
Towards Context-Aware Web Applications

Po-Hao Chang and Gul Agha

University of Illinois at Urbana-Champaign,
201 North Goodwin Avenue, Urbana IL 61801, USA

{pchang2, agha}@cs.uiuc.edu

Abstract. In order to guarantee certain levels of QoS, a Web application
needs to adapt itself to different execution contexts. However, because
of the lack of coordination support in Web platforms, service providers
respond to the challenge by simply providing multiple versions of a Web
application, one for each context. We argue this top-down approach is
neither efficient nor scalable: developing a context-specific application re-
quires considerable effort and expertise while the ever-changing Internet
never stops generating interesting contexts which can be exploited for
better deployment. As an alternative, we propose a three-layer, bottom-
up approach to building context-aware Web applications. At the bottom
layer, we characterize a context-specific Web application with a partic-
ular component distribution plan which provides details for composing
individual objects. In the middle layer, recursively defined configurations
provide a bridge which relates high-level context features to low-level
component distribution properties, where a configuration is a combina-
tion of configurations and/or component distribution properties. At the
top level, a context management system selects desirable configurations
according to the execution contexts.

1 Introduction

Evolving from its original mission of content delivery, the Web has become a
gateway of assorted interactive applications: people access emails, shop online,
trade equities, manage accounts and even remotely control home appliances us-
ing various Web applications. Unlike its typical standalone and distributed peers,
a Web application encounters heterogeneous execution environments and numer-
ous, unpredictable circumstances in its deployment. From the early days of the
Web, developers identified the need to differentiate execution contexts: it was
common for a Web application to have one version with HTML frames and
another without. Context differentiation has become more critical as the Web
has evolved: new crop of context-specific versions such as broadband, JavaScript-
enabled, HTML only and low graphics can be found in many Web applications.

In most cases, these versions are built in a top-down fashion: that is, given
a context, the programmer exploits its features and develops a specific version
accordingly. However, the development and maintenance cost of multiple versions
is always expensive, and in the case of Web applications, this approach is fragile
in two ways:

J. Indulska and K. Raymond (Eds.): DAIS 2007, LNCS 4531, pp. 239–252, 2007.
c© IFIP International Federation for Information Processing 2007

240 P.-H. Chang and G. Agha

1. Web applications are usually evolutionary in their life cycles. A minor change
in the application requirement may result in a re-evaluation of features to
be exploited in the contexts of interest.

2. The domain of interesting contexts is changing. Some contexts have fallen
into disuse and others are gaining sufficient momentum to require particular
attention. Since the future trend is hardly predictable, not much of existing
code can be readily reused.

We believe a bottom-up approach is a more feasible way to build and manage
a context-aware Web application. This is motivated by the following observation:
no matter how many versions the application supports, there are some elements
in common, such as its core application logic. We model a Web application as
a composition of distributed objects: the composing structure and the functions
of individual objects characterize the application. Instead of building a mono-
lithic context-specific version from scratch, the developer picks and/or adapts
composing objects with desired attributes, for example, implementation technol-
ogy, execution location and deployment policy, to fit for the context of interest.
The idea is similar to Web styling sheets [13, 7]: a customized presentation of a
document can be achieved by supplying a specific style sheet.

The ability to customize a Web application through object annotations is
just on the halfway to context-aware Web applications: the customizable appli-
cation requires human intervention (meta-programming) to adapt into contexts.
To be truly context-aware, the application needs assistance from a context man-
agement system to automate this process. The goal of the system is to generate
detailed deployment plans based on the context features at runtime. However, us-
ing straight-forward reasoning from context features to desired object attributes
complicates policy-design and suffers similar difficulties to those described above.
We use modularity to address the problem: a full deployment plan is decomposed
into sub-plans, each of which determines a set of closely-related object annota-
tions, and a policy associates a context feature to one or more sub-plans only. A
full deployment plan can be decided as the context management system applies
the policies applicable to an incoming context.

In this paper, we describe a software system to support context-aware Web
applications. Our system follows the bottom-up approach and enables a Web
application to adapt its component distribution to different execution contexts.
The rest of this paper is structured as follows: Section 2 provides a compre-
hensive background of the problem and an overview of our strategies. Section 3
introduces a component framework supporting customizable Web applications
through annotating composing objects. In section 4 we present a structural and
parameterized representation of related annotations akin to potential context
features. Section 5 describes a context management system which follows user-
defined policies to generate context-specific deployment plans from applicable
object annotations – and thus makes Web applications context-aware. We con-
clude the paper with a discussion in the final section.

Towards Context-Aware Web Applications 241

2 Overview

Web applications are inherently distributed: they require cooperation between a
server and a client in order to accomplish their tasks. We argue that component
distribution, and particularly execution location and loading policy, has a strong
impact on the performance of Web applications in different contexts. Therefore,
we propose enabling a Web application to adapt its distribution to the execution
context. We first motivate the problem, discuss related work, and outline design
strategies.

2.1 The Need for Context-Aware Web Applications

The goal of Web applications is to be accessible regardless of the platform a client
is executing on. However, limitations in the capability of a client restricts what
object distributions it can support: for example, a thin client cannot perform
complex computing tasks and has limited control over application loading. The
limitations posed by a thin client simplify the problem of object distribution:
there are no choices to be made in determining the component distribution.
However, as more and more clients support AJAX [8] Web applications–which
require a full-fledged computing platform in the client–component distribution
becomes an important factor in ensuring certain levels of QoS. The examples
below illustrate how an execution context may favor certain distribution plans.

Location: For computing components which require no input from the server
and consume few CPU cycles, such as a unit converter or a mortgage calculator,
it is preferable to deploy them in the client both for a faster response time
and to create less workload in the server. In other cases, the best location is
not always clear: a CPU-intensive component which takes input from a backend
data source is usually better allocated in the server because JavaScript is not an
efficient way to do the computation and bringing data across the Internet is a
significant overhead; however, in cases where the server CPU is extremely busy
but the server is less stressed in I/O and bandwidth, it is better to shift the
component to the client. A case of this sort that we have seen in practice is a
component which extracted excerpts of documents based on a user’s query. The
computation consumes many more CPU cycles than searching and fetching the
documents, although it still finishes in milliseconds when the server is lightly
loaded. When the server is busy doing multiple tasks (e.g., processing other
requests or indexing documents), it can take dozens of seconds to return the
excerpts; in such a context, it is more efficient to deploy the component in the
client.

Timing: Many user interface controls, such as layered menus, list boxes and
detailed information panels, have multiple levels of presentation. These compo-
nents can be preloaded as their containers load, or loaded on demand when a
user’s action explicitly requires it. Preloading client components provides better
response time but wastes bandwidth: some of these components are never used.
We have investigated the effect on a TV listing application; preloading all the

242 P.-H. Chang and G. Agha

detailed information consumed double the bandwidth compared to loading on
demand. A smarter solution is to exploit the user’s profile: if certain preference
can be identified, the application preloads only frequently used components. In
this case, the preferable distribution depends on the current network utilization
and identifiable usage patterns.

2.2 Problem Analysis and Related Work

It is desirable to make Web applications context-aware. Specifically, these appli-
cations require:

– The ability to adapt themselves to specific contexts of their deployment.
– The potential to evolve under widespread change in both execution environ-

ment and patterns of usage.

There are quite a few systems supporting context-aware applications under
specific assumptions. Although their design concepts and principles can be ap-
plied to Web applications, there are several difficulties in using these systems in
the domain of Web applications. We describe the difficulties below.

A key element of context-aware applications is adaptability. The execution
environment of Web applications is heterogeneous: clients and servers usually
employ incompatible technologies and assume different roles, which complicates
the process of adaptation. Several research projects [15, 2, 19, 14, 9, 17, 16] have
been able to support location-transparent application development in distributed
platforms; some of them are targeted to Web applications. One limitation in these
systems is that the adaptability is restricted to component execution location:
component distribution timing, which is crucial in many Web applications, is
missing.

Another common limitation is in the mechanism to express and enforce de-
ployment plans. Some systems [15, 2, 19] require metaprograms [11] (separate
programs which manipulate programs) to control the distribution at runtime.
This approach is not feasible in Web platforms because of the lack of rich run-
time support. In [14, 9] the adaptivity is embedded in the library design: de-
velopers have to provide and use different libraries to reconfigure applications.
XML11 [17, 16] supports customization through separate specifications because
the components are truly portable in various platforms natively; however, it is
not clear yet how to construct specifications systematically.

Conceptually, the deployment plans contain information about component
distribution aspects–concerns that are orthogonal to the application logic–and
thus principles akin to Aspect-Oriented Programming (AOP) [1,5] can be applied
as in [10, 18]. We observe that the complexity in aspect design has hindered
its acceptance in Web applications: to facilitate fast prototyping and frequent
modification, most Web applications are written in a less constrained fashion
using scripting languages. In addition, the use of aspect programming results in
an over specification of the requirements in a deployment plan and complicates
the design of the context management system.

Towards Context-Aware Web Applications 243

Context-aware software and service adaptation have been extensively studied
and have gained success in pervasive computing [12] and multimedia QoS [6]
adaptation; however, there are several assumptions in the case of adaptive com-
ponent distribution in Web applications:

– It is acceptable to have a few bad deployments since there are several factors
in the Internet which cannot be observed and predicted, such as actual net-
work condition and client’s stability. It is more important to ensure overall
efficiency instead of optimal allocation in each execution.

– Resource consumption in a single execution is usually not demanding and the
service duration is comparatively short. The pressure on the server system
comes from numerous concurrent sessions, not individual sessions. This has
two implications:

• Complex decision-making processes such as negotiation may kill any ben-
efit gained through adaptation.

• The ability to re-adapt (under context change) during a session is not
crucial.

– The Web is an open system composed of standards and protocols. A solution
requiring extra features in all participating platforms is unlikely to win wide
acceptance.

2.3 Design Strategies

From the analysis above, we identify two requirements of context-aware Web ap-
plications: adaptability and extensibility. We follow the principle of separation of
concerns [4] in design to ensure adaptability, and adopt the paradigm of gener-
ative programming in implementation to guarantee extensibility. In the bottom
layer, component distribution is separated from application logic and thus can be
reconfigured according to separate specifications. A generative framework allows
new distribution features to be added in the future. In the middle layer, features
related to higher-level concepts are abstracted from component distribution rules
and new features can be exploited using new transformation processes. In the
top layer, context features are rendered into context variables which are used
in defining deployment policies. New context features can be imported through
new context variables with modules to collect them.

3 Customizable Web Applications

We have designed and implemented a component framework (Figure 1) to sup-
port reconfigurable component distribution. The basic idea is to separate compo-
nent design and distribution features. In our framework, a prototype represents a
design concept of component; the implementation of a component is synthesized
by a generator with the distribution features that have been specified separately.
The implementation details and algorithms used for synthesis can be found in [3].
In this section, we describe the extensible specification system which enables cus-
tomizable Web application through distribution reconfiguration.

244 P.-H. Chang and G. Agha

Virtual Application Framework

Application

Generators

Linkers

Libraries

RuntimesIntranet

Internet

Fig. 1. Distribution transparent component framework

3.1 Component Annotation

Many non-functional concerns, including those we are particularly interested in,
can be specified by annotating components. For example, in order to specify the
execution location, an attribute Location can be defined. However, it is not
generally possible to annotate a specific component without knowing its unique
identification. Instead of annotating specific individual components, we apply a
rule to the set of all components that are created by a prototype. This turns
out to be reasonable in the applications that we have looked at. The syntax for
specifying that all components created with prototype X have the same value
of attribute A is given below, together with an example of its use:

[prototype X]:[attribute A] = value;

DateValidator:Location = Client;

Rules of this form are suitable for large or unique components, but not for
small ones which are used for different purposes. For example, Button is a com-
mon component; however, we expect that buttons have different attribute values
in different circumstances.

3.2 Selection by Genealogy

An obvious candidate to further distinguish a component is its creator. We can
select a set of components not only by their prototypes, but also by their creators’
prototypes. This motivates the second rule for our specification scheme. The
syntax to specify that all Y ’s created by an X share the same value of attribute
A and examples of its use are shown below:

[prototype X]>[prototype Y]:[attribute A] = value;

OrderForm>Button:Location = Client;
InventoryForm>Button:Location = Server;

A generalization of the creator relation is to specify a component by its ge-
nealogy–extending creatorship to more generations. Note that the genealogy can

Towards Context-Aware Web Applications 245

be determined at creation time and remains invariant for a component. For ex-
ample, the following rule says the attribute value of a component of prototype
Xi is decided by examining its genealogy for up to i generations.

[X0]>...>[Xi]: [attribute A] = value;

Obviously, examining the rules for more than one generation can lead to
conflicting rules for the same attributes. We use the principle that a more specific
rule overrides a less specific one. Because the genealogical ordering is linear, this
serves to resolve conflicts.

3.3 Discussion

Annotating a set of components of a prototype with specific attributes is use-
ful if the components use a specialized implementation of that prototype which
produces components obeying the given specification. Note in our model, a pro-
totype is a “concept of design” instead of an “implementation of design.” From
another prospective, a specification rule annotates a prototype implementation.
Currently we define an attribute controlling the loading policy of prototype Pro-
totypeLoad with two possible values PreLoad and OnDemand :

SubMenu:PrototypeLoad = OnDemand;
PricePanel>GridControl:PrototypeLoad = PreLoad;
CalcPanel>GridControl:PrototypeLoad = OnDemand;

The current implementation supports the following attributes: Load to con-
trol the component’s loading policy, PrototypeLoad to the prototype’s loading
policy and Location to the component’s execution location. Although only three
attributes are supported, interesting attributes can be defined using supporting
generators. For example, to support component mobility at runtime, we can add
an attribute value mobile to Location and implement a generator synthesizing
mobile components.

4 Structured Deployment Plans

It turns out that using the specification rules described directly is verbose and
error-prone for human developers. Two attribute annotations may be combined
in a rule if the target genealogy is the same, but two genealogies must be written
in two rules even when they differ in only one generation. In addition, not all
attributes are available for a prototype and some attribute values are in conflict
with others. For example, the attribute PrototypeLoad is only applicable to
a client implementation: a component cannot have this attribute with Server in
Location. It is also difficult to manage and reuse individual specification rules.
In a specification scheme containing a large number of complex rules, there is a
greater chance that it has common building blocks that are reusable.

246 P.-H. Chang and G. Agha

<OrderForm Location="Client">
<ListControl Location="Client">

<ListItem Location="Client" PrototypeLoad="OnDemand"/>
</ListControl>

<TaxCalculator Location="Client"/>
<AddressValidator Location="Server"/>

</OrderForm>

OrderForm : Location = Client;

OrderForm > ListControl : Location = Client;
OrderForm > ListControl > ListItem : Location = Client;

OrderForm > ListControl > ListItem : PrototypeLoad = OnDemand;
OrderForm > TaxCalculator : Location = Client;

OrderForm > AddressValidator : Location = Server;

Fig. 2. Using XML to represent specification rules

4.1 Moving to XML

We use XML to organize specification rules: an XML element represents a pro-
totype and multiple rules can be expressed in a tree structure. For example, the
XML fragment and rules in Figure 2 are equivalent:

Using XML helps the developer to structure specification rules. Although it
is legal to have a rule of a genealogy starting with a sub-component such as
SubMenuItem, this makes little sense in practice. Instead, a set of specifications
usually starts from a major component, such as OrderForm in our example.
Another advantage of using XML is the existence of XML schema validation
tools which can check validity and consistency of our specification rules. Note
that adopting XML does not sacrifice expressiveness: any specification rule can
be expressed in one XML fragment where every node has at most one child.

4.2 Parameterized Specification Blocks

Consider a specification scheme in the first part of Figure 3. The specifications on
OrderForm and ProfileForm have a common building block highlighted in the
grey areas. The observation immediately leads us to a shorthand representation
in the second part of Figure 3. The specification scheme defines an XML Block
element containing the common block with an attribute name, which can be
used to refer the whole block in other specifications. The idea behind this is to
make use of XML’s tree structure: a node can readily refer to a set of subtrees
with a modular representation.

However, using an element to represent a fixed set of subtrees is not as useful
as it seems to be. If there is no other rule in Figure 3, it is not necessary to
define a Block for ListControl and AddressValidator because OrderForm

Towards Context-Aware Web Applications 247

<OrderForm Location="Client">
<ListControl Location="Client">

<ListItem Location="Client" PrototypeLoad="OnDemand"/>
</ListControl>

<TaxCalculator Location="Client"/>
<AddressValidator Location="Server"/>

</OrderForm>

<ProfileForm Location="Client">

<ListControl Location="Client">
<ListItem Location="Client" PrototypeLoad="OnDemand"/>

</ListControl>
<PhoneValidator Location="Client"/>

<AddressValidator Location="Server"/>
</ProfileForm>

<Block name="block1">
<ListControl Location="Client">

<ListItem Location="Client" PrototypeLoad="OnDemand"/>
</ListControl>

<AddressValidator Location="Server"/>
</Block>

<OrderForm Location="Client">
<TaxCalculator Location="Client"/>

<block1/>
</OrderForm>

<ProfileForm Location="Client">
<PhoneValidator Location="Client"/>

<block1/>
</ProfileForm>

Fig. 3. A common block can be defined by a Block element

and ProfileForm have the same specification on these prototypes; top-level
specifications on ListControl and AddressValidator are sufficient: OrderForm
and ProfileForm will follow. A reusable block must be parameterized: it does
not represent a set of rules (with fixed attribute values), but a group of selectors ;
the actual attribute values of these selectors, configuration of the block, can be
controlled through a parameter.

We introduce another tag Configuration for configurations in a Block. Each
Configuration element in a Block has the name attribute and contains an
XML fragment representing the configuration. To reuse a block, we can set the

248 P.-H. Chang and G. Agha

<Block name="block1">

<AddressValidator Location="Server"/>

<Configuration name="conf1">

 <ListControl Location="Client">

 <ListItem Location="Client" PrototypeLoad="OnDemand"/>

 </ListControl>

</Configuration>

<Configuration name="conf2">

 <ListControl Location="Client">

 <ListItem Location="Client" PrototypeLoad="PreLoad"/>

 </ListControl>

</Configuration>

</Block1>

<OrderForm Location="Client">

<TaxCalculator Location="Client"/>

<block1 configuration="conf1"/>

</OrderForm>

<ProfileForm Location="Client">

<PhoneValidator Location="Client"/>

<block1 configuration="conf1"/>

</ProfileForm>

<FriendsList Location="Client">

<EmailValidator Location="Client"/>

<block1 configuration="conf2"/>

</FriendsList>

Fig. 4. A block can define multiple configurations

configuration attribute to choose the desired configuration in the block. Figure 5
shows the expanded specification from Figure 4. Blocks and configurations can be
constructed recursively: a Configuration element can contain other blocks. In
addition, a Block element can contain elements other than Configuration: these
elements will be included in the block replacement no matter which configuration
is selected. (See AddressValidator specification in block1.)

4.3 Partial Plans

XML is sufficiently expressive to represent an application’s composition struc-
ture; XML can also organize cross-cutting concerns: logically unrelated compo-
nents sharing common properties can be aggregated into a specification block.
For example, a developer can identify those objects whose deployment have great
impact on a certain resource (hence share a common property), such as CPU
cycles and bandwidth, and define a specification block accordingly. The block
then serves as a partial plan on condition of the specific resource. The context
management system can reuse partial plans to create a deployment plan for
a new identified context preference. This approach also provides extensibility:
as new resources are taken into consideration, new specification blocks and new
configurations can be designed independently without drastic changes in existing
ones.

Towards Context-Aware Web Applications 249

<OrderForm Location="Client">

<TaxCalculator Location="Client"/>

<AddressValidator Location="Server"/>

<ListControl Location="Client">

 <ListItem Location="Client" PrototypeLoad="OnDemand"/>

</ListControl>

</OrderForm>

<ProfileForm Location="Client">

<PhoneValidator Location="Client"/>

<AddressValidator Location="Server"/>

<ListControl Location="Client">

 <ListItem Location="Client" PrototypeLoad="OnDemand"/>

</ListControl>

</ProfileForm>

<FriendsList Location="Client">

<EmailValidator Location="Client"/>

<AddressValidator Location="Server"/>

<ListControl Location="Client">

 <ListItem Location="Client" PrototypeLoad="PreLoad"/>

</ListControl>

</FriendsList>

Fig. 5. The expanded specification of Figure 4

5 Context Management

We have designed and implemented an extensible context management system
(Figure 6). The system includes three modules: context monitors active collect
context information and store context features in context variables, which are
used by Adaptation Policies to generate full deployment plans.

5.1 Context Features

The concept of context is abstract and the available features of a context are
evolving. For example in the past service providers had little access to informa-
tion about the client’s geolocation, which is widely exploited nowadays for better
service and resource allocation. Nonetheless, a context feature can be utilized
only if it is quantitative and measurable. In our context management system, a
context feature is represented by a context variable, and the introduction of a
new context variable must come with a variable monitor maintaining the value.

Monitors can be implemented in a variety of forms as long as they update
their variables in a timely manner. For example, the system status monitor for
System.CPU and System.Bandwidth is implemented with OS system calls; the
monitor for client capabilities is implemented with JavaScript detection code;
and the user preference monitor reports related variable values by consulting
the user profile database.

5.2 Policy Design

Defining an adaptation policy is straightforward: a policy is pair of a condition
on context variables and a set of partial plans. When the context management

250 P.-H. Chang and G. Agha

Context
Monitors

Context
Variables

Adaptation
Policies

Incoming Request

User
ProfilesOS Geo

DB

Partial
Plans

Full Plan

Fig. 6. The context management system

system receives an incoming context, it collects the partial plans in the policies
whose conditions are evaluated true and generates the full deployment plan.

Consider the first example in Section 2: we want to deploy the Highlighter to
the client only under a special context where the CPU cycles are much more
precious than the bandwidth, the policy can be written as follows:

(System.CPU*[Costcpu] > System.Bandwidth*[Costbandwidth])
=> <Highlighter Location="Client"/>

A cost function can be a constant for the normalization factor or a function
of other context variables. In the second example, first we define a specification
block TVListing with a configuration FastResponse which specifies all client
components as PreLoad. The following policy selects the partial plan for fast re-
sponse when the client’s connection has long latency and the available bandwidth
is not in stress.

(Client.Latency*[Costlatency] > System.Bandwidth*[Costbandwidth])
=> <TVListing configuration="FastResponse"/>

6 Conclusion

We described a new approach for building context-aware Web applications. Us-
ing our system, a Web application can adapt to specific contexts through re-
configurable component distribution. Patterns of distribution are extensible: as
interesting patterns are identified as useful, developers can define attributes and

Towards Context-Aware Web Applications 251

add new generators that are able to synthesize components with the desired be-
havior, or just design new specification blocks that realize the patterns. Such ex-
tensibility ensures existing Web applications can evolve in the face of widespread
change in the Web environment and their users’ interaction. The system itself is
adaptive: new context features can be integrated by adding the corresponding
context variables and monitors, followed by adaptation policies conditioned by
these variables.

As future work, we are exploring solutions to automatic policy design and
optimization. Currently, good adaptation depends on human design in specifi-
cation blocks (partial plans) and adaptation policies. As mentioned earlier, a
typical Web application is executed numerous times a day and a few bad de-
ployments do not incur much loss. There are great opportunities in mining the
performance history and exploring test cases for better policies. We expect fu-
ture Web applications will adapt themselves automatically by learning their past
usage patterns.

References

1. Aspect-Oriented Software Association. http://www.aosd.net/
2. Caromel, D., Henrio, L.: A Theory of Distributed Objects: Asynchrony-Mobility-

Groups-Components. Springer, Heidelberg (2005)
3. Chang, P.-H., Agha, G.: Supporting reconfigurable object distribution for customiz-

able web applications. In: SAC ’07: Proceedings of the 2007 ACM symposium on
Applied computing, pp. 1286–1292 (2007)

4. Dijkstra, E.W.: A Principle of Programming. Prentice-Hall, Englewood Cliffs
(1997)

5. Elrad, T., Filman, R.E., Bader, A.: Aspect-oriented programming. Communica-
tions of ACM, vol. 44(10) (2001)

6. Fitzpatrick, T., Blair, G., Coulson, G., Davies, N., Robin, P.: Supporting adap-
tive multimedia applications through open bindings. In: CDS ’98. Proceedings of
the International Conference on Configurable Distributed Systems, p. 128. IEEE
Computer Society, Washington, DC (1998)

7. Gardner, J.R., Rendon, Z.L.: XSLT and XPATH: A Guide to XML Transforma-
tions. Prentice-Hall, Englewood Cliffs (2002)

8. Garrett, J.J.: Ajax: A New Approach to Web Applications (February 2005)
9. Google Inc. Google Web Toolkit - Build AJAX Apps in the Java language.

http://code.google.com/webtoolkit/
10. Kersten, M., Murphy, G.C.: Atlas: a case study in building a Web-based learning

environment using aspect-oriented programming. ACM SIGPLAN Notices 34(10),
340–352 (1999)

11. Kiczales, G., Rivieres, J.D., Bobrow, D.G.: The Art of the Metaobject Protocol.
MIT Press, Cambridge, MA (1991)

12. Lum, W.Y., Lau, F.C.M.: A context-aware decision engine for content adaptation.
IEEE Pervasive Computing 1(3), 41–49 (2002)

13. Meyer, E.: Cascading Style Sheets: The Definitive Guide. O’Reilly (2000)
14. NextApp, Inc. Echo2. http://www.nextapp.com/platform/echo2/echo/
15. Philippsen, M., Zenger, M.: JavaParty – Transparent Remote Objects in Java.

Concurrency: Practice and Experience 9(11), 1225–1242 (1997)

http://www.aosd.net/
 http://code.google.com/webtoolkit/
http://www.nextapp.com/platform/echo2/echo/

252 P.-H. Chang and G. Agha

16. Puder, A.: A code migration framework for ajax applications. In: Eliassen, F., Mon-
tresor, A. (eds.) DAIS 2006. LNCS, vol. 4025, pp. 138–151. Springer, Heidelberg
(2006)

17. Puder, A.: XML11 - an abstract windowing protocol. Sci. Comput. Program 59
(1-2), 97–108 (2006)

18. Tilevich, E., Urbanski, S., Smaragdakis, Y., Fleury, M.: Aspectizing server-side
distribution. In: Proceedings of the Automated Software Engineering (ASE) Con-
ference, IEEE Press, New York (2003)

19. Varela, C.A.: Worldwide Computing with Universal Actors: Linguistic Abstractions
for Naming, Migration, and Coordination. PhD thesis, University of Illinois at
Urbana-Champaign (2001)

	Introduction
	Overview
	The Need for Context-Aware Web Applications
	Problem Analysis and Related Work
	Design Strategies

	Customizable Web Applications
	Component Annotation
	Selection by Genealogy
	Discussion

	Structured Deployment Plans
	Moving to XML
	Parameterized Specification Blocks
	Partial Plans

	Context Management
	Context Features
	Policy Design

	Conclusion

