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Abstract. For years, transactional protocols have been defined for
particular application needs. Traditionally, when implementing a trans-
action service, a protocol is chosen and remains the same during the
system execution. Nevertheless, the dynamic nature of nowadays applica-
tion contexts (e.g., mobile, ad-hoc, peer-to-peer) and context variations
(semantics-related aspects) motivates the need for transaction service
adaptation. Next generation of transaction services should be adaptive or
even better self-adaptive. This paper proposes CATE: (1) a component-
based architecture of standard 2PC-based protocols and (2) a Context-
Aware Transaction sErvice. Self-adaptation of CATE is obtained by
context awareness and component-based reconfiguration. This allows
CATE to select the most appropriate protocol with respect to the execu-
tion context. We show that using CATE performs better than using only
one commit protocol in a variable system and that the reconfiguration
cost is negligible.

1 Introduction

The dynamic nature of nowadays application contexts (e.g., mobile, ad-hoc, peer-
to-peer) and context variations (semantics-related aspects) justifies the need for
application adaptation [1]. Next generation of applications should automatically
tune themselves and apply optimizations in order to maximize performances, to
evolve, to face different contexts or to adapt the execution process according to
context variations.

Component-based models are a good solution to make possible software adapt-
ability [2] mainly because component-based architectures facilitate static and
dynamic configuration. Implementing component-based adaptive applications is
a very active and consolidated research/industrial issue [3, 4]. Nevertheless, there
has been little work on adaptability of middleware services, such as persistence,
replication, transaction, or communication [5, 6, 7].

In distributed transaction management, commit protocols ensure atomicity,
which means that all transaction operations success (commit) or none of them
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(abort). The most used commit protocol is Two-Phase Commit (2PC) [8]. There
exists a number of 2PC optimizations and some of them are so widely used that,
as 2PC, are part of transaction processing standards. 2PC variations are pro-
posed to optimize transaction execution costs, to address particular transaction
semantics (e.g., read-only), to execute on different network topologies, etc. For
instance, the 2PC Presumed Commit protocol (2PC-PC) [9] is well suited for
high transaction commit rates, whereas 2PC Presumed Abort (2PC-PA) [9] is
more appropriate for high transaction abort rates.

Traditionally, transaction service implementations are tailored for a particu-
lar application context. A transactional protocol is chosen and remains the same
even if the application context changes. This may lead to unexpected poor perfor-
mances. To deal with context variations of transactional applications, the trans-
action management system should be adaptive or even better self-adaptive. We
consider self-adaptation as the ability of being aware of the application context
changes and the capacity of reacting to them. This paper proposes CATE, which
is composed of (1) a component-based architecture of standard 2PC-based pro-
tocols and (2) a Context-Aware Transaction sErvice. Self-adaptation of CATE
is obtained by a context-aware mechanism and component-based reconfigura-
tion. This allows CATE to select the most appropriate protocol with respect to
the execution context. The implementation performance results show that using
CATE performs better than using only one commit protocol in a variable system
and that the reconfiguration cost is negligible.

This paper is organized as follows. Section 2 briefly introduces the atomic
commit protocols used in this work. Section 3 introduces the component-based
implementation and the evaluation of the 2PC, 2PC-PA, and 2PC-PC protocols.
Section 4 presents our Context-Aware Transaction Service, its implementation
and some empirical measures obtained when using it. Finally, Section 5 presents
some related work, and Section 6 concludes and gives future work.

2 Overview of Commit Protocols

In database systems, correct concurrent data access is ensured using trans-
actions. Transactions are characterized by the well-known ACID (Atomicity,
Consistency, Isolation and Durability) properties, which are guaranteed by trans-
action services. While we consider that consistency, isolation and durability prop-
erties are supported by the application resource managers (e.g., Database), this
paper focuses on the atomicity property. In particular, our work focuses on the
self-adaptability of the atomicity property. For the purposes of this paper, we
concentrate on some standard 2PC-based protocols, which are the 2PC, 2PC-PA
and 2PC-PC protocols.

To describe the behavior of these 2PC protocols, we use UML sequence di-
agrams (see Figures 1 to 3). It allows us to identify four actors: Application,
Coordinator, Participants, and Log. Then, the sequences describe the behavior of
the 2PC, 2PC-PA and 2PC-PC protocols in terms of communication schema
and logging issues. Indeed, the resilience of commit protocols to system and
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communication failures is achieved by logging the progress of the protocol in
the logs (stable storage) of the coordinator and the participants. There exist two
types of log writes: force and non-force. The first one is immediately flushed into
the log, generating a disk access. Non-force writes are eventually flushed into the
log. Thus, there exists a window of vulnerability in using non-force writes until
they are flushed.

Figures 1 to 3 introduces three commit protocol use cases. Two cases corre-
spond to the situation where the Application orders the Coordinator to commit.
In this case, the commit protocol can issue with a Commit (e.g., Figure 1(a))
or a Failure (e.g., Figure 1(b)) depending on the Participants votes. In the third
case, the Application orders the Coordinator to abort and the commit protocol
issues automatically with an Abort decision (e.g., Figure 1(c)).

2.1 Two-Phase Commit (2PC)

2PC, the most used commit protocol, consists of two phases (see Figure 1). Dur-
ing the voting phase, the coordinator sends a prepare message to all participants.
At the decision phase, the coordinator decides to commit (if all the participants
vote yes) or abort (if at least one participant votes no) the transaction and
notifies the participants of its decision. When the participants receive the final
decision, they send an acknowledge message to the coordinator and release all
resources held by the transaction. When the coordinator has received all the ac-
knowledgements from the participants that voted yes, it ends the protocol and
forgets the transaction. In 2PC, the coordinator force writes a decision record
and non-force writes an end record at the end of the protocol. Participants force
write their votes and the coordinator’s decision. Write operations are logged
before sending the corresponding message.

Application Coordinator Participant Log Application Coordinator Participant Log Application Coordinator Participant Log
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Fig. 1. The 2PC protocol

2.2 2PC Presumed Abort (2PC-PA)

2PC-PA reduces the cost associated to aborted transactions. When the coordi-
nator decides to abort a transaction, it discards all information related to the



Towards Context-Aware Transaction Services 275

Application Coordinator Participant Log Application Coordinator Participant Log Application Coordinator Participant Log

(a) Commit (b) Failure (c) Abort

commit

vote

force-log

force-log

acknowledge

non-force-log

force-log

prepare

commit

commit

vote

force-log

force-log

non-force-log

prepare

abort

abort

non-force-log

abort

force-log

Fig. 2. The 2PC-PA protocol

transaction and sends an abort message to all the participants without logging
the abort decision (see Figure 2(b) failure case). The participants non-force write
the abort record and do not have to send an acknowledge message to the coor-
dinator. In case of failures, the coordinator, not finding any information in the
log regarding the transaction will deduce an abort decision. The commit case of
2PC-PA remains the same as in 2PC.

2.3 2PC Presumed Commit (2PC-PC)

2PC-PC, as opposed to 2PC-PA, reduces the cost of committed transactions. In
2PC-PC, the coordinator interprets missing information as a commit decision.
To do so, the coordinator has to force write an initiation record for the transac-
tion before sending prepare messages to participants (see Figure 3). When the
coordinator decides to commit a transaction it force writes a commit record then
it sends the commit decision. The participants non-force write the commit deci-
sion and release all the transaction resources without acknowledging the commit
decision to the coordinator. Otherwise, when the coordinator decides to abort a
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transaction, it sends abort messages to all the participants that voted yes and
waits for the acknowledges. The abort decision is not logged. When all the ac-
knowledgements have been received, the coordinator writes a non-forced end
record and discards all information related to the transaction. The participants
force write the abort decision and send an acknowledgement to the coordinator.

3 Evaluation of Commit Protocols

Evaluation of commit protocols is often based on theoretic cost evaluation of mes-
sage exchanges, and number and type of logs. This section aims at verifying the
conformance of the theoretic costs to empirical measures obtained when imple-
menting the protocols introduced in Section 2. The originality of this implemen-
tation lies in the definition of reusable components to implement various commit
protocols. These components are reused in CATE to support self-adaptability
of commit protocols as described in Section 4. The following sections analyse
the theoretic costs of studied protocols, introduces details about the implemen-
tation of those protocols, and shows some empirical measures resulted from the
execution of implemented protocols.

3.1 Theoretic Cost Measures

We show that these protocols differ in the number of messages sent and the num-
ber of forced log writes. Table 1 summarizes the three 2PC-based protocol costs.
The differences between commit protocols lead to different completion time of
the commit processing, communication and disk access costs. As in Section 2, the
Abort use case considers transactions aborting unilaterally whereas the Failure
use case depicts transaction aborting during the voting phase.

Table 1. The commit protocol theorical costs

Commit Messages Forced log writes
protocol Commit Failure Abort Commit Failure Abort
2PC 4p 2p 1 + 2p 1 + p

2PC-PA 4p 3p p 1 + 2p 1 + p 1
2PC-PC 3p 4p 2p 2 + p 1 + 2p 1 + p

Even though 2PC is widely implemented, it is considered as very expensive
as shown in Table 1. It costs 4p message exchanges (p being the number of
participants) and 1 + 2p forced log writes (the cost of non-forced log writes can
be ignored). This highlights why several 2PC optimizations have been proposed.

Besides saving one force log write at the coordinator and at the participant’s
sites, 2PC-PA saves one acknowledge message from each participant in the abort
case. Thus, when the commit process fails, 2PC-PA costs 3p messages and p
forced log writes. If the transaction aborts unilaterally, 2PC-PA costs only 1
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message and 1 forced log write, making it cheaper than 2PC and 2PC-PC. The
cost to commit a transaction is the same as in 2PC.

Compared to 2PC, 2PC-PC saves one forced log write and one acknowledge
message from each participant for the commit case at the expense of one extra
initiation forced log write at the coordinator. Thus the cost of committing a
transaction is 2 + p forced log writes and 3p messages. For the abort case, 2PC-
PC has one extra forced log write at the coordinator, the initiation record. Thus,
aborting a transaction costs the same as in 2PC (1+2p forced log writes and 4p
messages).

Thus, it is cheaper to use 2PC-PA in a system where transactions are most
likely going to abort, whereas, it is cheaper to use 2PC-PC if transactions are
most probably going to commit. In a system where transactions have the same
probability of abort and commit, it is cheaper to use 2PC-PA.

3.2 Implementation Issues

This section introduces the implementation of commit protocols presented in Sec-
tion 2. These commit protocols are implemented using component-based software
engineering. Before getting into the architecture details, we extend the definition
of component proposed in [10] with the concepts defined in the Fractal compo-
nent model [2]. A component architecture (or configuration) is mainly composed
of components and bindings. A component is a software entity, which exports
functions through server interfaces and imports its dependencies via client in-
terfaces. A binding connects a client interface to a server interface to resolve a
component dependency.

The proposed architecture generalizes the commit protocols to reuse common
functionalities. The objective is (1) to make a component-based implementation
of the three commit protocols presented in Section 2 and (2) to express principal
differences only through bindings. Therefore, each commit protocol reuses ex-
actly the same components but assembled with different bindings (see Figure 4).
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To implement the commit protocols, we do not require to reify the Application
object depicted in Figures 1 to 3. Thus, we define 3 components: Coordinator,
Participants, and Log. To enforce the reuse of components, the Coordinator com-
ponent is split into 3 components: Vote, Commit, and Abort. This separation
means that a commit protocol encloses not only the 2PC protocol but also an
abort protocol in case of failure. This abort protocol is reused to support abort-
ing transactions unilaterally. Communication is supported by a Communication
Bus component. The communication bus supports sending synchronous or asyn-
chronous (using a callback approach) messages.

In Figures 1 to 3, the coordinator sends the prepare, commit and abort mes-
sages to all participants. Thus, the prepare, commit and abort client interfaces
of the Coordinator are bound to the Communication Bus. In Figures 1 to 3, the
coordinator and the participants require to journalize the steps of the commit
protocol in a log. Thus, the Coordinator and the Participants component inter-
faces are bound to the force or non-force server interface of the Log component
depending on the method call label declared in the sequence diagrams.

The coordinator part of this architecture is embedded in the transaction ser-
vice whereas the participant part is implemented by resource managers (e.g.,
database managers) involved in the system. The implementation of the 3 com-
mit protocols reuses these 6 components by changing only the bindings to provide
the different semantics.

2PC. In 2PC (Figure 4(a)), the Coordinator sends a synchronous prepare mes-
sage to all participants. Participants should attach their vote to the callback
message returned to the coordinator. When a decision is taken, the Coor-
dinator calls the log-commit (resp. log-abort) interface, which is bound to
the force interface of the Log. The commit (resp. abort) message is sent
synchronously to allow participants to acknowledge the decision. To termi-
nate the protocol, the Coordinator non-force writes an end record calling
the log-end-commit (resp. log-end-abort) interface. The Participants compo-
nent receives (from the Communication Bus) the prepare, commit, and abort
messages. It force writes its vote and the coordinator’s decision.

2PC-PA. In 2PC-PA (Figure 4(b)), as the coordinator does not log the abort
decision, the log-abort interface is not bound to the Log. This leaves the
Coordinator code unchanged. Next, the abort message is sent asynchronously
because the abort decision does not need to be acknowledged. Finally, the
log-end-abort interface is not bound to the Log because the end of an aborted
transaction does not need to be logged. The commit case is the same as in
2PC. In the Participants component, the commit case remains the same as
in 2PC. In the abort case, log-abort is bound to the non-force interface of
the participant’s Log component.

2PC-PC. In 2PC-PC (Figure 4(c)), before sending the prepare message, the Co-
ordinator calls the log-initiation interface. Compared to the other protocols,
such an interface is bound to the force Log interface. In 2PC-PC, the commit
decision is sent asynchronously because it is not necessary to acknowledge the
commit decision. Since the end of a committed transaction does not need to
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be logged, the log-end-commit interface is not bound to the Log. The abort
decision is not logged, nevertheless, the abort message is sent synchronously.
The end of an aborted transaction is non-force written into the log. In the
Participants component, the log-commit and log-abort interfaces are bound re-
spectively to the non-force and force interfaces of the Log.

3.3 Empirical Evaluation

The objective of this section is to compare the theoretic cost evaluation with
the empirical evaluation of the component-based implementation of 2PC, 2PC-
PC, and 2PC-PA protocols. This comparison (1) validates our implementations
of 2PC-based protocols regarding to their specification, and (2) confirms the
theoritical cost evaluations of these 2PC-based protocols with an empirical eval-
uation. The scenario of Figures 5, 6 and 7 evaluates the average completion time
of a number of transactions executed sequentially varying the number of partic-
ipants (from 0 to 5). This scenario is applied to the 2PC, 2PC-PA and 2PC-PC
protocols. Experiments have been done on a PC Pentium IV 2,4GHz with 1Gb
of memory using the Ubuntu Linux distribution, the Sun J2SE Development Kit
5.0, and the AOKell implementation of the Fractal component model [11].

In Figure 5, all executed transactions are committed. In this case, 2PC-PC
behaves better than 2PC and 2PC-PA. This is because 2PC-PC saves 1 forced log
write and 1 acknowledge message from each participant. The initial overhead of
2PC-PC is due to the initiation record that is automatically force written. 2PC
and 2PC-PA have similar performance because their commit case follows the
same process.

In Figure 6, all executed transactions fail during the commit process. This
shows that 2PC-PA, whose completion time is closed to 0, performs much better
than 2PC and 2PC-PC. This is because 2PC-PA saves 1 acknowledge message
from each participant in the abort case (see Section 2.2). 2PC and 2PC-PC have
similar performance because they have similar costs even if 2PC-PC makes an
extra force log write (see Section 2.3).
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In Figure 7, all executed transac-
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Fig. 7. High abort rate

tions are aborted unilaterally. In this
case, 2PC-PA performs much better
than 2PC and 2PC-PC. This is be-
cause 2PC-PA uses only 1 asynchro-
nous message and 1 forced log write
to abort the transaction. 2PC and
2PC-PC have similar performance
because their abort case follows the
same process. The abort protocol ap-
plies only one issue. This predictable
issue is applied by several 2PC opti-
mizations [12, 13, 14] to exploit the efficiency of transaction aborted unilaterally.

4 CATE: A Context-Aware Transaction sErvice

In this section, we introduce the second part of our proposal, a Context-Aware
Transaction sErvice (CATE), which supports application context variations. The
objective of CATE is to apply the best fitting 2PC protocol in presence of un-
predictable commit rates.

Section 4.1 shows the context aware mechanism used in our approach. Sec-
tion 4.2 introduces the reconfiguration process. Section 4.3 presents the policy
used to enable commit protocol reconfiguration. Section 4.4 presents some perfor-
mance measures. Finally, Section 4.5 discusses several issues concerning CATE.

4.1 Context Awareness

In this paper, we consider the transaction abort and commit rate as the appli-
cation context. Thus, to be able of changing at the right moment, the commit
protocol, it is necessary to monitor the abort and commit rates of transactions.
The commit rate represents the occurrence of the commit use case of a transac-
tion service whereas the abort rate represents the occurrence of the failure and
the abort use cases. This logic is named adaptation policy. An adaptation policy
is defined by a kind of ECA rules (Event, Condition, Action). The Event is the
commit/abort rate, the Condition specifies when it is necessary to change the
active protocol and the Action is the protocol change.

Figure 8 shows a transaction manager (Tx Manager) and its relationship with
some transaction components (Tx(2PC-PX)). The Context Awareness component
implements the adaptation policy. It monitors the number of committed and
aborted transactions. Besides, it decides when the active protocol should be
changed. This is possible thanks to the predefined ECA rules. For instance a
ECA rule may say: if (abort-rate < 10%) then use 2PC.

To count the number of committed and aborted transactions, the Context
Awareness component uses the subscribe interface provided by the Communication
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Bus component of each transaction (see Figure 4). The subscribe interface allows
subscribing to different kinds of events. Thus, the Communication Bus of active
transactions notifies the Context Awareness component when each Coordinator
sends commit or abort messages to the participants.

Figure 8 shows the general architecture of the CATE implementation, which
supports JTS transactions [15]. The Tx(2PC-Px) component represents a JTS
transaction implementing the 2PC-Px protocol. The JTS Adapter component is
bound to components grouping the core functions provided by CATE. These core
components include those presented in Figure 4 plus other general components
such as the Tx Status. The Coordinator component reifies the commit protocol
applied by the transaction. The Abort component reifies the abort protocol ap-
plied by the transaction when aborting unilaterally. This component reuses the
Abort component defined in Figure 4 and it is configured with the 2PC-PA proto-
col. Thus, CATE provides the best completion time in case of predictable abort
decisions. The Tx Manager component is in charge of managing the instance of
active transactions. Figure 8 shows the Tx Manager component and its relation
with the Tx(2PC-Px)’s Communication Bus component.

The commit protocol reconfiguration is done through a dedicated configura-
tion attribute. This attribute is read by the Tx Factory component when new
transactions are created. Depending on the value of this attribute, the Coordi-
nator component implements the 2PC, 2PC-PA, or 2PC-PC protocol. Thus, the
reconfiguration process consists of changing the value of this attribute depending
on the predefined Conditions.

4.2 Reconfiguration Rules

To dynamically switch over another protocol, the Context Awareness component
needs to stop the transaction factory, unbind the current protocol, bind the new
one, and restart the transaction factory. In that way, newly created transactions
use the appropriate commit protocol.

When the Context Awareness component decides to change a protocol (based
on defined Conditions) it calls the change-config interface bound to the config-
uration interface of the Tx Factory component. Then the Tx Factory component
connects the active-config interface to the appropriate configuration, which is
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listed by the available-config interface. Thus, future transactions will be created
using this new active configuration. In Figure 8, we show the transaction manager
implementation containing the three commit protocols (Tx(2PC), Tx(2PC-PC)
and Tx(2PC-PA)) and the active configuration is Tx(2PC-PC).

When the Tx Factory component creates a new transaction, it subscribes the
listener interfaces (retrieved via the probe interface) of the Context Awareness
component to make possible the commit/abort event monitoring.

4.3 Adaptation Policy

Knowing the current commit/abort rate allows predicting the future transaction
context. That is, if the abort rate is about 30%, we consider that this tendency
will remain the same in a near future. This is why the abort/commit rate moti-
vates the reconfiguration.

The Condition that specifies when to change of commit protocol in CATE
(see Section 4.1) is based on the following equation:{

x + y = 100
x × C2PC−P C + y × A2P C−PC < x × C2P C−PA + y × A2P C−P A

Where x (resp. y) represents the number of transaction committed (resp.
aborted) and C2PC−PX (resp. A2PC−PX) represents the commit (resp. abort)
cost of the 2PC-PX protocol (here 2PC-PA and 2PC-PC protocols).

The solution of this equation is:{
y = 100 − x
x > 100×(A2P C−P A−A2P C−PC)

(C2PC−P C−A2P C−PC−C2PC−P A+A2PC−P A)

Figure 9 applies this solution to the measures of Figure 5 and 6. It appears that
the limit between 2PC-PC and 2PC-PA depends on the number of transaction
participants. For example, in the case of transactions involving 20 participants,
2PC-PC becomes more interesting than 2PC-PA when the commit rate is above
54%. This limit is used by CATE to switch between the 2PC-PC and the 2PC-PA
configurations.
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Figure 10 introduces the component-based architecture of the adaptation pol-
icy. This policy is composed of two parts. The Commit Rate component computes
the appropriate commit rate depending on the average number of transaction
participants. Thus, the component reconfigures the Commit Protocol component
depending on the execution context variations. The Commit Protocol component
reconfigures the transaction factory depending on the current commit rate. The
computation of the commit rate is based on a configurable weighted moving av-
erage. It ensures that the commit protocol is adapted to important fluctuations
in the commit rate without reconfiguring too often.

4.4 Empirical Performance Measures

CATE does not switch to 2PC because taking as context only the commit/abort
rate, 2PC is more expensive than the other considered protocols. The scenario
of Figures 11 and 12 evaluates the average completion time of 50 transactions
executed sequentially with constant commit/abort rate variations (10 transac-
tions commit, then 10 transactions abort, then 10 transactions commit, etc.).
Transaction services using static configuration of 2PC, 2PC-PA and 2PC-PC
protocols are executed and compared to CATE. Figures 12 depicts the average
completion time since the transaction service has been started.

The measures of Figure 11 show the average completion time that varies de-
pending on the transaction commit/abort rates. Performance of CATE is the
best thanks to its capacity of self-adaptation. 2PC-PA and 2PC-PC suffer from
the context variations. In CATE, when the commit rate is high, the active pro-
tocol is 2PC-PC. Otherwise, CATE uses 2PC-PA. Thus, CATE benefits of the
best performance of 2PC-PC and 2PC-PA. In this experiment, 2PC is used as
the initial protocol. Performances of Figure 12 show that the CATE reconfig-
uration does not introduce important overheads compared to the static config-
uration of the use cases protocols while providing better completion time. The
cost of switching between commit protocols appears only when a new transaction
is created. CATE computes the commit rate of terminated transactions to create
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a new transaction providing the best performing commit protocol. This mecha-
nism coupled to a caching mechanism reduces the overhead of switching between
the commit protocols.

4.5 Discussion

This section discusses various general aspects concerning CATE.

Reconfiguration of active transactions. Changing the protocol of active trans-
actions compromises the recovery process in case of failures. That is why in
CATE it is not possible to change the commit protocol once a transaction
has begun. Different active transactions can use different commit protocols
but each transaction begins and ends with the same commit protocol.

Using CATE. To be able of using CATE, for instance, in an application server,
the following hypotheses should be guaranted. 1) The participant part is
implemented by resource managers that are free to choose the way this im-
plementation is done (Figure 8 suggests one implementation solution); 2) All
considered protocols in CATE must be implemented by resource managers;
finally, 3) Resource managers must be able to change the active protocol.

CATE extension. CATE may support other commit protocols that can be dif-
ferent to those used in this paper. We choose 2PC-based protocols as an
experiment to show components reusability. Nevertheless, reusability is not
necessary to the CATE operation. Thus, with CATE it is possible to switch
to different commit protocol implementations, which makes it extensible. For
example, 1PC and 3PC protocols can be considered because CATE moni-
tors the commit rate of active transactions to find the best commit protocol.
Besides, switching between 1PC or 3PC protocols requires the application
to support 1PC or 3PC validation processes.

Predictable issues. Some commit protocols draw benefits from predicable is-
sues of transactions [12, 13, 14]. Using piggybacking or callback mechanisms,
they determine if the transaction is marked for read-only or abort before
starting the commit protocol. Thus, depending on the known issue of the
transaction, they can optimize the completion time of the transaction. This
approach is complementary to our approach because CATE aims at optimiz-
ing transactions with unpredictable issues. However, CATE can also define
transactions supporting several commit or abort protocols to improve the
completion time of transaction with predictable issues.

Preserving the global semantics of the system. In software reconfiguration, it is
necessary to preserve the semantics of the system. In our case, the transaction
properties must be preserved. If an atomic commit protocol is replaced by
another, which does not enforce the atomicity property (for instance, the
semantic atomicity [16]), the transaction correctness is compromised. This
is why in this paper, used protocols ensure the atomicity property. Thus,
programmers must be careful about the choices they made when defining
adaptive middleware systems.
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5 Related Work

[5] proposes to dynamically adapt applications by composing at runtime (by
weaving) functional (application-related) and non-functional concerns. Authors
are interested in making the weaving process adaptive to runtime execution
conditions. Their objective is to choose at runtime the appropriate non functional
code. Thus, they propose to change the weaving of non-functional code according
to context aware adaptation policies.

[6] proposes runtime application adaptability by assembling appropriate non-
functional services thanks to service repositories. Repositories contain compo-
nent-based non-functional services and meta-information describing such
services. This approach requires the applications to be developed using the com-
ponent-based approach. Our approach does not make any assumption about the
application design and we choose to adapt the non-functional service itself rather
than the instance of the used service.

Compared to our proposal, [5] and [6] consider non-functional services as the
adaptation grain. Our approach proposes self-adaptability of non-functional ser-
vices using components as adaptation granularity. Unlike [5] and [6], we made sev-
eral experiments that underline the advantages of our proposal. Our proposal is
validated with performance measures that show the self-adaptability advantages.

This paper improves [17] by providing a description of legacy 2PC-based pro-
tocols using UML Sequence diagrams. Descriptions of commit and abort pro-
tocols are supported and can be implemented as various configurations built
with reusable components. This paper improves the adaptation policy presented
in [17] to consider the commit rate variation depending on the number of trans-
action participants. The support of commit protocols for transactions with pre-
dictable issues has been introduced. The completion time of transactions with
predictable issues, such as transaction aborting unilaterally, is improved com-
pared to traditional commit protocols.

[12] proposes a new commit protocol for self-adaptive Web services, which
supports both 2PC-PA and 2PC-PC participants. Such a protocol allows par-
ticipants with different presumptions to be dynamically combined in one trans-
action. Compared to the work presented in this paper, [12] does not address
evolution concerns. In our work, we use 2PC, 2PC-PA and 2PC-PC as use cases.
Our approach can easily support new commit protocols to extend the application
adaptive ability.

In general, works presented in [18, 19, 9] are simulation-based. Performance
results focus on the semantics of transactions (e.g. read-only transactions, up-
date transactions, transaction‘s length) and the presence of failures. Whereas,
in this paper, besides addressing performance of each protocol based on commit
and abort rates, we address the performance of changing the software configu-
ration to migrate from a protocol to another. Our performance results, based
on a prototype implementation, shows that the reconfiguration cost is negligible
compared to gains obtained from the use of appropriate protocols depending on
the application context.
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6 Conclusions and Future Work

Self-adaptation is a current challenge in component-based software engineer-
ing. Several works have been devoted to adaptive applications, nevertheless,
there has been little work on adaptability of non-functional services. This
paper focused on transaction services, and more specifically on the commit pro-
cess. On the one hand, it proposed a component-based architecture of stan-
dard 2PC-based protocols. Each protocol contains exactly the same components
but assembled according to different configurations. On the other hand, it pro-
posed a Context-Aware Transaction sErvice (CATE). CATE selects the most ap-
propriate commit protocol with respect to the execution context. Performance
measures show that changing the commit protocol depending on the context
performs better that using only one commit protocol on a variable transactional
system.

Our future work includes to study the component-based configuration of other
2PC-based protocols (e.g., [12]) but also 1PC and 3PC protocols. The idea is to
extend CATE to support more commit protocols. The evaluation of runtime per-
formances of these additional commit protocols will be useful to refine the CATE
adaptation policies, e.g., adding new conditions and reconfiguration actions to
switch between protocols.

Besides, we consider to investigate a model-driven approach to design commit
protocols using UML sequence diagrams (see Figures 1 to 3) and to automat-
ically generate the implementation of the Coordinator components and their
bindings to the Communication Bus and the Log components. This model-driven
approach, complementary to that we defined into [20, 21], will provide a dedi-
cated high level language to define, study, compare commit protocols, and also
an efficient way to implement them.

Availability. CATE is freely available under an LGPL licence at the following
URL: http://gotm.objectweb.org.

Acknowledgments. This work is partially funded by INRIA, and the Region
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