension six operators, in the partial widths inferred

from these cross sections. These corrections vanish when the cross sections are measured

exactly on the Z pole, which holds for the majority, but not the totality, of the global

LEP1 data set.

The majority of our results are general enough that we need not impose a U(3)5 flavour

symmetry assumption on the dimension six operators in the SMEFT. In some particular

cases, we will make the simplifying assumption that any beyond the SM flavour violation

follows a linear minimal flavour violation (MFV) hypothesis [20–23] consistent with U(3)5

flavour symmetry. In this case, the flavour structure of the dimension six operators of the

SMEFT is trivialized down to the case where only 76 parameters are present [16].

The outline of this paper is as follows. In section 1.1 we discuss the power counting

we employ. In sections 2, 3 we review the reformulation of the input parameters used

in predictions in the SMEFT. In section 4.1 we report the differential cross sections for

2 → 2 scattering consistently generalized into the SMEFT to leading order in dimension

six operators. In section 4.2 we discuss how the near pole cross sections used to infer

partial widths, when generalized consistently in the SMEFT, receive corrections that are

relevant to O(10−3) bounds on L(6) effects that modify Zf̄ f . In section 5 we illustrate the

impact of these previously neglected corrections on extractions of the bounds on L(6). We

then argue that renormalization group (RG) running a global EWPD constraint function

directly to the energy scales relevant for LHC processes is preferred, in order to obtain

accurate constraints in the linear SMEFT. In section 6 we conclude.

1.1 Power counting

The relative importance of various local operators in the SMEFT depends on the power

counting, and the particular Wilson coefficient that an operator obtains when matching

onto an unknown BSM sector.4 In the SMEFT, the most naive and general power counting

4Conflating these two issues by suppressing operators by 1/v̄2T and absorbing all suppression into a

modified Wilson coefficient is a challenge for any consistent power counting scheme. Such an approach can

lead to the EFT being used beyond its regime of validity — set by the suppression scale present in the

power counting, Λ.
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is to assign each dimension six operator a suppression by 1/Λ2 and to retain all operators

up to a fixed order in 1/Λ.

Alternate approaches to utilizing this naive power counting exist in the literature. A

prominent example is the Naive Dimensional Analysis (NDA) approach laid out in ref. [24].

NDA was developed by examining the consistency of the chiral quark model, but has

been found to be broadly applicable in other applications. NDA states that an operator

generated at the scale Λ in an EFT can be written as

f2Λ2

(
H

f

)A(
ψ

f
√
Λ

)B (
gX

Λ2

)C (
D

Λ

)D

, (1.1)

with the approximate identification Λ ∼ 4πf . Here H is a scalar field, ψ is a general chiral

fermion field, X is a general gauge field strength tensor with corresponding gauge coupling

g. The powers A,B,C,D correspond to the number of the corresponding fields present in

a particular operator. Recently it has been shown that the NDA scheme is incomplete in

some scenarios, but it can be consistently extended [25, 26]. In what follows, we emphasize

the need for the consistent inclusion of four fermion (ψ4) operators in EWPD, and the

effect of including these operators when bounds on terms in L(6) of the form HDH ψ2 are

obtained. We note that both these operator classes have the same scaling in NDA.

Other schemes have also been proposed. For some weakly coupled renormalizable UV

models generating higher dimensional operators, an analysis based on when operators can

be obtained in a matching at tree or loop level was developed in ref. [27], and can be self-

consistent. Yet another approach distinct from this classification is discussed in ref. [28].

For some discussion on the claims of this latter scheme, see refs. [29, 30].

A truly general power counting scheme that is valid for all possible UV models, covering

the cases of both weakly and strongly interacting, and allowing the UV to be an EFT itself,

would be suitable to utilize in the SMEFT. Due to the absence of such a scheme, we naively

suppress all dimension six operators by 1/Λ2. With this power counting, the case Λ ∼ TeV

is of most interest, so that v̄2T /Λ
2 ∼ 10−2. Naively incorporating a per-mille constraint in

EWPD on a combination of dimension six Wilson coefficients, denoted c6, corresponds to

c6 v̄
2
T /Λ

2 . 10−3, which gives c6 . 0.1 for Λ ∼ 2.5TeV. Such a bound generally neglects

the effects of the large number of un-numerated (and even undefined) dimension eight

operators in the SMEFT. So that schematically c6 + 0.01 c8 . 0.1 for TeV cut off scales.

Bounds of this form are difficult to consider as precise numerical limits on the inferred

Wilson coefficients. We will return to this point in section 5.

2 Electroweak parameters

The approach we take in this paper is to more consistently generalize the predictions in the

SM to the SMEFT.5 To construct theoretical predictions of EWPD, we take as core input

parameters for the Electroweak sector the measured values of the fine structure constant

α̂ew from the low energy limit of electron Compton scattering, the Fermi decay constant in

5For the case of a minimal oblique parameter analysis of EWPD, the basic ideas of the approach we

employ are reviewed in ref. [31].
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Parameter Input Value Ref.

m̂Z 91.1875± 0.0021 [19, 32, 33]

ĜF 1.1663787(6)× 10−5 [32, 33]

α̂ew 1/137.035999074(94) [32, 33]

Table 1. Current best estimates of the core input parameters used to make predictions in the

SMEFT.

muon decays ĜF and the measured Z mass (m̂Z). It is convenient to relate observables in

terms of the parameters g2, sin
2 θ = g21/(g

2
1 + g22) and the electroweak vacuum expectation

value (vev) v. Defining at tree level the effective measured mixing angle

sin2 θ̂ =
1

2
− 1

2

√
1− 4πα̂ew√

2 ĜF m̂2
Z

, (2.1)

then the measured value of the SUL(2) gauge coupling can be inferred (at tree level) via

ĝ2 sin θ̂ = 2
√
π α̂1/2

ew . (2.2)

The effective measured vacuum expectation value (vev) in the SM can be defined as

v̂2 = 1/
√
2 ĜF . All of these input parameters are redefined going from the SM to the

SMEFT, and the resulting shifts are characterized in section 2.1. We will consistently

use the notation that the measured parameters, or inferred measured parameters (such as

sin2 θ̂, ĝ2), are denoted with a hat superscript. In relating predictions to these input pa-

rameters we will consistently only include corrections in the SMEFT that are suppressed

by v̄2T /Λ
2, neglecting v̄4T /Λ

4 contributions. For this reason SMEFT parameters multi-

plying insertions of higher dimensional operators can be traded for α̂ew, v̂
2, m̂Z using the

SM relations.6

2.1 Input parameters

Calculating expressions, we use the canonically normalized SMEFT in the basis of ref. [15].

By canonically normalized, we mean that the kinetic terms of all propagating fields have

been taken to a minimal form, with a field and v̄2T independent Wilson coefficient. Many of

our results build upon the discussion in ref. [16]. For example, the canonically normalized

SMEFT Lagrangian parameters are denoted with bar superscripts, as defined in ref. [16].

The SM Lagrangian parameters and theoretical predictions for observables in the SM will

have no superscript (no hat and no bar) and if we stop at the leading order of the SM

value we will add: (. . .)SM to specify it. In the following sections we will use the shorthand

notation s2
θ̂
= sin2 θ̂, c2

θ̂
= cos2 θ̂.7 The canonically normalized gauge fields introduce the

gauge couplings given by g1,2 = ḡ1,2(1+CH(B,W ) v̄
2
T ). For completeness, we summarize the

relation between the SMEFT Lagrangian parameters and the measured input parameters

in this section.
6As well as these core input parameters, we also note that the values of

{

mt, αs,mH ,mc,mb,mτ ,

V ij
CKM ,∆α

(5)
had, · · ·

}

are also required in a truly global EWPD analysis of all data.
7See the appendix for a discussion of the notational conventions.
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2.1.1 GF

We define the local effective interaction for muon decay as

LGF
= −4ĜF√

2
(ν̄µ γ

µPLµ) (ē γµPLνe) . (2.3)

The parameter ĜF is fixed by measuring the muon lifetime in the SM EFT,

− 4ĜF√
2

= − 2

v̄2T
+

(
C ll
µeeµ

+ C ll
eµµe

)
− 2

(
C

(3)
Hl
ee

+ C
(3)
Hl
µµ

)
. (2.4)

In the limit of U(3)5 flavour symmetry, this expression simplifies to

ĜF =
1√
2 v̄2T

− 1√
2
Cll +

√
2C

(3)
Hl . (2.5)

We identify ĜF with the measured value of the Fermi constant in the U(3)5 limit as ĜF in

this paper. Our notation is such that a 1/Λ2 is implicit in each of the Wilson coefficients,

and that v̄T is the vev in the SMEFT given by

v̄T =

(
1 +

3CH v2

8λ

)
v. (2.6)

Here λ is the coefficient of (H†H)2 in the SM, with a normalization defined in the appendix.

CH is the Wilson coefficient of the (H†H)3 operator, and v is the SM vev in the limit

CH → 0. Many expressions that follow have explicit dependence on v̄T , which is related

to ĜF via eq. (2.5) as

v̄2T =
1√
2ĜF

+
δGF

ĜF

, when, δGF =
1√
2 ĜF

(√
2C

(3)
Hl −

Cll√
2

)
. (2.7)

In what follows we use δGF , but note that the flavour dependence of this parameter is

trivial to re-introduce, and this shift can be considered to be implicitly flavour dependent.

2.1.2 MZ

The mass eigenstate of the Z boson is redefined as

M̄2
Z =

v̄2T
4

(
g1

2 + g2
2
)
+

1

8
v̄4TCHD

(
g1

2 + g2
2
)
+

1

2
v̄4T g1g2CHWB. (2.8)

The difference between the M̂Z input parameter and the SM expression for the Z mass

(in the SMEFT) defines δM2
Z as

δM2
Z ≡ M̂2

Z − v̄2T
4

(
g1

2 + g2
2
)
= − 1

2
√
2

M̂2
Z

ĜF

CHD − 2 21/4
√
π
√
α̂ M̂Z

Ĝ
3/2
F

CHWB. (2.9)

Note that this difference is defined in terms of the vev in the SMEFT — v̄T . The SM

relations between Lagrangian parameters and input parameters are used on the right hand

side of eq. (2.9), as the SMEFT corrections to these relations are higher order in v̄2T /Λ
2.

– 6 –
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2.1.3 sin2 θ

The kinetic mixing introduced by the operator with Wilson coefficient CHWB leads to a

redefinition of the usual sθ = sin θ mixing angle of the SM given by

s2
θ
=

g1
2

g2
2 + g1

2 +
g1g2

(
g2

2 − g1
2
)

(
g1

2 + g2
2
)2 v̄2TCHWB. (2.10)

Here s2
θ
is used to rotate to the mass eigenstate fields in the SMEFT. As a short hand

notation, we define

δs2θ ≡ sin2 θ̂−sin2 θ̄ = − sθ̂ cθ̂

2
√
2 ĜF

(
1−2s2

θ̂

)
[
sθ̂ cθ̂

(
CHD+4C

(3)
Hℓ−2Cll

)
+2CHWB

]
. (2.11)

2.2 Gauge couplings in the SMEFT: ḡ1, ḡ2

We relate the Lagrangian parameters ḡ2, ḡ1 to the input parameters at tree level via

ḡ21 + ḡ22 = 4
√
2 ĜF M̂2

Z

(
1−

√
2 δGF − δM2

Z

M̂2
Z

)
, (2.12)

ḡ22 =
4π α̂

s2
θ̂

[
1 +

δs2θ
s2
θ̂

+
ĉθ
ŝθ

1√
2 ĜF

CHWB

]
. (2.13)

2.3 MW in the SMEFT

The mass of the W boson is redefined in the SMEFT as

M̄2
W =

ḡ22 v̄
2
T

4
. (2.14)

Expressing M̄2
W in terms of the inputs parameters we get:

M̄2
W = M2

W

(
1 +

δs2
θ̂

s2
θ̂

+
cθ̂

sθ̂
√
2ĜF

CHWB +
√
2δGF

)
= M2

W − δM2
W , (2.15)

where δM2
W = −M2

W

(
δs2

θ̂

s2
θ̂

+
c
θ̂

s
θ̂

√
2ĜF

CHWB +
√
2δGF

)
.

3 Redefinition of vector boson couplings

3.1 Neutral currents

3.1.1 Redefinition of Z couplings

The effective axial and vector couplings of the SMEFT Z boson are defined as follows

LZ,eff = 221/4
√
ĜF M̂Z

(
JZℓ
µ Zµ + JZν

µ Zµ + JZu
µ Zµ + JZd

µ Zµ
)
, (3.1)

where (JZx
µ )pr = x̄p γµ

[
(ḡxV )

pr
eff − (ḡxA)

pr
eff γ5

]
xr for x = {u, d, ℓ, ν}. In general, these currents

are matricies in flavour space. When we restrict our attention to the case of a minimal

linear MFV scenario (JZx
µ )pr ≃ (JZx

µ )δpr. In the standard basis, the effective axial and

vector couplings are modified from the SM values by a shift defined as

δ(gxV,A)pr = (ḡxV,A)
eff
pr − (gxV,A)

SM
pr , (3.2)

– 7 –
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where

δ(gℓV )pr = −δGF√
2

− δM2
Z

2M̂2
Z

− 1

4
√
2ĜF

(
−sθ̂cθ̂CHWB − CHe

pr
− C

(1)
Hℓ
pr

+ C
(3)
Hℓ
pr

)
− δs2θ, (3.3)

δ(gℓA)pr = −δGF√
2

− δM2
Z

2M̂2
Z

+
1

4
√
2 ĜF

(
−sθ̂ cθ̂ CHWB − CHe

pr
+ C

(1)
Hℓ
pr

− C
(3)
Hℓ
pr

)
, (3.4)

δ(gνV )pr = −δGF√
2

− δM2
Z

2M̂2
Z

− 1

4
√
2 ĜF

(
−sθ̂ cθ̂ CHWB − C

(1)
Hℓ
pr

− C
(3)
Hℓ
pr

)
, (3.5)

δ(gνA)pr = −δGF√
2

− δM2
Z

2M̂2
Z

− 1

4
√
2 ĜF

(
−sθ̂ cθ̂ CHWB − C

(1)
Hℓ
pr

− C
(3)
Hℓ
pr

)
, (3.6)

δ(guV )pr = −δGF√
2

− δM2
Z

2M̂2
Z

+
1

4
√
2 ĜF

(
−sθ̂ cθ̂

3
CHWB + C

(1)
Hq
pr

+ C
(3)
Hq
pr

+ CHu
pr

)

+
2

3
δs2θ, (3.7)

δ(guA)pr = −δGF√
2

− δM2
Z

2M̂2
Z

− 1

4
√
2 ĜF

(
− sθ̂ cθ̂ CHWB − C

(1)
Hq
pr

− C
(3)
Hq
pr

+ CHu
pr

)
, (3.8)

δ(gdV )pr = −δGF√
2

− δM2
Z

2M̂2
Z

− 1

4
√
2 ĜF

(
+
sθ̂ cθ̂
3

CHWB − C
(1)
Hq
pr

+ C
(3)
Hq
pr

− CHd
pr

)

− 1

3
δs2θ, (3.9)

δ(gdA)pr = −δGF√
2

− δM2
Z

2M̂2
Z

+
1

4
√
2 ĜF

(
−sθ̂ cθ̂ CHWB + C

(1)
Hq
pr

− C
(3)
Hq
pr

− CHd
pr

)
. (3.10)

3.1.2 Redefinition of A couplings

For the electromagnetic current we define:

LA,eff =
√
4πα̂

[
Qx J

A,x
µ

]
Aµ. (3.11)

for x = ℓ, u, d. The measured effective electromagnetic coupling α̂ is directly identified

with the modified coupling present in the SMEFT: ᾱ = ē2/4π, with ē given by

ē = ḡ2 sθ̄ =
√
4πα̂

[
1 +

cθ̂
sθ̂

1

2
√
2ĜF

CHWB

]
. (3.12)

This means the shift in the definition of α given in the previous equation is unobservable,

considering our chosen input parameters. As such we can trade ᾱ directly for α̂.

3.2 Charged currents

For the charged currents, we define

LW,eff =

√
2π α̂

sθ̂

[(
JW±,ℓ
µ

)

pr
Wµ

± +
(
JW±,q
µ

)
pr
Wµ

±

]
, (3.13)

– 8 –
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where in the SM one has
(
JW+,ℓ
µ

)

pr
= ν̄p γ

µ
(
ḡ
W+,ℓ
V − ḡ

W+,ℓ
A γ5

)
ℓr, (3.14)

(
JW−,ℓ
µ

)

pr
= ν̄p γ

µ
(
ḡ
W−,ℓ
V − ḡ

W−,ℓ
A γ5

)
ℓr. (3.15)

In the SMEFT we note that in the flavour symmetric limit

δ
(
g
W±,ℓ
V

)

rr
= δ

(
g
W±,ℓ
A

)

rr
=

1

2
√
2ĜF

(
C

(3)
Hℓ
rr

+
ĉθ
ŝθ

CHWB

)
+

1

2

δs2θ
s2
θ̂

. (3.16)

Note that although the corrections in the SMEFT shown preserve the left handed

structure of the current for the lepton couplings, we introduce a separate axial and vector

coupling for later convenience. For the quark charged currents one similarly finds

δ
(
g
W±,q
V

)

rr
= δ

(
g
W±,q
A

)

rr
=

1

2
√
2ĜF

(
C

(3)
Hq
rr

+
ĉθ
ŝθ

CHWB

)
+

1

2

δs2θ
s2
θ̂

. (3.17)

There is also dependence on the operator QHud
rr

for the W quark current. When we assume

linear MFV, the Wilson coefficient of this operator is suppressed by

CHud
rr

∝
[
Yu Y

†
d

]

rr
, (3.18)

and in this case, this contribution is neglected for reasons of consistency. Light quark mass

suppressed corrections are neglected in the SM predictions of many of the observables

considered here, and also when higher dimensional operators are inserted.

4 Observables

Whenever possible, we express all observables in terms of shifts of the form

δGF , δM2
Z , δM2

W , δs2θ, δgxV,A, δg
W±,y
V.A . (4.1)

Here x = ℓ, u, d and y = ℓ, q. Added to these corrections for each observable are contribu-

tions due to explicit operator insertions that are not (easily) expressible in terms of these

common shifts. These net shift variables do not correspond to a basis for L(6), they are

simply a convenient shorthand notation for some terms in the effective Lagrangian.

4.1 Differential cross section for ℓ+ℓ− → ff̄

Observables that are not limited to the Z pole are an important source of information on

Wilson coefficients present in the SMEFT. Corrections to the 2 → 2 differential spectrum

predicts the total cross sections σℓ+ℓ−→f f̄ where f = {ℓ, u, c, b, d, s} (here the final and

initial state leptons are defined to not have the same flavour), as well as the differential

and angular observables for these processes. A general expression in the SMEFT valid

for on and off resonance scattering includes a contribution from Z and γ exchange as well

as the effect of ψ4 operators and the interference of all of these terms, see figure 1. Our

discussion of this general expression in the SMEFT will largely build on the discussion in

ref. [19] which itself borrows heavily from ref. [34].8

8For classic related results, that are outside of the systematic SMEFT analysis presented here,

see ref. [35].
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Z γ

Figure 1. Diagrams contributing to near Z pole 2 → 2 scattering in the SMEFT. The black box

indicates the insertion of L(6).

Up to leading order in the interference of the ψ4 operators with the SM contributions,

the general differential expression for ℓ− ℓ+ → f f̄ is as follows. Here we neglect initial

and final state radiation (including possible αs corrections to final state fermions), initial

and final state fermion masses are neglected, and the initial e+, e− are assumed to be

unpolarized. The general s channel expression we find for the SMEFT is9

1

Nc

dσ

dcθ
= Ĝ2

F M̂
4
Z χ̄(s)

[(
|ḡℓV |2+|ḡℓA|2

)(
|ḡfV |2+|ḡfA|2

)(
1+c2θ

)
−8Re

[
ḡℓAḡ

ℓ,⋆
V

]
Re

[
ḡfAḡ

f,⋆
V

]
cθ

]
,

+
|α̂|2 |Qℓ|2 |Qf |2 π

2 s

(
1+c2θ

)
+
ĜF M̂

2
ZQℓQf√
2

[
α⋆ ḡ

ℓ
V ḡfV

(
1+c2θ

)
+2 cθ ḡ

ℓ
A ḡfA

s−M̄2
Z+i w̄(s)

+ h.c.

]
,

+
QℓQf

32

[
α⋆Cℓ,f

LL,RR (1 + cθ)
2 + h.c.

]
+

QℓQf

32

[
α⋆Cℓ,f

LR (1− cθ)
2 + h.c.

]
, (4.2)

+

(
ĜF M̂

2
Z

16
√
2π

)[(
s

s−M̄2
Z+iw̄(s)

)
Cℓ,f,⋆
LL,RR,LR

(
ḡℓV ± ḡℓA

)(
ḡfV ± ḡfA

)(
1+c2θ

)
+h.c.

]
,

+

(
ĜF M̂

2
Z

16
√
2π

)[(
s

s−M̄2
Z+iw̄(s)

)
Cℓ,f,⋆
LL,RR,LR

(
ḡℓA ± ḡℓV

)(
ḡfA ± ḡfV

)
2 cθ+h.c.

]
.

We have used in the expression

χ̄(s) =
s

(
s− M̄2

Z

)2
+ |w̄(s)|2

. (4.3)

The Breit-Wigner distribution [36] is introduced as w̄(s), and we treat this as a possibly

s dependent function to maintain generality. A possible choice for the Breit-Wigner dis-

tribution is the use of an s dependent width (w̄(s) = s Γ̄Z/M̄Z), which is the approach

used at LEP, as discussed in refs. [19, 37]. Alternatively the real part of the complex pole

can be directly used introducing w̄(s) = Γ̄Z M̄Z for the Breit-Wigner distribution. These

prescriptions can be mapped to one another in the SM, see ref. [38]. The latter pole spec-

ification is strongly preferred in our view, we simply introduce w̄(s) to remain as general

as possible as a notation convention.

Four fermion operators that interfere and contribute are denoted CLL,RR,LR, and are in

the classes LL,RR and LR for the operator basis specified in ref. [15]. In eq. (4.2) the +/−
expressions for the ℓ, f couplings correspond to the case of the L/R projectors present in the

ψ4 operators respectively. In eq. (4.2) we have suppressed flavour indicies on the ψ4 opera-

tor Wilson coefficients and the effective gauge couplings. Reintroducing the flavour indicies

9In this expression we have used Feynman gauge.
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on the ψ4 operators, one finds C⋆ → C⋆
ℓ ℓ f f , C

⋆
ℓ f f ℓ, C

⋆
f ℓ ℓ f for C⋆

LL,RR. For the LR operators

C⋆ → C⋆
ℓ ℓ f f is as in the previous chirality cases, while the cases C⋆

ℓ f f ℓ, C
⋆
f ℓ ℓ f vanish.

The parameter cθ is the angle between the incoming ℓ− and the outgoing f̄ , and

s = (pℓ+ + pℓ−)
2. NC is the dimension of the SU(3) group of the produced fermion f .

Note that α can obtain a small imaginary contribution in the running of this coupling.

The theoretical prediction of this expression also depends on M̄Z , Γ̄Z , ḡ
ℓ,f
A,V which are the

theoretical effective mass, width and couplings in the SMEFT.

When considering ℓ− ℓ+ → ℓ− ℓ+ for differential and total cross section observables, t

channel contributions are also present, and the interference effects of the ψ4 operators are

modified. We restrict our attention initially to ℓ− ℓ+ → f f̄ where f is defined to not be

the same state as the initial state fermion. The case when all of the initial and final states

are the same fermion is discussed in section 4.1.4

In eq. (4.2) we have neglected interference effects with operators of the form LRRL,

LRLR that are proportional to SM Yukawas (and hence light quark masses) in the case of

U(3)5 symmetry being assumed in the SMEFT.

4.1.1 Scaling of SMEFT corrections

The scaling of the corrections on and off the Z pole is of interest. Near the Z pole, the

contributions due to L(6) interfering with the SM in eq. (4.2) have the general scaling:

Z − Z :∼ v̄2T
Γ2
Z Λ2

, γ − γ :∼ v̄2T
M2

Z Λ2
, Z − γ :∼ v̄2T

M2
Z Λ2

,

ψ4 − Z :∼ 1

Λ2
, ψ4 − γ :∼ 1

Λ2
. (4.4)

Here Z, γ corresponds to a Gauge boson exchange and ψ4 corresponds to a four fermion

operator in L(6). A few comments are in order considering these estimates. The usual

choices of Breit-Wigner distribution used in eq. (4.2) do not change these scaling estimates.

Exactly on the Z pole the interference due to γ−Z and Z−ψ4 contributions vanish. A large

fraction of LEPI data is taken at
√
s−MZ ∼ ΓZ , where these sub-leading terms scale as in

eq. (4.4). The combined LEPI data set analysis, with on and off pole Z data, determines

EWPD parameters. It is tempting to conclude that the subdominant contributions can be

completely neglected for near Z pole data as Γ2
Z/v̄

2
T ∼ O(10−3). However, the scaling of

these suppressed contributions in the partial widths extracted from LEPI data is relatively

suppressed by ΓZ MZ/v̄
2
T compared to the leading effect of dimension six operators, as

we will show.

Further, for measurements at LEPII taken at
√
s ∼ 2Mz, these corrections have the

scaling

Z − Z :∼ v̄2T
M2

Z Λ2
, γ − γ :∼ v̄2T

M2
Z Λ2

, Z − γ :∼ v̄2T
M2

Z Λ2
,

ψ4 − Z :∼ 1

Λ2
, ψ4 − γ :∼ 1

Λ2
. (4.5)

In these measurements the subdominant contributions of ψ4 operators are only suppressed

by M2
Z/v̄

2
T and must be included. At the LHC, the EW process f̄ f → ℓ− ℓ+ is potentially
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accessible at larger s. Assuming s ≫ M2
Z one has the scaling

Z − Z :∼ v̄2T
sΛ2

, γ − γ :∼ v̄2T
sΛ2

, Z − γ :∼ v̄2T
sΛ2

,

ψ4 − Z :∼ 1

Λ2
, ψ4 − γ :∼ 1

Λ2
. (4.6)

The assumption that s ≪ Λ2 is implicit, but can be challenged, particularly for larger s

measurements at LHC. When the expansion in local operators breaks down, the operators

can be resumed into effective form factors10 which can be extracted from differential distri-

butions, or at fixed s. These simple scaling estimates neglect order one factors, but make

clear the requirement that a global analysis including LEPII data and LHC data include

these corrections when precise (and accurate) bounds are of interest in the SMEFT.11

4.1.2 ψ4 operators and U(3)5

The ψ4 operators that can contribute significantly to offshell ℓ+ℓ−→ff̄ and ℓ+ℓ−→ℓ+ℓ− are

Lψ4 = C ℓ ℓ
prst

Q ℓ ℓ
prst

+ C
(1)
ℓ q
prst

Q
(1)
ℓ q
prst

+ C
(3)
ℓ q
prst

Q
(3)
ℓ q
prst

+ C e e
prst

Q e e
prst

+ C e u
prst

Q e u
prst

+ C e d
prst

Q e d
prst

,

+ C ℓ e
prst

Q ℓ e
prst

+ C ℓ u
prst

Q ℓ u
prst

+ C ℓ d
prst

Q ℓ d
prst

+ C q e
prst

Q q e
prst

+ C
(1)
ℓ e q u
prst

Q
(1)
ℓ e q u
prst

,

+ C
(3)
ℓ e q u
prst

Q
(3)
ℓ e q u
prst

+ Cℓ e d q
prst

Qℓ e d q
prst

. (4.7)

These operators are in general not Hermitian in flavour space and can have complex Wilson

coefficients. Nevertheless the interference effect of the operators with the SM tree level

processes vanishes for the complex part of the Wilson coefficients, as there are no flavour

changing neutral currents at tree level in the SM.

Of these operators, the following are not suppressed by the insertion of light fermion

masses when U(3)5 is assumed

Q ℓ ℓ
prst

= (ℓpγµℓr)(ℓsγ
µℓt), Q

(1)
ℓ q
prst

= (ℓpγµℓr)(qsγ
µqt), (4.8)

Q
(3)
ℓ q
prst

= (ℓpγµτiℓr)(qsγ
µτiqt), Q ee

prst
= (epγµer)(esγ

µet), (4.9)

Q e u
prst

= (epγµer)(usγ
µut), Q ed

prst
= (epγµer)(dsγ

µdt), (4.10)

Q ℓ e
prst

= (ℓpγµℓr)(esγ
µet), Q ℓu

prst
= (ℓpγµℓr)(usγ

µut), (4.11)

Q ℓ d
prst

= (ℓpγµℓr)(dsγ
µdt), Q q e

prst
= (qpγµqr)(esγ

µet). (4.12)

When U(3)5 symmetry is assumed for L(6), the Wilson coefficients of the operators in

eqs. (4.8)–(4.12) are all proportional to δpr δst. These operators add three unknown pa-

rameters into constraints obtained from purely leptonic EWPD far off the Z pole. Precision

10See refs. [39–41] for some discussion.
11These subdominant corrections are also suppressed by some function of the off pole data in the total data

set, compared to the data taken exactly on the pole. The most naive such scaling yields a factor of ∼ 2/10.
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electroweak data involving final state up quarks depends on four extra parameters off the

Z pole due to these ψ4 operators, as does precision data involving final state down quarks.

Two of these parameters (due to C
(1)
ℓ q
ppss

and C q e
ppss

) are common for the final state quark cases.

The remaining ψ4 operators that are proportional to light quark masses (in a U(3)5

scenario) are

Q
(1)
ℓ e q u
prst

=
(
ℓ
i
per

)
ǫij

(
qjsut

)
, Q

(3)
ℓ e q u
prst

=
(
ℓ
i
pσµ ν er

)
ǫij

(
qjs σ

µ ν ut
)
, (4.13)

Qℓ e d q
prst

=
(
ℓ
i
per

) (
dsqt,i

)
. (4.14)

4.1.3 Shifts in differential ℓ+ℓ− → ff̄ spectra

The shift in the differential ℓ+ℓ− → ff̄ spectra in the SMEFT 1
Nc

δ
(

dσ
dcθ

)
is given by:

Ĝ2
F M̂

4
Z χ(s)

[
2Re

[
Gℓ∗

V δgℓV +Gℓ∗
A δgℓA

] (
|Gf

V |2 + |Gf
A|2

) (
1 + c2θ

)
+ (ℓ ↔ f)

]
, (4.15)

− 8Ĝ2
F M̂

4
Z χ(s)

[
Re

[
δgℓAG

ℓ,⋆
V +Gℓ

Aδg
ℓ,⋆
V

]
Re

[
Gf

AG
f,⋆
V

]
cθ + (ℓ ↔ f)

]
,

+ Ĝ2
F M̂

4
Zδχ(s)

[(
|Gℓ

V |2+|Gℓ
A|2

)(
|Gf

V |2+|Gf
A|2

) (
1+c2θ

)
−8Re

[
Gℓ

AG
ℓ,⋆
V

]
Re

[
Gf

AG
f,⋆
V

]
cθ

]
,

+
ĜF M̂

2
ZQℓQf√
2


α⋆χ2(s)

(
δgℓV G

f
V +Gℓ

V δg
f
V

) (
1+c2θ

)
+2 cθ

(
δgℓAGf

A+Gℓ
A δgfA

)

s
+h.c.


 ,

+
ĜF M̂

2
ZQℓQf√
2

[
α⋆δχ2(s)

Gℓ
V Gf

V

(
1 + c2θ

)
+ 2 cθ G

ℓ
AGf

A

s
+ h.c.

]
,

+
QℓQf

32

[
α⋆Cℓ,f

LL,RR (1 + cθ)
2 + h.c.

]
+

QℓQf

32

[
α⋆Cℓ,f

LR (1− cθ)
2 + h.c.

]
,

+

(
ĜF M̂

2
Z

16
√
2π

)[
χ2(s)C

ℓ,f,⋆
LL,RR,LR

(
Gℓ

V ±Gℓ
A

)(
Gf

V ±Gf
A

) (
1 + c2θ

)
+ h.c.

]
,

+

(
ĜF M̂

2
Z

16
√
2π

)[
χ2(s)C

ℓ,f,⋆
LL,RR,LR

(
Gℓ

A ±Gℓ
V

)(
Gf

A ±Gf
V

)
2 cθ + h.c.

]
.

Here we have introduced the notation Gℓ,f
A,V which corresponds to the leading order predic-

tion of an Z axial or vector coupling in the SM, for the state ℓ, f . We have also introduced

χ(s) = |Ξ(s)|2/s, δχ(s) =
1

s
[Ξ(s) δΞ⋆(s) + δΞ(s) Ξ⋆(s)] , (4.16)

χ2(s) = Ξ(s), δχ2(s) = δ Ξ(s), (4.17)
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where the (· · · )SM expressions are defined to be the leading order SM theoretical predictions

of the quantities in the parenthesis and

Ξ(s) =
s

s− M̂2
Z + i(w(s))SM

, (4.18)

δΞ(s) =
s

[s− M̂2
Z + i(w(s))SM]2

[
−δM2

Z − iδw(s)
]
. (4.19)

With: w̄(s) = s
Γ̄Z

M̄Z
we get: δw(s) = s

(
(ΓZ)SM

M̂Z

)(
δΓZ

(ΓZ)SM
+

1

2

δM2
Z

M̂2
Z

)
. (4.20)

With: w̄(s) = Γ̄ZM̄Z we get: δw(s) = (ΓZ)SMM̂Z

(
δΓZ

(ΓZ)SM
− 1

2

δM2
Z

M̂2
Z

)
. (4.21)

4.1.4 Differential cross section for F̄ F → F̄ F

The case F̄ F → F̄ F where F is a fermion and the initial and final states are identical has

two kinematic channels, s and t, present. Of particular interest considering LEP data, is

the case ℓ̄ ℓ → ℓ̄ ℓ where ℓ = e. Adopting the same set of approximations and assumptions

as in section 4.1, Bhabba scattering (e+ e− → e+ e−) in the SMEFT is given by

dσ

dcθ
=

2 Ĝ2
F M̂

4
Z

πs

[
(
|ḡℓV |2 + |ḡℓA|2

)2
(

u2 + s2
(
t− M̄2

Z

)2 +
χ̄(s)

s

(
u2 + t2

)
+ 2 χ̄(s)

u2
(
1− M̄2

Z/s
)

t− M̄2
Z

)
,

−4Re
[
ḡℓ∗V ḡℓA

]2
(

s2 − u2

(
t− M̄2

Z

)2 +
χ̄(s)

s

(
u2 − t2

)
− 2 χ̄(s)

u2
(
1− M̄2

Z/s
)

t− M̄2
Z

)]
,

+

√
2ĜF M̂

2
Z

s

[
α̂∗

(
ḡℓV

)2 (
u2+t2

)
+
(
ḡℓA

)2 (
u2−t2

)

s
(
s−M̄2

Z+iw̄(s)
) +α̂∗

(
ḡℓV

)2(
u2+s2

)
+
(
ḡℓA

)2(
u2−s2

)

t
(
t−M̄2

Z

) +h.c.

]
,

+

√
2 ĜF M̂

2
Z u2

s

[
α̂∗

t

(ḡℓV )
2 + (ḡℓA)

2

(
s− M̄2

Z + iw̄(s)
) +

α̂

s

(ḡℓ,⋆V )2 + (ḡℓ,⋆A )2(
t− M̄2

Z

)
]
,

+
2πα̂2

s

[
u2+s2

t2
+
u2+t2

s2
+
2u2

ts

]
+

α̂

4s

[
2

(
u2

s
+
u2

t

)
C⋆

LL,RR+

(
t2

s
+
s2

t

)
C⋆

LR+h.c.

]
,

+
ĜF M̂

2
Z

4
√
2πs

[
4u2

(
ḡℓA ± ḡℓV

)2
C⋆

LL,RR + 2t2
(
(ḡℓV )

2 − (ḡℓA)
2
)
C⋆

LR

s− M̄2
Z + iw(s)

+ h.c.

]
,

+
ĜF M̂

2
Z

4
√
2πs

[
4u2

(
ḡℓA ± ḡℓV

)2
C⋆

LL,RR + 2s2
(
(ḡℓV )

2 − (ḡℓA)
2
)
C⋆

LR

t− M̄2
Z

+ h.c.

]
. (4.22)

In the last two terms the +/− in the expressions correspond to the left and right handed

operators respectively.

4.2 Partial widths extractions near and far from the Z pole

Measured e+e− → f̄fX, e+e− → e+e−X inclusive processes at LEP are used to extract

values for the Z decay partial widths assuming the SM. Here X indicates the possible

presence of photon or other final state emissions that are not removed with hard isolation

cuts. The strategy at LEP was to fit for the total width of the Z, (ΓZ) the Z mass (M2
Z),

and a pole cross section (σ0) as a function of center of mass energy scanning through the
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Z pole. Subsequently, ratios of cross sections are used to obtain partial decay widths for

the Z. This approach is manifestly successful as a hypothesis test of the SM. There is no

statistically significant evidence that the SM breaks down in the EWPD program when

the SM is assumed.

When considering partial widths extracted from LEP data in the SM at the Z pole,

σe+e−→had has the theoretical expression

σ0
h = 3π

ΓZ→eēΓZ→Had

|ω(M2
Z)|2

, (4.23)

with ΓZ→eē, ΓZ→Had the decay in the SM. With the choice ω(M2
Z) = M̄Z Γ̄Z , and the

partial width taking on SM values, this expression simplifies to the well known SM result.12

4.2.1 Partial widths in the SMEFT

If one assumes that the SM does break down in the multi-TeV region and considers the

general linear SMEFT, the analysis path followed at LEP receives a number of corrections.

These corrections include corrections of ψ4 operators interfering with the SM processes at

tree level, and modifying the extracted Z widths in the global data set.

The general correction to σ̂0
h near the Z pole (s−M2

Z ≡ ∆) in the SMEFT is

δσ0
h

σ0
h

≃ δΓZ→ℓℓ̄

ΓZ→ℓℓ̄

+
δΓZ→Had

ΓZ→Had
− δω(M2

Z)

ω(M2
Z)

− δω⋆(M2
Z)

ω ⋆ (M2
Z)

, (4.24)

where terms like: δσ0
h,ψ4 , δσh,γ−Z , and −2(σ0

h)SMδω/ω are included into δσ0
h. For the near

Z pole hadronic cross section σ(s) we have defined

δσ0
h,ψ4 =

(
2δσe+e−→uū,ψ4 + 3δσe+e−→dd̄,ψ4

)
, (4.25)

where

δσe+e−→uū,ψ4 =
NcĜF M̂

4
Z

6
√
2π




(
C

(1),⋆
ℓq − C

(3),⋆
ℓq

) (
Gℓ

V +Gℓ
A

)
(Gu

V +Gu
A)

∆ + i ω(M2
Z)

, (4.26)

+

[
(C⋆

eu + C⋆
ℓu)G

ℓ
V + (C⋆

ℓu − C⋆
eu)G

ℓ
A

]
(Gu

V −Gu
A)

∆ + i ω(M2
Z)

+ h.c.

]
,

δσe+e−→dd̄,ψ4 =
NcĜF M̂

4
Z

6
√
2π




(
C

(1),⋆
ℓq + C

(3),⋆
ℓq

) (
Gℓ

V +Gℓ
A

) (
Gd

V +Gd
A

)

∆+ i ω(M2
Z)

, (4.27)

+

[
(C⋆

ed + C⋆
ℓd)G

ℓ
V + (C⋆

ℓd − C⋆
ed)G

ℓ
A

] (
Gd

V −Gd
A

)

∆+ i ω(M2
Z)

+ h.c.

]
.

Here Gf
A/V are the leading order predictions in the SM. Reintroducing flavour indicies is

trivial in this case, one finds eeuu in all terms in the up quark case for example. Less

12Note that the SM result itself is neglecting contributions from the pure photon pole contribution, that

are α2
ewΓ

2
Z/M

2
Z suppressed.
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trivial flavour indicies are present in the cases with final state leptons and we find

δσe+i e−i →νj ν̄j ,ψ4 =
NcĜF M̂

4
Z

6
√
2π

[ (
Gℓ

V +Gℓ
A

)

∆+ i ω(M2
Z)

(Gν
V +Gν

A)

(
C⋆

ℓℓ
iijj

+ C⋆
ℓℓ
ijji

+ C⋆
ℓℓ
jiij

)
, (4.28)

+

(
Gℓ

V −Gℓ
A

)

∆+ i ω(M2
Z)

(Gν
V +Gν

A)C
⋆
ℓe
iijj

+ h.c.

]
,

δσe+e−→e+e−,ψ4 =
NcĜF M̂

4
Z

3π
√
2

[
2

(
Gℓ

V +Gℓ
A

)2

∆+ iω(M2
Z)

(
C⋆

ℓℓ
iijj

+ C⋆
ℓℓ
ijji

+ C⋆
ℓℓ
jiij

)
, (4.29)

+ 2

(
Gℓ

V −Gℓ
A

)2

∆+ iω(M2
Z)

(
C⋆

ee
iijj

+ C⋆
ee
ijji

+ C⋆
ee
jiij

)
+

(Gℓ
V )

2 − (Gℓ
A)

2

∆+ iω(M2
Z)

C⋆
ℓe
iijj

+ h.c.

]
.

The correction δσh,γ−Z is directly derivable from the previous results. As the effects of

anomalous γ − Z interference terms have been studied in the literature to a larger degree,

we do not discuss these corrections in detail here.

Now consider the effect of the δσ corrections due to ψ4 operators in the combined

global LEP data set, that includes ∼ 40 pb−1 of data off the Z peak, as well as ∼ 155 pb−1

of data at the Z pole [19]. These ψ4 corrections propagate into the extracted partial widths

and introduce theoretical errors when fits are performed in the SMEFT.

To illustrate these effects consider the expression for σ0
h, where we can infer ΓZ→Had,

assuming ΓZ→e+ e− is a theoretical input. In this case

δΓZ→Had,ψ4 =
M2

Z(Γ
2
Z)SM

3π(ΓZ→ℓℓ̄)SM
δσ

(0)
h,ψ4 . (4.30)

Using ω = MZ ΓZ one finds a correction to ΓZ→Had of the form

δΓZ→Had,ψ4 ≃
(
(ΓZ)SMMZ

v̄2T

)
MZ

6π2 Br(Z → e+ e−)

M2
Z

v̄2T
Cψ4 v̄2T

Λ2
, (4.31)

≃ 0.02GeVCψ4 v̄2T
Λ2

. (4.32)

Considering v̄2T /Λ
2 ∼ 10−2 suppresses this correction to the order of the theoretical errors

quoted for partial widths. This indicates that the theoretical error introduced from such

corrections in the SMEFT should not be completely neglected when precise bounds are

of interest.

The leading effect of anomalous Z couplings (CδZ) introduce corrections to the partial

widths that scale as

δΓZ→Had ≃
√
2 ĜF M̂

3
Z

3π
CδZ v̄2T

Λ2
, (4.33)

≃ 1.33GeVCδZ v̄2T
Λ2

(4.34)

leading to a relative correction of the form

δΓZ→Had,ψ4

δΓZ→Had
≃

(
(ΓZ)SMMZ

v̄2T

)
1

2π

Cψ4

CδZ
. (4.35)
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4.2.2 Partial widths and ratios of cross sections

The strategy employed at LEP is to extract partial widths in a global fit of EWPD pseudo-

observables. The global fit utilizes ratios of cross sections constructed out of the global

data set, which includes off pole data. The effect of δσ corrections on this procedure can

be characterized as introducing a correction of the form

δ
σA→B

σC→D
≃ |ω|2

ΓC ΓD
δσψ4

AB − |ω|2 ΓA ΓB

Γ2
C Γ2

D

δσψ4

CD. (4.36)

Here σAB is an inclusive A → B cross section measurement which is constucted from data

near the Z pole. Schematically ΓA,B,C,D are the partial decay widths inferred for the Z

from the ratios of cross sections, and CAB stands for a ψ4 operator that contributes. Using

ω = ΓZ MZ and the scaling

δσψ4

AB ≃ NcM
2
Z

3π v̄4T

CAB v̄2T
Λ2

, (4.37)

one finds corrections to the extracted partial widths that are

δ
σA→B

σC→D
≃ NcM

4
Z

3π v̄4T

1

Br(Z → C)Br(Z → D)

[
CAB − ΓA ΓB

ΓC ΓD
CCD

]
v̄2T
Λ2

,

≃ 0.59 (CAB − CCD)
v̄2T
Λ2

. (4.38)

In the last step above we have taken all of the partial widths ΓA,B,C,D similar in size

and the corresponding branching ratios ∼ 10% for illustrative purposes. Despite this

dependence on ψ4 operator Wilson coefficients, we emphasize the exact correction feeding

into EWPD bounds is very difficult to precisely quantify considering public data. We stress

that this effect should not be over estimated. Although the presence of unknown Wilson

coefficients could contain hierarchies in some particular UV models, it is unlikely that these

corrections are significantly enhanced due to large Wilson coefficients. The reason for this

is the consistency checks at LEP included tests of anomalous γ − Z interference terms.

As described in ref. [19] these consistency checks includes fitting for a nuisance parameter

characterizing an anomalous γ − Z interference term in off peak data at LEP. Further a

joint analysis was performed including lower energy (
√
s = 58GeV) data far off the Z

peak [42–44]. There is no evidence in these results for large corrections to the Z resonance

shape. These consistency checks strongly imply that in the case of the full SMEFT with

anomalous Z−γ interference and also Z−ψ4 interference, these terms are subdominant to

leading order effects in possible anomalous Z couplings to fermions. The consistency checks

reported by LEP on anomalous γ − Z interference do not place strong enough bounds on

the anomalous interactions to neglect these terms entirely in theoretical error estimates.

See refs. [19, 45–47] for further discussion.

We emphasize that our view is that this correction should be included as a theoretical

error feeding into a theoretical prediction in the SMEFT. The reasons for this are multifold.

Firstly, for the SMEFT it is reasonable to assume that

v̄2T
Λ2

∼ ΓZ MZ

v̄2T
. (4.39)
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As such, neglected dimension eight operators would make directly fitting for ψ4 operators in

the near Z peak data suspect. Further perturbative corrections to the higher dimensional

operators are also comparable in size to corrections of this form. We also emphasize that

this correction is also further suppressed roughly by the fraction of off peak to Z peak data

included in the global EWPD data set. For these reasons, it is not advisable to fit for the

ψ4 operators in near Z pole data directly.

However, as all of these corrections are present in the SMEFT, this makes introducing

an extra theoretical error in fits and adding it in quadrature with the SM theoretical error

very well motivated. In section 5 we perform such a minimal EWPD fit.

4.2.3 Near Z pole observables

In the SMEFT, at tree level, one has

Γ̄
(
Z → ff̄

)
=

2
√
2 ĜF M̂

3
Z Nc

3π

(
|ḡfV |2 + |ḡfA|2

)
, (4.40)

Γ̄ (Z → Had) = 2 Γ̄ (Z → uū) + 3 Γ̄
(
Z → dd̄

)
. (4.41)

With our chosen normalization of ḡxV = T3/2−Qx s̄2θ, ḡA = T3/2 where T3 = 1/2 for ui, νi
and T3 = −1/2 for di, ℓi and Qx = {−1, 2/3,−1/3} for x = {ℓ, u, d}. The modification of

the decay widths in the SMEFT compared to the situation in the SM introduces corrections

of the form:

δΓZ→ℓℓ̄ =

√
2 ĜF M̂

3
Z

3π

[
−δgℓA +

(
−1 + 4s2

θ̂

)
δgℓV

]
+ δΓZ→ℓ̄ ℓ,ψ4 , (4.42)

δΓZ→νν̄ =

√
2 ĜF M̂

3
Z

3π
[δgνA + δgνV ] + δΓZ→νν̄,ψ4 , (4.43)

δΓZ→Had = 2 δΓZūu + 3 δΓZd̄d, (4.44)

=
4
√
2 ĜF M̂

3
Z

π

[
1

2
δguA − 1

6

(
−3 + 8s2

θ̂

)
δguV − 3

4
δgdA +

1

4

(
−3 + 4s2

θ̂

)
δgdV

]
,

+ δΓZ→Had,ψ4 , (4.45)

δΓZ = 3δΓZ→ℓℓ̄ + 3δΓZ→νν̄ + δΓhad, (4.46)

=
4
√
2 ĜF M̂

3
Z

3π

[
1

4
δgνA +

1

4
δgνV − 1

4
δgℓA +

1

4

(
−1 + 4s2

θ̂

)
δgℓV ,

+
1

2
δguA − 1

6

(
−3 + 8s2

θ̂

)
δguV − 3

4
δgdA +

1

4

(
−3 + 4s2

θ̂

)
δgdV

]
,

+ δΓZ→Had,ψ4 + 3δΓZ→ℓℓ̄,ψ4 + 3δΓZ→νν̄,ψ4 . (4.47)

So that: Γ̄
(
Z → ff̄

)
= ΓZ→ff̄ + δΓZ→ff̄ for all f and the same kind of relation holds for

Γ̄Z . The shift of the ratios of decay rates defined in the SM as R0
f = Γhad

ΓZf̄f
where f can be

a charged lepton ℓ, a neutrino or a quark follows from

δR0
f =

1(
Γ(Z → ff̄)2

)
SM

[
δΓZ→Had(Γ(Z → ff̄))SM − δΓZ→ff̄ (Γ (Z → Had)SM)

]
, (4.48)

and we can then write that R̄0
f = R0

f + δR0
f .
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4.2.4 Forward backward asymmetry

The forward backward asymmetry for 2-2 scattering is defined as

AFB =
σF − σB
σF + σB

. (4.49)

Here σF is defined by θ ∈ [0, π/2] and σB is defined by θ ∈ [π/2, π] with θ defined as in

section 4.1. In the SM, it can be shown that the forward backward asymmetry for leptons

is just

A0,f
FB =

3

4
AeAf , Ae = 2

gℓV g
ℓ
A

(gℓV )
2 + (gℓA)

2
, Af = 2

gfV g
f
A

(gfV )
2 + (gfA)

2
. (4.50)

As we move to the SMEFT, the Z couplings receive corrections bringing corrections to

A0,f
FB. A0,f

FB also receive corrections from ω redefinition in general, and from ψ4 operators.

All of these corrections can be derived from eq. (4.2), but we note the following simplified

expressions. In the SMEFT Āf can be written as

Āf =
2r̄f

1 + r̄2f
, (4.51)

where r̄f =
ḡf
V

ḡf
A

. The redefinition of the Z coupling then leads to a shift of Āf such that

Āf = (Af )SM

(
1 +

δAf

(Af )SM

)
where

δAf

(Af )SM
= δrf

(
1−

2(r2f )SM

1 + (r2f )SM

)
. (4.52)

Here δrf is defined by rf = (rf )SM (1 + δrf ) with δrf = δgfV /G
f
V − δgfA/G

f
A. We again use:

(. . .)SM for leading order SM predictions and Gf
A,V for leading order SM predictions for the

couplings. Then the corrections to A0,f
FB from the shifts in the effective couplings are

δA0,f
FB =

3

4
[δAℓ (Af )SM + (Aℓ)SM δAf ] . (4.53)

The corrections due to ψ4 operators δ(A0,f
FB)ψ4 and the redefinition of ω can be extracted

from:
3

4
(AℓAf )SM

(
δ (σF − σB)

(σF − σB)SM
− δ (σF + σB)

(σF + σB)SM

)
, (4.54)

where the contributions δ (σF − σB), δ (σF + σB) that depend on ψ4 operators, are derived

directly from eq. (4.2). As the forward backward asymmetry measurements are direct cross

section measurements, the scaling of section 4.1.1 holds and these ψ4 corrections can be

neglected for near Z pole analyses. Far off the Z pole, these corrections cannot be neglected.

In particular, in interpreting reported AFB measurements reported with LEPII data, these

corrections are not suppressed compared to the effects of anomalous Z couplings.
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5 Numerics

In this section we perform some minimal EWPD fits. The results presented here are not in-

tended to be a global analysis of all possible data. Our purpose is to make clear a number of

challenges present in such fit efforts in the SMEFT that have not been discussed in the lit-

erature, including the neglect of the effects we have discussed in some detail in section 4.2.1.

We then suggest an approach to circumvent a number of these challenges in section 5.3.

The Wilson coefficients (naively) present in the set of observables we examine are

Cfit =
v̄2T
Λ2

{
C

(1)
Hq
pr

, C
(3)
Hq
pr

, CHu
pr
, CHd

pr
, C

(1)
Hℓ
pr

, C
(3)
Hℓ
pr

, CHe
pr
, Cll, CHD, CHWB

}
. (5.1)

In the U(3)5 limit, there are ten parameters in the set of nine measurements given in table 2.

Field redefinitions to remove an operator do not effect physical measurements, and cannot

lead to a more constrained field theory. We do not attempt to remove parameters by field

redefinitions to match the number of parameters and measurements,13 but simply construct

the χ2 directly.

We construct a χ2 for a EWPD fit in the following way. We define a matrix C as

the covariance matrix of the observables, the experimental values of which are obtained

from ref. [19]. ∆ θi as a vector of the difference in the observed and predicted value of an

observable, as a function of the unknown Wilson coefficients. The χ2 is then given by

χ2
EW = (∆θi)

T (C−1)i,j (∆θj). (5.2)

The minimum χ2
EW,min is determined, and the 65%, 90% and 99% best fit confidence level

regions (∆χ2
EW) are defined by the cumulative distribution function for a multi-parameter

fit. The confidence level regions are then given by χ2
EW = χ2

EW,min +∆χ2
EW.

For theoretical predictions in the SM, we use the results supplied by the updated 2013

PDG [32] and ref. [48]. We do not use as SM predictions the results of a fit to EWPD

observables. Minimized fit results of this form for the SM (with a number of SM parameters

floated as in [6]) is a valid procedure for hypothesis testing the SM. When considering a fit

in the SMEFT, using such fit values as the SM theoretical predictions is only valid if the

corrections due to unknown Wilson coefficients enter into the combined χ2 in a manner

that does not depend on the SM parameters fit to themselves. This is an unvalidated

assumption in the SMEFT, and as such we use the SM predictions supplied by [32, 48].

5.1 Prior dependence

We find that obtaining a global minimum, and hence a detailed fit space for the unknown

Wilson coefficients (Cfit) is numerically unstable and strongly depends on the seed imposed

in the search and the priors used.14 This is not surprising as the number of unknown Wilson

coefficients present in the SMEFT is large.

13Such a choice is meaningless in the SMEFT, which has an infinite number of parameters in general.
14A further very basic problem for consistency in the SMEFT is for any minima to be obtained, cross

terms of order v4/Λ4 need to be included in the χ2
EW.This is while terms from dimension eight operators

are neglected, that can appear. As we argue, including an extra theoretical error for these neglected terms

is more consistent than effectively treating the SMEFT as exactly LSM + L(6).
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Observable Experimental Value Ref. SM Theoretical Value Ref.

m̂Z [GeV] 91.1875± 0.0021 [19] – –

m̂W [GeV] 80.385± 0.015 [49] 80.365± 0.004 [50]

ΓZ [GeV] 2.4952± 0.0023 [19] 2.4942± 0.0005 [48]

R0
ℓ 20.767± 0.025 [19] 20.751± 0.005 [48]

R0
c 0.1721± 0.0030 [19] 0.17223± 0.00005 [48]

R0
b 0.21629± 0.00066 [19] 0.21580± 0.00015 [48]

σ0
h [nb] 41.540± 0.037 [19] 41.488± 0.006 [48]

Aℓ
FB 0.0171± 0.0010 [19] 0.01616± 0.00008 [32]

Ac
FB 0.0707± 0.0035 [19] 0.0735± 0.0002 [32]

Ab
FB 0.0992± 0.0016 [19] 0.1029± 0.0003 [32]

Table 2. Experimental and theoretical values of the observables used in the illustrative fits.

For example, a set of reasonable prior conditions to impose is that the power counting

expansion of the theory is under control, and that each individual observable falls within

Nσ of each measurement, so that

Cfit < 0.1, θ̂i − θi(C
min
fit ) < N δθi (5.3)

with δθi the total combined error on an observable θi. The value of N chosen in these

conditions dictates the specific global minimum found in the χ2 minimization. In particular

the presence of the Ab
FB anomaly that deviates at the ∼ 2.5σ level from the SM predictions

indicates that N > 2.5 as a minimization condition is reasonable to not bias the global

minimum in favour of non-vanishing Cmin
fit . Choosing N = 2.8, and seeding a minimization

with Cmin
fit = 0, we find

Cmin
fit =

{
−3.0, 7.9, 12, 87,−14, 3.4,−11× 101, 9.2, 0.13,−1.4× 10−2

}
× 10−4. (5.4)

It is interesting to note that with this procedure the least constrained entries in Cmin
fit

corresponds to operators that lead to vertex corrections of the Z boson to fermions.

However, we stress the arbitrariness of the conditions imposed to obtain this minima

and that it does not hold any particular physical significance. For example, another rea-

sonable prior condition can be constructed based on noting that one can group the Ci into

subgroups that strongly mix under RG evolution (see refs. [16, 51–53] for the relevant RGE

results). Such Wilson coefficients will tend to flow together in value under RG evolution.

This can motivate grouping the operators into classes of the form

Cq =

{
C

(1)
Hq
pr

, C
(3)
Hq
pr

, CHu
pr
CHd

pr

}
, Cℓ =

{
C

(1)
Hℓ
pr

, C
(3)
Hℓ
pr

, CHe
pr

}
. (5.5)

Then imposing the conditions in eq. (5.3) gives a minimum with these grouped Wilson

coefficients O(10−3) and CHWB ∼ O(10−5). The individual minima, with two different
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prior conditions significantly differ. The allowed fit space is also highly prior dependent.

As such, fitting for a best fit value of an individual Wilson coefficient only allows weak

conclusions to be drawn. Marginalizing over all unknown Wilson coefficients in EWPD, or

a subset of measurements, introduces further prior dependence. In reasonable UV scenarios,

the unknown Wilson coefficients are expected to be extremely highly correlated. Using a

prior condition to remove cases where correlations between Wilson coefficients allow larger

values in the unknown parameters is poorly motivated for this reason. Unfortunately, at

the same time, the particular correlations in L(6) for all possible UV models is unknown.

5.2 Theoretical errors in the SMEFT

The fit space of allowed Wilson coefficients is strongly prior dependent. In particular, we

find that the condition that θ̂i − θi(C
min
fit ) < N δθi implicitly or explicitly being imposed

strongly dictates the allowed Wilson coefficient space. For this reason, a precise specifica-

tion of the theoretical error when fitting in the SMEFT is critical.

It is essential to distinguish between the cases of fitting to EWPD as a hypothesis test

of the SM itself, and fitting to EWPD assuming the SMEFT as a theoretical framework.

When using EWPD to hypothesis test the SM, theoretical errors for unknown higher order

SM corrections are specified and included in a fit. Adding higher dimensional operators to

a fit of this form can also be interpreted as a (less efficient) hypothesis test of the SM, if

no extra theoretical error is added. For sample fits of this form see refs. [13, 14].

Conversely if the theory assumed in an EWPD fit is the SMEFT, the theoretical error

differs from the SM. Extra theoretical errors should be added in quadrature to the SM

theoretical errors when bounds on Wilson coefficients are extracted. This is particularly

required if constraints on Wilson coefficients are to be used at LHC as a test of the linear

SMEFT formalism itself.15 The SMEFT is subject to substantial theoretical errors of this

form. There are three major sources of error:

• The full dependence of EWPD 2 → 2 scattering processes in the SMEFT is now

systematically characterized to leading order in 1/Λ2, with the results in section 4. We

have shown this introduces dependence on higher dimensional operators suppressed

by ΓZ MZ/v̄
2
T compared to the leading order effect suppressed by v̄2T /Λ

2 in extracted

partial widths. This error does not effect all processes equally in EWPD, which

distorts χ2
SMEFT compared to χ2

SM. Similar comments hold for the effect of Z − γ

interference in near pole Z data.

• Neglected perturbative corrections in the SMEFT. Although the full RGE results

of the SMEFT dimension six operators are now known, perturbative corrections

in EWPD for higher dimensional operators are generally neglected. The neglected

perturbative corrections are of the order

v̄2T
Λ2

ḡ2

16π2
∼ O(10−3)

v̄2T
Λ2

(5.6)

15An important example of studies of this form is the constraints from EWPD projected onto the h→ V F

spectra, which are de-correlated in the case of the nonlinear EFT from LEP measurements [40, 54].
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for ḡ1, ḡ2 corrections in the SMEFT. The corrections are an order of magnitude larger

for QCD effects. Perturbative corrections to the Wilson coefficients in Cfit can be

absorbed into the unknown Wilson coefficient. However, perturbative corrections

of this form also introduce a dependence on a large number of higher dimensional

operators that are not in the set Cfit. These corrections should be treated as a

theoretical error when extracting bounds on Cfit to use in other measurements.

• Neglect of dimension eight operators introduces theoretical errors of the order

v̄4T
Λ4

∼ O(10−2)
v̄2T
Λ2

(5.7)

for Λ ∼ TeV. These corrections cannot be simply absorbed into a set of effective Cfit

parameters if the bounds obtained in EWPD are to be used in another process.

As an illustrative example of the importance of including the theoretical error of the

SMEFT consistently, consider the case of near pole corrections due to ψ4 operators. These

corrections modify extracted partial widths. Including a universal extra theoretical error

δE in the partial widths one finds

δχ2
EW

δ2E
+ 107 = 106

v̄2T
Λ2

(
1.2× 108CHWB − 5.1× 105C

(3)
Hq + 3.8× 107CHD−2.9× 104C

(1)
Hℓ ,

+1.2× 106Cℓℓ − 1.8× 104CHd − 5.0× 103CHu − 3.0× 104CHe,

+6.7× 105C
(1)
Hq − 3.1× 106C

(3)
Hℓ + · · ·

)
, (5.8)

even though δE ∼ 10−3 corrections of this form significantly modify any extracted con-

straints. This is easily seen by direct inspection of the leading terms in the χ2, which are

χ2
EW − 11 = 106

v̄2T
Λ2

(
1.1× 102CHWB − 4.7× 10−1C

(3)
Hq+3.4× 101CHD − 2.7× 10−2C

(1)
Hℓ ,

+5.5× 10−2Cℓℓ,−8.9× 10−3CHd + 1.2× 10−2CHu − 2.6× 10−2CHe,

+8.9× 10−2C
(1)
Hq − 6.7× 10−1C

(3)
Hℓ + · · ·

)
. (5.9)

These corrections change the vector of Cfit that is constrained by EWPD. For this reason

it is important to carefully account for theoretical error when fitting in the SMEFT to

explore patterns of allowed deviations. δE is not a universal shift in the SMEFT in a full

analysis, but depends on different ψ4 operators. This can change the the vector of Cfit that

is constrained by EWPD in an even more dramatic fashion. For this reason, it is important

to also incorporate correlated constraints on ψ4 operators in the SMEFT in global fits.

All of these corrections introduce theoretical errors in the SMEFT and can be enhanced

by unknown order one Wilson coefficients. For all of these reasons leading order bounds on

Civ̄
2
T /Λ

2 that exceed the O(10−2) level are challenging to interpret as consistent constraints

on parameters in L(6).
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5.3 Relating EW χ2 constraints to LHC processes

Due to the challenges we have discussed on the usual procedure to fit to parameters in L(6)

it is of interest to have a viable alternative to project EW precision constraints onto the

LHC program. In this section, we argue that such an alternative is supplied by directly

running the χ2
EW constraint to LHC energies and then imposing it on a related processes

in the linear SMEFT.

Naively one might argue that the running of the Wilson coefficients can be neglected

as such perturbative corrections are on unknown parameters. However, when running the

— χ2
EW function — this argument fails by direct inspection of the χ2

EW dependence on the

Wilson coefficients. As can be seen in eq. (5.9) the numerical factors that multiply the un-

known Wilson coefficients are strongly hierarchical and differ by four orders of magnitude.

As such interpreting an EWPD constraint as

χ2
EW(MZ) ≡ χ2

EW(mh) (5.10)

for the sake of the constrained Wilson coefficients at the scale mh is inaccurate and actually

constrains the wrong set of parameters.

Alternatively, consider running χ2
EW as a constraint vector in the Wilson coefficient

space to LHC energies. This shows that the constraint vector then depends on different

unknown Wilson coefficients, with a comparable numerical pre-factor to the coefficients

present in Cfit at the scale MZ . In other words, the directions in Wilson coefficients space

constrained at LEP are rotated evolving up to LHC energies and this rotation does not leave

the constraint vector on the same Wilson coefficient Hypersurface. The large hierarchies

in the numerical coefficients that define the χ2 enhance the effects of RGE running even

from MZ to Mh when considering constraints on Wilson coefficients, and as a result this

is not a negligible effect.

For example, consider the running of CHWB due to yt. Using the results in ref. [52]

µ
dCHWB

dµ
= −2 g1Nc(yq + yu) yt

16π2
Re

(
CuW

33

)
+ · · · (5.11)

with yq, yu the q and u hypercharges. This introduces dependence on Re

(
CuW

33

)
of the form

∆χ2
EW(mh) ∼ 106

v̄2T
Λ2

(
10−2Re

(
CuW

33

)
· · ·

)
(5.12)

into χ2(mh). Such dependence is comparable, or dominant over the dependence of a number

of the remaining Wilson coefficients in Cfit in χ2
EW(mZ). As a further illustrative example,

consider running an effective Z coupling to fermions, such as δgxV,A. This interaction

receives further four quark operator corrections at the one loop level as shown in figure 2.

Extracting a related result for the leading log running directly from ref. [16]

µ
d

dµ
C

(1)
Hl
rs

=
1

48π2
g21yH

(
yHC

(1)
Hl
rs

+NcydC ld
rsww

+ yeC le
rsww

+ 2ylC ll
rsww

+ ylC ll
rwws

,

+ylC ll
wsrw

+ 2ylC ll
wwrs

+ 2NcyqC
(1)
lq

rsww

+NcyuC lu
rsww

)
.
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Z Z

Figure 2. Mixing of a ψ4 operator into an effective Z coupling to fermions.

In the U(3)5 limit the operators in δgℓV,A mix with a total of ten four fermi operators [16, 52].

Taking into account such effects in running χ2
EW(MZ) to χ

2
EW(mh) makes clear it is essential

to perform a global analysis, including constraints on ψ4 operators if one is interested

in projecting EW constraints to LHC processes.16 At the scale mh a prior dependent

minimization, and possibly a marginalization of the Wilson coefficients subject to χ2
EW is

still required. However this approach allows multiple measurements at different scales to

be evolved and directly combined into a global constraint χ2. This occurs before one global

minimization and marginalization is preformed, minimizing the prior dependence.

6 Conclusions

The SMEFT has many unknown parameters that have been probed in particular combi-

nations at many different energy scales. It is important to incorporate the bounds from

EWPD when searching for deviations from the SM in the LHC program. However, at the

same time it is important to consistently incorporate constraints from EWPD, and to not

artificially increase the strength of bounds in an inconsistent analysis. For this reason, it

is essential to include theoretical error for the SMEFT itself in fitting to L(6) to explore

patterns of allowed deviations. This is the case if the assumption is that the theory being

constrained is the SMEFT. We have shown that constraints in the SMEFT from EWPD are

subject to theoretical uncertainties that have been neglected in previous analyses. Our gen-

eral results for LEPI and LEPII scattering cross sections enable global EWPD constraint

efforts in the SMEFT to advance further, and help characterize this theoretical error.

We have discussed some challenges present in naively utilizing EWPD fit constraints

in the SMEFT. We have also argued for running a constraint χ2
EW using RG evolution

and directly applying it to related processes occurring at different energy scales. This

is preferred over minimizing and marginalizing to fit for individual Wilson coefficients at

the scale mZ , when ignoring perturbative corrections in the SMEFT. The requirement to

construct a consistent global constraint picture of the linear SMEFT remains urgent as the

LHC physics program advances.
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A Operators and notation used

The operators that have contributed to corrections in the SMEFT, that were not explicitly

defined in the body of the paper are

QH = (H†H)3, QHD =
(
H†DµH

)∗ (
H†DµH

)
, (A.1)

QHW = H†HW I
µνW

Iµν , QHWB = H†τ IHW I
µνB

µν , (A.2)

Q
(1)
Hl
pr

= (H†i
←→
D µH)(l̄pγ

µlr), Q
(3)
Hl
pr

= (H†i
←→
D I

µH)(l̄pτ
Iγµlr), (A.3)

QHe
pr

= (H†i
←→
D µH)(ēpγ

µer), Q
(1)
Hq
pr

= (H†i
←→
D µH)(q̄pγ

µqr), (A.4)

Q
(3)
Hq
pr

= (H†i
←→
D I

µH)(q̄pτ
Iγµqr), QHu

pr
= H†i

←→
D µH)(ūpγ

µur), (A.5)

QHd
pr

= (H†i
←→
D µH)(d̄pγ

µdr), QHud
pr

= i(H̃†DµH)(ūpγ
µdr), (A.6)

QuW
pr

= (q̄pσ
µνur)τ

IH̃ W I
µν . (A.7)

Here we have used the derivative notation

H† i
←→
D βH = iH†(DβH)− i(DβH)†H, (A.8)

H† i
←→
D I

βH = iH†τ I(DβH)− i(DβH)†τ IH. (A.9)

The Lagrangian we use is given by L = LSM+L(5)+L(6)+ · · · , where L(6) = ΣiCiQi.

To establish notation, we note H is an SU(2) scalar doublet with hypercharge yH = 1/2.

The Higgs boson mass is given asm2
H = 2λv̄2T , with v̄T ∼ 246GeV. The covariant derivative

is Dµ = ∂µ + ig3T
AAA

µ + ig2t
IW I

µ + ig1yBµ. Here TA are SU(3) generators, tI = τ I/2 are

SU(2), and y is the U(1) Hypercharge generator. H̃ is defined by Hj = ǫjkH
† k where the

SU(2) invariant tensor ǫjk is defined by ǫ12 = 1 and ǫjk = −ǫkj , j, k = 1, 2. Fermion fields

q and l are left-handed fields, and u, d and e are right-handed fields. We use p, r, s, t for

flavor indices. The effective mixing angles are defined as

sin θ =
g1√

g1
2 + g2

2

[
1 +

v̄2T
2

g2
g1

g2
2 − g1

2

g2
2 + g1

2CHWB

]
, (A.10)

cos θ =
g2√

g1
2 + g2

2

[
1− v̄2T

2

g1
g2

g2
2 − g1

2

g2
2 + g1

2CHWB

]
. (A.11)

The formalism of the paper for the SMEFT, and some results used in section 2.1 descend

from refs. [16, 51].
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