Towards context awareness using Symbol Clustering Map

J. Himberg??, J. A. Flanagan', and J. Mantyjarvi®

(1) Nokia Research Center, P.O. Box 407, FIN-00045 NOKIA GROUP, Finland
Tel: 4358 7180 08000, Email: adrian.flanagan@nokia.com
(2) Neural Networks Research Centre, Helsinki Univ. of Technology, Finland
(3) VI'T Technical Research Centre of Finland

Keywords: symbol clustering map, mobile computing, context awareness

July 22, 2003

Abstract— Recognizing the context of use is im-
portant in making mobile devices simple to use. The
device and the underlying mobile service can provide a
personalized user interface that adapts to the usage sit-
uation. The device can infer parts of the context of the
user from features extracted from on-board measure-
ments of acceleration, noise level, luminosity, humid-
ity, etc. In this paper we consider context recognition
by fusing and clustering these context features using
a recently introduced method, the Symbol Clustering
Map. As such, it can be used for finding static pat-
terns but a suitable transformation of the data allows
identifying also temporal patterns.

1 Introduction

A common problem in data analysis is to combine
information from various different and possibly noisy
sources and to extract patterns from this data. A novel
application, which requires combining diverse informa-
tion sources is context awareness that has become a
major topic in human-computer interaction [4, 11] also
in mobile computing. In mobile communications, the
usage situations, that is, the context, can vary a lot.
On the other hand, a mobile terminal is often expected
to enable connections all the time. At the same time,
it should not irritate the user by signalling in a wrong
way at the wrong moment, or by requiring constant
attention to keep it working in the right way for the
situation. In addition, the hand-held terminals are be-
coming more and more sophisticated in their function
yet smaller in their size. The interaction could be made
easier and less intruding if the mobile device recognized
the user’s current context and adapted its functions ac-
cordingly.

A widely cited definition in [4] states that context
can be defined as any information that describes the
relevant elements of a given situation. Thus, the first
step in context recognition is to acquire information on
the user and the environment. Information of user’s
preferences is obtained from the logs of different appli-
cations, e.g., calling, messaging, using calendar, or pro-
filing. Piece of ambient information can be obtained
by directly monitoring the user’s physical environment

using on-board sensors and information of user’s loca-
tion [1]. The operating network itself can offer infor-
mation, e.g., on location of a phone. Setting explicit
information sources, context tags, located in a short
range network is another approach.

The second step comprises a fusion of these informa-
tion sources and the extraction of the useful informa-
tion needed to determine the user’s context, i.e., the
interpretation of the context [4]. When some basic set
of features is fixed, one can extract relevant context
information by using simple, statistical data analysis
methods including clustering and time series segmenta-
tion [7, 9]. The recognized clusters/segments can then
serve as “higher-level contexts” that show which com-
binations of the basic features form common patterns
in the data. Other research efforts include context
recognition experiments with Hidden Markov Models
(HMMSs) to determine the occurrence of audio-visual
contextual events [2], or a combination of the Self-
Organizing Map (SOM) [8] with Markov Chains [12].

In the third step, the recognized contexts and the
user’s expectations for appropriate actions in those
contexts have to be combined in a satisfactory manner.
Obviously, an immediate solution is a prespecified, rule
based guidance of the user interface. For example, if
the sensors detect that the user is running, the font
used in the display can be made larger, or audio vol-
ume can be adjusted to compensate for higher levels
of noise (see e.g., [10]).

A more advanced method would be that the device
autonomously learned what actions/applications the
user prefers in the recognized contexts and to suggest
automating some of these. This is a challenge since
it ultimately requires that a machine should react in-
telligently to everyday social situations. It requires
sophisticated computing methods that can process in-
formation, preferably on-line, from a large and diverse
number of sources. In addition, one must consider
the limited power and computation resources of a mo-
bile device. The efficient determination, combination
and extraction of relevant information from diverse in-
formation sources is therefore a key issue in the area
of mobile context awareness. Obviously, the context
recognition system require also a well-organized soft-

ware and network infrastructure and consideration of
privacy issues. Various aspects of context awareness
and its implications have been covered in [4] and other
articles of the same volume.

We narrow the scope in this paper only to the sec-
ond stage of the process, recognizing the context. By
combining different sources of context information a
better, and potentially more useful, description of the
context is obtained. Moreover, we use information only
from on-board sensors; collecting this kind of data does
not require any specialized tags of other infrastructure,
only a device that contains a collection of sensors. We
show how a recently developed algorithm called Sym-
bol Clustering Map can be used successfully to infer
user’s context from this kind of data.

2 An approach to context recog-
nition

In context recognition, as in any pattern recognition
task, it is reasonable to fix a set of basic features that
are extracted from the observed data. We present
the features in symbolic form, for example, we say
that ambient noise is “low”, “medium”, or “high”
instead of presenting some real/integer value on a
scale. This eases combining various kinds of informa-
tion sources that might be accessible. For example,
calendar markings or semantic descriptions of loca-
tions like “meeting” or “Helsinki” would be inherently
symbolic. Moreover, in our work the basic features
have been selected so that they reflect some everyday
concepts. (see Sec. 4). This eases understanding the
meaning of the extracted context and integrating rule
based parts to the system.

In fact, we have fixed an alphabet ¥, =
{59,59,...5%} of context symbols. We refer to these
context symbols as “context atoms” since the rest
of the context inference emerges from these symbols.
From this low-level of context representation, we wish
to move on to a higher level of abstraction. By this
we mean recognizing sets of context atoms that seem
to form frequently occurring patterns in the context
atom stream. We say that a higher-level context can
be obtained from

e the simultaneous fusion of context information
from several lower-level context sources, e.g.,
“running” and “railway station” might imply “be-
ing late”, or

e sequential fusion of one lower-level context infor-
mation source into a higher-level context, e.g.,
“browsing bus time table”,“walking-inside” suc-
ceeded by “walking-daylight” might imply “head-
ing for a bus stop”

The included examples are only illustrative. The infer-
ence that is made here cannot make up the semantic

meanings, that is, the names of the contexts. Those
could be provided by an expert, e.g., the user—but se-
mantic labelling of the contexts is actually not needed
if the aim is to associate actions to contexts by learn-
ing from examples. Next, we consider these two basic
ways of fusing information in more detail:

Multi-source fusion We combine the information
that is available at time instant ¢ on level 7 in alphabet
3; in the context hierarchy. A higher-level context is
generated and represented by the fusion of the n con-
text states available at time instant t. We can char-
acterize each moment ¢ by giving the set of n context
atoms that happen to be active at that moment and
labelling this as a new context symbol on a higher-level
alphabet ;11

ST = {S1(1), S5(1), -, S ()}

where Si(t),k = 1,...,n are some symbols of the
lower-level alphabet X;. Alphabet X is obtained by
combining the symbols on the lowest level, i.e., the
context atoms. In practice, the same context does not
always produce exactly the same context atoms either
due to variations in the environment or simply by the
imperfection of feature extraction. These variations in
context atom sets can be considered as noise. Find-
ing the prototypical context atom sets corresponding
to the contexts given this noisy data is obviously a
clustering problem.

Temporal fusion Another way of forming the
higher-level context is to combine context symbols se-
quentially in time in a string:

SHLt) = (S (t — k), S*(t —k +1),...,5 1))

This differs from the previous way in the sense that
now the order of the context symbols is of interest.
This is a problem of finding event episodes [3].

Both forms of generalization can be combined in a hi-
erarchical manner and mixed. For example, in the ex-
perimental section, a set of context atoms X is given,
we form second stage context symbols ¥; by multi-
source fusion, and then yet another stage ¥, using
temporal fusion.

Standard statistical clustering and segmentation
methods that work on real vector space and/or pro-
cess the data in batch have the potential to perform
both the sensor fusion [9] and the temporal fusion [7].
However, due to the symbolic nature of the data and
the computational limits, we use here a method for
automatic recognition of noisy symbol sets, the Sym-
bol Clustering Map (SCM) [5]. The method is im-
plemented in a serial fashion that learns clusters in
the input data and automatically assigns labels to the
clusters without user intervention. The algorithm is
described briefly in the following section.

3 Symbol Clustering Map

The SCM is based on a lattice structure, gener-
ally 2 dimensional with a total of M x M lattice
points. Associated with each node k of the lattice
is a symbol set Si(t) = {s1(t),s2(t)...,5n0,)(t)},
from now on referred to as the “node set” and asso-
ciated with the node set is a weight vector Xy (t) =
(le(t), xQ(t)v <oy Tn(k,t) (t))a where z](t) € [07 1]7 v J)t
and n(k,t) is the number of symbols in the node set
Sk (t), the same as the number of weights in the weight
vector Xy (t). Note that each z;(t) of Xy(t) is directly
associated with the symbol s;(t) of S(t). Initially the
weight vectors X and node sets Sy are set to random
values with x;(0) € [0,1],V k, j. At time step ¢ there is
an input symbol set S(t) = {51 (t),31(¢), ..., S0 (D)}
For this given input the similarity between é(t) and
each of the nodes k, is calculated and given by an acti-
vation function A (t). The activation A (t) is defined
as

)

(S S50 deades ()
n(k,) (k. 1))

and for s;(t) € Si(t), the & ;(t) function is defined as,

Ag(t) =

1 if 5;(t) € S(t
Ok,(t) = { 0 if s;(t) §ZSZ(t

and 3;“ is defined in a similar manner. The value of the
activation function is maximal, if the node set and the
input symbol set are identical and decreases towards
zero the less there are symbols in common for the node
set and the input symbol set. The winner node v(t) at
time t is chosen as the one with maximum activation,
hence

~— —

v(t) = arg max Ag(t) (2)

1<k<MxM
This represents the first step of the clustering algo-
rithm, deciding on the winner node that best repre-
sents the input.

The second stage is the updating of the nodes. For
eachnode k = 1,2,..., M x M the update rules can be
briefly explained as follows. In the update rules there
is a neighborhood function h,,(v(t), k), a Mexican hat
as a function of the lattice distance dj between the
winner v(t) and the node k being updated. The up-
date rule consists of four parts: I) if the symbol s;(t)
is present in the input S(¢) and the value of the Mex-
ican hat function is positive, the weight component
x;(t) is increased towards 1. Otherwise, if the Mexi-
can hat is negative the x;(t) is driven towards 0. The
first part corresponds to a reinforcement learning while
the second is an inhibition. II) if the symbol s;(t) is
not present in the input S(t) then the weight x;(t) is
driven towards 0 irrespective of whether the Mexican
hat function is positive or negative. This can be con-
sidered a form of unlearning. III) if there is an element

5j(t) of the input that is not in Sy(¢) then it is added
into Sg(f) and given an initial weight value propor-
tional to «(t) and hp, (v(¢), k). If Ay (v(t), k) < 0 then
the symbol is not added. IV) if a weight is smaller
than a threshold 3, ie., z;(t) < B(t), (t) € [0,1],
the weight and the corresponding symbol are removed
from the node set and weight vector.

Intuitively, what the algorithm does is to determine
patterns of frequently occurring symbols in the input.
The weights of the weight vector associated with a node
set indicate the level of probability of the symbol oc-
curring in the symbol set. The cutoff function (3(t)
increases in time, e.g., from 0.1 — 0.3 and removes
less frequently occurring symbols from the node set.
In this sense, the node sets represent average values of
the input sets. This means that the most frequently
occurring symbol sets occur at the cluster centers of
the input.

This learning algorithm cannot be used as such for
identifying temporal patterns since the similarity mea-
sure only works for unordered symbols sets However, a
simple transformation of the symbol sequence can be
used to circumvent the problem. Assuming that the
symbols S of alphabet ¥ are integers, an n-tuple, say
the triplet (S(t—2),S(t—1),S(t)) is coded into a single
symbol, S(t) = S(t—2)* N2+ S(t—1)+ N +S(t) where
N = |%|. It is obvious that every triplet has a unique
coding. This coding is carried out for every symbol
S(t) in the sequence resulting in a set of symbols where
the ordering can be considered unimportant but which
still maintains some of the information of the ordering
in the original sequence.

4 Experimental results

The experiments in this section are the same as in [6].
The same data set has been used also in [7, 9].

4.1 Test setup and context atoms

A mobile phone was equipped with a set of sensors
that included sensors for ambient illumination, noise,
air humidity, and temperature, as well as a galvanome-
ter for sensing touch and a three-axis accelerometer.
Two user’s then went through one of the 5 scenarios
described in Tab. 1, and each scenario was repeated
successfully about 25 times for two test persons. Each
repetition of a scenario lasted about 3-4 minutes de-
pending on the testee, the scenario and the environ-
ment. When the terminal was not on the table it was
hanging in front, from the user’s neck.

The signals were recorded and various feature ex-
traction algorithms were applied in order to generate
context atoms. The context atoms were collected in
groups that describe orientation, stability, touch, fre-
quency of local AC current (estimated from the spec-
trum of the ambient light), illumination level, temper-

ature, humidity, ambient sound level, and type of walk-
ing. Each context atom was assigned a symbol, in this
case an integer value. A “dummy” context atom x
was assigned if it was not possible to select any con-
text atom in a group. The context atoms in each group
are: Orientation: 1=Display Down, 2=Display Up,
3=Antenna Down, 4=Antenna Up, 5=Sideways Right,
6=Sideways Left, 7=x; Stability: 8=Stable, 9=Un-
stable, 10=x; Touch: 11=In hand, 12=Not in hand,
13=x; AC frequency: 14=50 Hz, 15=60 Hz, 16=x;
THllumination level: 17=Bright, 18=Modest, 19=Dim,
20=Dark 21=x; Light source: 22=Natural, 23=Ar-
tificial; Temperature: 24=Hot, 25=Warm, 26=Cool,
27=Cold, 28=x; Humidity: 29=Humid, 30=Normal,
31=Dry, 32=x; Sound level: 33=Silent, 34=Mod-
est, 35=Loud, 36=x; Walking: 37=Slow, 38=Fast,
39=Running, 40=x. During the experiment, and once
every second, a set of context atoms was produced. For
example, {4,9,12, 14,18, 23, 25,29, 33,37} could be in-
terpreted as “antenna up, unstable, not in hand in ar-
tificial light at 50 Hz” etc.

4.2 Context recognition

The context atoms in Sec. 4.1 represent the first level
of context. The second level of context is generated
by combining the context atoms into a symbol set as
described in the previous section, and then recognizing
each symbol set as a particular context using the SCM.

During the repetitions of the scenarios, the user
spends much more time on some activities than oth-
ers, e.g., a lot of time is for walking, but little time
for when the terminal is in hand. In order to avoid the
rare contexts to disappear in clustering, each repetition
was adaptively downsampled as follows: Each repeti-
tion was segmented into 14 subsequent segments using
a simple algorithm that detects and inserts a segment
when there is a significant change in one or several val-
ues of the context atoms. One sample symbol set from
each segment was randomly chosen as a representative
of the segment.

With a total of 241 repetitions of the 5 scenarios, and
14 samples for each scenario, a total of 3374 = 241 x 14
symbol sets were used in the off-line training of the
SCM. The training was carried out by randomly select-
ing one of the 3374 symbol sets as input to the SCM.
Fig. 1 shows the symbol set associated with nodes of
the SCM lattice and Fig. 2 the associated weight vec-
tors after 10000 iterations.

This is now the result of multi-source fusion and
we call it SCM1. There are five clearly distinguish-
able clusters separated by nodes with null symbol
sets and weight vectors. As the clusters are com-
pletely separated by null nodes, finding and labelling
the clusters is a simple task. In Fig. 1, the clusters
are labelled 1-5. For example, the cluster 3 with
{4,9,12,16,17,22,25,29, 33,38}, indicates the user’s

Table 1: Description of the scenarios. Activity “start”:
the testee takes the phone laying on the table, stands
up and walks out of the room; “stop”: the same actions
but in opposite order. Emphasized: activity takes place
outside, otherwise inside.

’ Activity \ Location
Scenario 1, 44 repetitions
start office
walking corridor
walking stairs
walking lobby
walking street
walking lobby
walking corridor
walking stairs
stop office
Scenario 2, 48 repetitions
start office
walking corridor
walking stairs
halt mail lockers
walking yard
halt mail lockers
walking stairs
walking corridor
stop office
Scenario 3, 49 repetitions
start office
walking corridor
halt lift
walking corridor
halt balcony
walking corridor
halt lift
walking corridor
stop office
Scenario 4, 50 recordings
start office
walking corridor
sitting+talking meeting room
walking+talking corridor
sitting+talking coffee room
walking corridor
stop office
Scenario 5, 50 recordings
start office
walking corridor
halt lift
walking corridor
halt lift
walking corridor
stop office

[4,9, 12,16, 17, 22, 25, 29, 33, 38]
[4,9,12, 16,17, 22, 25, 29, 33, 38]

[4,9,12,16, 17, 22, 25, 29, 34, 37]

4,9,12, 14,18, 23, 25, 29, 34, 40
4,9,12, 14, 18, 23, 25, 29, 34, 38
[4
[4

9
9

, 9,12, 14, 18, 23, 25, 29, 33, 38]
9,12, 14, 18, 23, 25, 29, 33, 40]

[1,9,11, 14,18, 23, 25, 29, 33, 40]
[9,11, 14, 18, 23, 25, 29, 33, 40]

[4,8,12, 14,18, 23, 25, 29, 33, 40]
[1,8,12, 14,18, 23, 25, 29, 33, 40]

2

[4,9, 12,14, 19, 23, 25, 29, 33, 37]
[4,9,'12,14,'19,'23, 25,29, 33, 40] 5

[4,9,12, 14,19, 23, 25, 29, 33,40] [4,9,12, 14,18, 23, 25, 29, 37]
[4,9,12, 14,19, 23, 25, 29, 33] [4,9, 14,18, 23, 25, 29, 34, 37]

[9, 12, 14, 18, 23, 25, 29, 37]
[4,9,12,14, 18, 23, 25, 29, 33, 37]

Figure 1: The node sets of the SCM1 lattice and the
cluster labels. As in Fig. 2, only every second symbol
set and weight set is plotted for ease of illustration.

[0.78,0.78,0.78,0.78,0.73,0.78,0.78,0.63,0.63,0.78]
[1.00,1.00,1.00,1.00,0.89,1.00, 1. 00, 0. 85, 0. 84, 0. 55]

[0.96,0.96,0.96,0.96,0.76, 0. 96, 0. 96, 0. 88, 0. 38, 0. 96]

0.93,0.96,0.51,1.00,1.00, 1. 00, 1. 00, 1. 00, 1. 00, 0. 98
1.00, 1. 00, 0. 94, 0. 90, 0. 74, 1. 00, 1. 00, 1. 00, 1. 00, 0. 99
{ 1.00,1.00,0.98,0.98,0.89, 1. 00, 1. 00, 1. 00, 1. 00, O. 96;
0.88,1.00,0.99,1.00,1.00, 1. 00, 1. 00, 1. 00, 1. 00, 0. 97
[0.72,1.00,1.00,1.00,1.00,1.00,1.00, 1. 00, 0. 95, 0. 93]
[0.65,0.65, 0. 65, 0. 65, 0. 65, 0. 65, 0. 65, 0. 65, 0. 62]
[0.55,0.55,0.55,0.55,0. 54, 0. 55, 0. 55, 0. 55, 0. 55, 0. 55]
[0.84,1.00,1.00,1.00,0.97, 1. 00, 1. 00, 1. 00, 0. 95, 0. 63]

[0.93,0.93,0.91,0.93,0.92,0.93,0.93,0.93,0. 78, 0. 93]
[0.74,0.73,0.76,0.76,0.70,0.76,0.76,9.73,9. 65, 9. 70]

[1.00,0.92,1.00,1.00,0.95, 1.00,1. 00, 0. 98, 0. 80, 1. O A
099093099096099 99,0.99,0.99]

[1. 0010009810?0 929019901 0 0 8]0 97,0.97, 0. 97, 0. 86]

1.00, 1, 0098093100100100088]0
[0.98, 1. 00, 0. 82,1.00, 0. 97, 1. 00, 1. 00, 1. 00, 1. 00, 1. 00]

Figure 2: The weights corresponding to the node sets
in Fig. 1

action, such that the phone antenna is up (4) and it
is not hand (12) and unstable (9). Hence, the user is
most likely moving with the terminal hanging in front.
Furthermore the light is natural and bright (16, 17,
22) and it is warm and humid with a low sound level
(25, 29, 33) and finally the user is walking fast (38).
Obviously this cluster corresponds to a context where
the user is walking outside. However, included in the
same cluster is node sets containing 37 indicating that
the cluster corresponds to any form of walking slow or
fast. All other clusters have reasonable and most im-
portantly, different, interpretations, that is, each clus-
ter corresponds to a different context. Now, we add

Table 2: The number of the repetitions of each of the
scenarios S1-S5 assigned to each cluster C1-C4 in the
second clustering stage

y [S1[S2[S3][S4]S5]

Cl| 43|47 4] 0] O
Cc2 1 1 145 0 | O
C3|| 0| 0|0 |43] 4
C4 0| 0| O | 7 |46

a second level of context recognition and consider de-
scribing one repetition of a scenario. We recode the
symbol set at each time sample by the cluster label of
SCM1; the label is that of the cluster to which the win-
ning node for the symbol set at a time ¢ belongs. This
results in a symbol sequence, e.g., (3,3,1,1,4,5,4,...).
The symbol sequence is further reduced so that adja-
cent repeating symbols are only listed once, e.g., the
previous symbol string is reduced to, (3,1,4,5,4,...).
In this, case the temporal relations are important and,
therefore, the transformation explained in the end of
Sec. 3 was used. Now, the SCM algorithm could be
reapplied to these new symbol sets describing each rep-
etition of the scenario. The repetitions were classified
to a particular cluster, and we call this result SCM2.
We will not reproduce the node labels and weights of
SCM2 here because of limited space but Tab. 2 gives
a confusion matrix between the known label of sce-
nario 1-5 and the four cluster that SCM2 assigns to
the scenarios.. The results suggest that scenarios S1,
S2 are quite similar with little similarity between S1-2
(joined), S3, S4, and S5. From the description of the
scenarios in Tab. 1 one sees that S1, S2, S3 all have
in common that the user goes outside for some time,
while in S4 and S5 the user is constantly indoors. Sce-
narios S1 and S2 are indeed quite similar but different
from S3 since in S1-2 the user walks outside, whereas
in S3 the user is moving about on a small balcony.
From scenarios S4 and S5 it is seen from Tab. 1 that
in S4 there is talking while in S5 there is none. There
is some confusion between S4 and S5, however, this
is due to the fact that there is no context atom for

identifying speech but only for loudness of the ambient
sound. Now, the second clustering (SCM2) presents a
set of contexts of higher level than the first clustering
(SCM1) which in turn is a higher level representation
for the original context atoms.

DisplayDown
AntennaUp
Stable

Light: Artificial

Dim

Silent

Figure 3: The beginning of a repetition of scenario 1
with illustration of a context aware Ul.

Figs. 3 and 4 illustrate a simple context aware appli-
cation that changes the profile of the phone according
to the context recognized by SCM1. Fig. 3 shows a
video snapshot recorded from one of the repetitions of
scenario 1 and the user interface of the phone. The user

AntennaUp

Unstable

Bright

Light: Natural
Silent

Walking: Fast

Figure 4: The user is walking outdoors in scenario 1.

sits in office, and SCM1 cluster this state to cluster 4
(Fig. 1) and we have associated a “working profile” to
be set automatically for this context. Fig. 4 is from
a later phase of the same repetition where the user
is walking outside. SCM1 recognizes this as cluster 3
(Fig. 1) and we have associated two actions, “key lock”
and “outdoors profile”, for this context.

5 Conclusion

The problem of context recognition has been shown to
provide an ideal application for the use of data min-
ing algorithms. By using a symbolic representation of
context and combining and generating context based
on symbol sets, context recognition becomes a prob-
lem of clustering. It has been shown how data from
very different sources can be fused together using a
symbol set representation and Symbol Clustering Map
(SCM) algorithm. Processing the data using SCM does
not require any user intervention or storage of large
amounts of data. This makes the algorithm especially
suitable for mobile computing. SCM has been applied
to real world context data originating from different
usage scenarios of a mobile device. The context data
is produced by an experimental mobile terminal capa-
ble of monitoring its movements and environment by
various sensors. It has been possible to classify differ-
ent repetitions of the usage scenarios using SCM on
the context data. It seems that the level of informa-
tion available and the differences between the scenarios
was not big enough to completely separate the differ-
ent scenarios, but the principle of generating higher-
level context and recognizing context has been demon-
strated using a real, noisy data set and unsupervised
clustering of symbol sets.

References

[1] P.J. Brown, J.D. Bovey, and X. Chen. Context-
aware applications: from the laboratory to the

[7]

[10]

market place. IEEE Personal Communications,
4(5):58-64, 1997.

B. Clarkson and A. Pentland. Unsupervised
Clustering of Ambulatory Audio and Video. In
Proceedings of the International Conference on
Acoustics, Speech, and Signal Processing 1999,
volume 6, pages 3037-3040, 1999.

P. Smyth D. Hand, H. Mannila. Principles of Data
Mining. MIT Press, Cambridge, Massachusetts,
London, England, 2001.

A K. Dey, G.D. Abowd, and D. Salber. A Con-
ceptual Framework and a Toolkit for Supporting
the Rapid Prototyping of Context-Aware Applica-
tions. Human-Computer Interaction, 16(2—4):97—
166, 2001.

J.A. Flanagan. Unsupervised clustering of symbol
strings. In 2003 International Joint Conference on
Neural Networks (IJCNN 2003), Portland, Ore-
gon, USA, 2003. to appear.

J.A. Flanagan, J. Mantyéarvi, and J. Himberg. Un-
supervised clustering of symbol strings and con-
text recognition. In Proc. of the 2002 IEEE Con-
ference on Data Mining (ICDM2002), pages 171-
178, Maebashi, Japan, Dec 2002.

J. Himberg, K. Korpiaho, H. Mannila,
J. Tikanmaki, and H.T.T. Toivonen. Time
Series Segmentation for Context Recognition
in Mobile Devices. In Proc. of the 2001 IEEFE
Conference on Data Mining (ICDM2001), pages
203-210, San José, CA, Dec 2001.

Teuvo Kohonen. Self-Organizing Maps. Springer,
Berlin, Heidelberg, 2001. (Third Extended Edi-
tion).

J. Mantyjarvi, J. Himberg, P. Korpipaa, and
H. Mannila. Extracting the Context of
a Mobile Device User. In Proc. of 8th
IFAC/IFIP/IFORS/IEA Symposium on Analy-
sis, Design, and Evaluation of Human-Machine
System, 2001.

J. Méntyjarvi and T. Seppénen. Adapting Ap-
plications in Mobile Terminals Using Fuzzy Con-
text Information. In Proc. of the 4th Int. Symp.
on Mobile Human-Computer Interaction (Mobile
HCT 2002), volume 2411 of LNCS, pages 95-107,
Pisa, Italy, Sep 2002. Springer.

B. Schilit, N. Adams, and R. Want. Context-
Aware Computing Applications. In Proc. of the
Workshop on Mobile Computing Systems and Ap-
plications, Santa Cruz, CA, Dec 1994. IEEE Com-
puter Society.

A. Schmidt, K.A. Aidoo, A. Takaluoma,
U. Tuomela, K. Van Laerhoven, and W. Van
de Velde. Advanced Interaction in Context. In
Hand Held and Ubiquitous Computing, number
1707 in Lecture Notes in Computer Science, pages
89-101. Springer-Verlag, 1999.

