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TOWARDS CONTINGENT WORLD

DESCRIPTIONS IN DESCRIPTION LOGICS

Abstract. The philosophical, logical, and terminological junctions between
Description Logics (DLs) and Modal Logic (ML) are important because they
can support the formal analysis of modal notions of ‘possibility’ and ‘neces-
sity’ through the lens of DLs. This paper introduces functional contingents
in order to (i) structurally and terminologically analyse ‘functional possi-
bility’ and ‘functional necessity’ in DL world descriptions and (ii) logically
and terminologically annotate DL world descriptions based on functional
contingents. The most significant contributions of this research are the log-
ical characterisation and terminological analysis of functional contingents in
DL world descriptions. The ultimate goal is to investigate how modal oper-
ators can  logically and terminologically  be expressed within DL world
descriptions.

Keywords: conditional information; contingent interpretation; contingent
world description; description logics; functional contingents; knowledge rep-
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1. Introduction

In the recent decades, knowledge representation in information and com-
puter sciences has experienced significant improvements [see 14, 33, 63].
Underlying description logics (DLs) are now among the most widely
used knowledge representation formalisms in semantics-based systems.
DLs have emerged from semantic networks [47] and frame-based systems
[40]. Most DLs are decidable fragments of predicate logic (PL). More
specifically, DLs are PL-based terminological systems developed out of
the attempt to represent knowledge, with a formal semantics, in order

Received December 27, 2017. Revised August 2, 2018. Published online June 10, 2019

© 2019 by Nicolaus Copernicus University in Toruń

http://dx.doi.org/10.12775/LLP.2019.016


116 Farshad Badie

to establish a common ground for human and machine interactions [see
2, 3, 18, 48, 56].

This research deals with the notations of ‘possibility’ and ‘neces-
sity’ within DL world descriptions, so the concepts of ‘possibility’ and
‘necessity’ have to be taken into account. The idea of thinking about
possibilities as well as necessities within possible worlds complements
the developments of logics with modalities, qualities, conditions, and
their philosophical reflections on the world. My most central assumption
based on possibilistic approaches is that the explicit statements are at
least possible in the sense that they are logically and conceptually consis-
tent. More specifically, the possibilities express what has had the poten-
tial of being valid and, subsequently, being meaningful. Accordingly, the
necessities expose the certain available beliefs and, consequently, express
what has been valid and meaningful in all possible worlds.

Modal logic (ML) is the most well-known logic of possibilities, neces-
sities, and other conceptions related to them [see 10, 25]. ML provides a
formal basis for expressing possibilities and necessities as well as for defin-
ing a semantics in terms of possible worlds [see 51]. Regarding the strong
(i) logical dependencies between DLs and PL, and (ii) syntactical rela-
tionships between ML and DLs,1 the foremost objective of this research
is the logical and terminological analysis of knowledge representation
based on conditional information. The overarching goal is investigating
how modal notations can  terminologically and logically  be analysed
within DL world descriptions. This research defines DL-based functional
contingents in order to analyse contingent world descriptions. The most
significant contribution will be the logical-terminological analysis of the
interconnections between DL world descriptions and ML notations of
‘possibility’ and ‘necessity’.2 By defining a three-valued semantics, this
article will reveal how to provide semantics for logical/terminological
structures based on conditional information.

1 The following sections will demonstrate that most DLs syntactically correspond
to modal logic.

2 DLs and ML are logical formalisms to capture, represent, and express the struc-
ture of variant forms of inferential and reasoning procedures.
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2. Literature Review

Several logical approaches focus on checking validity, soundness, and
completeness within knowledge analysis through possible and probable
worlds. As mentioned, modal logic is the most well-known logic of pos-
sibilities, necessities, and other concepts related to them. Fuzzy logic
approaches in the theory of possibility [16, 19, 36, 49, 50, 66], belief
functions [9, 17, 38, 54, 55, 65], and possibility measures [1, 15, 20, 23, 34,
35, 59] are other salient approaches to the analysis of knowledge through
possible worlds. Also, Doxastic Logic has been concerned with reasoning
about beliefs. It has perhaps ‘belief’ as a modal operator [see 39, 53].

2.1. Probabilistic Approaches in Description Logics

Focusing specifically on DLs and terminological systems, there has been
a strong interest in expressive probabilistic description logics [see 11,
30, 37]. The works just cited have also focused on the connections be-
tween expressive probabilistic description logics and the first-order logic
of probability. Note that this research does not deal with the notation
of probability, but only with possibility.

2.1.1. Possibility and probability.

The term ‘probability’ expresses the state or the fact of being probable of
either happening or being true. The probability of event E can be seen
to be equivalent to the quantificational measure of the likelihood that E

will occur. Therefore, the probability of fact F is equivalent to the quan-
tificational measure of the likelihood that F will be true and acceptable.

In contrast, the term ‘possibility’ is concerned with the state of being
possible. Being possible has two characteristics: (i) having the potential
of happening or being done and (ii) having the potential of being satis-
factory and acceptable. More precisely, the possibility of event E is con-
cerned with E’s qualificational state of having the potential of happening
and being done. Also, the possibility of fact F corresponds with F ’s qual-
ificational state of being true (as well as satisfactory and acceptable).

2.2. Possibilistic Description Logics

There has been significant research in possibilistic approaches. [43] de-
veloped an epistemic operator for description logics. [28] focused on
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proof methods in possibilistic logic and on possibilistic logic applications
to terminological logics, [32] modelled imprecise arguments in DLs, [21]
dealt with uncertainty, possibility, and fuzzy features in DLs, [57] and
[58] handled fuzziness3 in DLs within the Semantic Web context, and
[12] offered a reasoning framework based on fuzzy DL SROIQ [see 31].4

[44] sees DLs through the lens of possibilistic logic and focuses on de-
veloping a possibilistic extension to DLs. It has associated a DL-based
formula with a number in [0, 1]. Furthermore, [44] offered an adequate
syntax and semantics for a possibilistic extension of DLs. In addition,
[45, 46] have extended DLs with uncertainty reasoning in possibilistic
logic. Furthermore, [26] and [27] offered reasoning frameworks for on-
tologies based on inconsistent possibilistic description logics. [41] offered
a possibilistic DL extension for an uncertain geographic ontology, and [7]
created a possibilistic extension of the Web Ontology Language based on
[41]. Moreover, [8] designed a possibilistic description logic for uncertain
geographic information.

Note that there are numerous works on DLs with rules and other
normative notions (e.g., RuleML & Fuzzy RuleML [62] and SWRL [64]),
as well on defeasible and non-monotonic DLs. The most common feature
of possibilistic approaches in knowledge representation systems is repre-
senting the degree(s) of compatibility of an interpretation with available
beliefs, where the beliefs are produced based on incomplete knowledge.

3. Description Logics

Description Logics (DLs) are the most well-known (terminological)
knowledge representation formalisms in semantics-based systems [see
2, 3, 4, 13, 52, 56]. DLs represent knowledge in terms of (i) individuals

3 Mentioning fuzzy DLs does not mean mixing up possibilistic and fuzzy for-
malisms, but taking into account that possibilistic logics fall under uncertainty theory.
More specifically, the statements in a possibilistic logic are either true or false (to some
possibility), whereas in fuzzy logics statements are true (to a certain degree). In this
context, fuzzy DLs can show how we can formally represent the floating degrees of
truth (between 0 (stands for absolute falsity) and 1 (stands for absolute truth)) within
terminological systems. Undoubtedly, fuzzy-based approaches have, both formally
and mathematically, supported the analysis of possibility and necessity measures [e.g.
22, 29].

4 The SROIQ is the underlying description logic of the Web Ontology Language
(OWL).
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(that are equivalent to constant symbols in predicate logic), (ii) concepts
(that are equivalent to unary predicates in predicate logic), and (iii)
roles (that are equivalent to n-ary predicates in predicate logic and can
be either relations or properties). More specifically, a role expresses a
relationship between individuals or it assigns a property to an individual.
A role is a relation defined with some valence greater than or equal to 0.

In description logics, a concept corresponds to a distinct (conceptual)
entity. Also, it can be regarded as a class of other entities (e.g., objects,
subjects). It shall be taken into consideration that concepts and their in-
terrelationships are, in the form of hierarchical structures, used to create
a terminology. Subsequently, the individuals are regarded as instances
of concepts. For example, the individual john can be an instance of the
concept Student. The predicates (either unary or n-ary) are the most
important building blocks in predicate logic. The most significant fact
about predicate logic (which is, terminologically, the parent of DLs) is
that the unary predicate P in a formula is capable of covering something
(e.g., the variable x5) and, in fact, P can describe x. Thus, we can have
the logical term ‘P (x)’. Subsequently, the world description ‘P (x)’ ex-
presses that the variable x (that can be any possible individual) is an
instance of predicate P ; thus x comes under the label of P . Therefore, P

can describe x. After the transformation of a predicate-based formula (in
predicate logic) into a concept-based formula (in description logic), the
predicate P manifests itself in the form of a (possibly specified) concept
(like C ).

In DLs, there are three kinds of atomic symbols: (i) individuals, e.g.,
bob, pizza, (ii) atomic concepts, e.g., Person, Bird, and Food, and (iii)
atomic roles, e.g., hasMother, isEating, and isMoving. Atomic symbols
are elementary descriptions from which we inductively build complex
(more-specified) descriptions based on concept (and role) constructors.
More specifically, the individual bob is related to itself by means of
the relation of valence 0. The term ‘Fred is a student’ (formally: Stu-
dent(fred)) is structured based on the relation of valence 1. Also, the
terms ‘Sebastian is married to Juliana’ (formally: marriedTo(sebastian,
juliana)), ‘10 is greater than 3’ (formally: greaterThan(10, 3)), and
‘Bob is the father of Alice’ (formally: hasFather(alice, bob) are struc-
tured based on the relations of valence 2. Obviously, there are relations
of greater valences as well.

5 The variable x is a relation of valence 0. It can express any possible individual.



120 Farshad Badie

3.1. The Syntactic Relationship between DLs and ML

The set of the main connectors in ALC (Prototypical DL Attributive
Language with Complements) is: {conjunction (⊓), disjunction (⊔),
negation6(¬), existential restriction (∃), universal restriction (∀)}. In
addition, we have tautology (⊤), contradiction (⊥), and, as mentioned,
atomic concepts and atomic roles.

As mentioned earlier, most DLs are syntactically modal logics. More
specifically, ALC is developed using modal logic K

7 as its foundation. In
other words, ALC is a syntactic variant of modal logic K. More precisely,
I assume that the DL symbols ‘¬’ (for ‘not’) and ‘⇒’ (for ‘if . . . , then
. . . ’) are the translations of the ML symbols ‘∼’ (for ‘not’), ‘→’ (for ‘if
. . . , then . . . ’). The DL symbols ‘⊓’ (for ‘and’), ‘⊔’ (for ‘or’), and ‘⇔’
(for ‘if and only if . . . , then . . . ’) are definable from DL ‘¬’ and ‘⇒’
the same way as in propositional logic and, in fact, as in the modal logic
K. More specifically, modal logic K defines the logical symbols ‘&’ (for
‘and’), ‘∨’ (for ‘or’), and ‘↔’ (for ‘if . . . , then . . . ’) from ‘∼’ (for ‘not’)
and ‘→’ (for ‘if . . . , then . . . ’).

Such a syntactic similarity can be found between ML and other mem-
bers of the family of DLs as well. For example, the description logic SR
(that denotes ALC extended with all kinds of rule-based axioms and
self-constructs) is a syntactic variant of Propositional Dynamic Logic
[61]. Dynamic logics are modal logics for representing the states and
the events of dynamic systems. The language of dynamic logics is both
an assertion language able to express properties of computation states,
and a programming language able to express properties of system tran-
sitions between these states. They are logics of programs, and permit
us to describe and reason about states of affairs, processes, changes, and
results [see 60]. Also, there are some DLs that are syntactic variants of
the Deterministic Propositional Dynamic Logic [see 5, 6].

3.2. Knowledge Bases in DLs

A DL knowledge base usually consists of the terminological axioms (that
describe the underlying terminologies and vocabularies), and assertional

6 In some DLs, such as in AL, negation is permitted on atomic concepts only,
while in more expressive DLs it is permitted on complex concepts as well.

7
K was named after Saul Aaron Kripke, who is an American logician and philoso-

pher. Kripke is well-known for his valuable works on the semantics of modal logic.



Towards contingent world descriptions . . . 121

axioms (that describe the world). The concept inclusion and role in-
clusion axioms (in the form of C ⊑ D and R ⊑ S, where C and D

stand for two concepts, and R and S stand for two roles) are the most
fundamental terminologies. In addition, (ii) the concept equality and role
equality axioms (in the form of C ≡ D and R ≡ S) are other terminolog-
ical axioms and are generally defined from concept inclusions and role
inclusions. Furthermore, (iii) the concept assertions and role assertions
(in the form of C(a) and R(a1, a2, . . . , an), where C stands for an atomic
concept, R stands for an atomic role, and ai (for i ∈ [1, n]) stands for an
individual symbol) are the most fundamental descriptions of the world.
Note that any specified description of the world is expressible based on
fundamental descriptions of that world [see 5, 6, 42].

3.3. Terminological Interpretations in DLs

Note that the formal semantics of a term in DLs is interpretable based
on individuals, concepts, and roles. In fact, they are the non-logical
symbols in logical descriptions; hence, they do not independently have
any logical consequence in a world description. Therefore, we need to
utilise terminological interpretation in order to become involved with
providing a semantics. A terminological interpretation (like I) consists
of (i) a non-empty set ∆ (that is the interpretation domain and consists
of any variable that occurs in any of the concept descriptions), and (ii)
an interpretation function (like ‘I ’). The function ‘I ’ assigns every indi-
vidual symbol to an element aI ∈ ∆I . Also, it assigns to every atomic
concept A (or every atomic unary predicate) a set AI ∈ ∆I , and to
every atomic role P (or every atomic binary predicate) a binary relation
P I ⊆ ∆I × ∆I . Table 1 represents the syntax and semantics of concept
constructors in ALC [see 5, 6, 42].

Table 2 reports the terminological and assertional axioms in DLs [see
5, 6, 42]. Note that an interpretation is called a model of an axiom if
it can satisfy the terminological axioms and fundamental world descrip-
tions.

4. Functional Roles in Description Logics

In Description Logics, the functional roles (or features) are special kinds
of roles (relations). Thus, NF ⊆ NR, where NF and NR stand for the ‘set
of functional roles’ and ‘set of roles’, respectively. Functional roles can
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Syntax Semantics

A AI ⊆ ∆I

r rI ⊆ ∆I × ∆I

⊤ ∆I

⊥ ∅
C ⊓ D (C ⊓ D)I = CI ∩ DI

C ⊔ D (C ⊔ D)I = CI ∪ DI

¬C (¬C)I = ∆I \ CI

∃r.C {a | ∃b.(a, b) ∈ rI ∧ b ∈ CI}
∀r.C {a | ∀b.(a, b) ∈ rI ⊃ b ∈ CI}

Table 1. ALC syntax and semantics

Name Syntax Semantics

concept inclusion axiom C ⊑ D CI ⊆ DI

role inclusion axiom R ⊑ S RI ⊆ SI

concept equality axiom C ≡ D CI = DI

role equality axiom R ≡ S RI = SI

concept assertion C(a) aI ∈ CI

role assertion R(a, b) (aI , bI) ∈ RI

Table 2. Terminological axioms and world descriptions in DLs

be seen as roles that are structurally (and existentially) functions and,
hence, they can express functional actions, movements, and procedures.
According to the functional behaviour of functional roles, a functional
role associates a single value (that can be regarded as the member of
a singleton8) to its input parameter (that is also the only member of a
singleton). According to FR(a, b), we can interpret that FR : {a} → {b}
and, in fact, FR(a) ≡ b.

The roles motherOf, fatherOf, scoreOf, and lastNameOf are func-
tional roles, whereas parentOf and childOf are not. The term ‘the fa-
ther of Alice’ can produce the functional role fatherOf (for the individual
alice). As demonstrated above, a functional role can be applied to an
individual symbol in order to make a functional relation between it and
another individual symbol. Consequently, the word ‘if’ can be regarded
as the most significant functional word in natural languages.

8 A singleton is a set which contains exactly one element.
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According to the statement ‘Bob is the father of Alice’, ‘father of’ is
a functional role that relates Bob to Alice. In fact, the functional role
fatherOf maps bob onto alice. Formally, fatherOf (alice) ≈ bob. The
functional role fatherOf is produced based on the role hasFather. In fact,
fatherOf is terminologically supported by hasFather. Also, fatherOf −

expresses the inverse role of fatherOf. Formally speaking:

hasFather ≈ fatherOf −

Proposition. Relying on the relationship hasFather (between the indi-
viduals alice and bob) that supports the describability of them by the
concepts Daughter and Father, the functional role fatherOf is modelled.
Subsequently, fatherOf maps Father(bob) onto Daughter(alice).

5. Functional Contingents in Description Logics

Assume that A(a), B(b), and R(a, b) are three world descriptions in the
knowledge base K, where the individuals a and b are known as the in-
stances of the concepts A and B. Also, the role R represents a binary re-
lation between a and b. Formally speaking: K |= {A(a), B(b), R(a, b)}.
In fact, the fundamental world descriptions A(a), B(b), and R(a, b) are
semantically satisfied by our terminological knowledge K. As proposed
above, we can interpret that the world description R(a, b) terminolog-
ically supports the production of the functional role F . F maps the
concept assertion A(a) onto the concept assertion B(b). Therefore, F is
satisfiable by K. Note that the central focus of world description analysis
will be on this functional role.

5.1. Handling the Possibility and Necessity of World Descriptions

The introduction of the Possibility Functional Contingent P and the Ne-
cessity Functional Contingent N are now due, these being structurally
functional roles. They represent the possibility and necessity of a world
description. The central assumption is that any functional contingent
can cover its inner concept/role assertions. Actually the term ‘contin-
gent’ is a property and contingency is a relationship that supports a
functional role, so the following rules apply:

1. P(A(a)) expresses that ‘it is possible that A(a)’.

2. ¬P(A(a)) expresses that ‘it is impossible that A(a)’.
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3. N (A(a)) expresses that ‘it is necessary that A(a)’.
4. ¬N (A(a)) expresses that ‘it is unnecessary that A(a)’.
5. P(R(A(a), B(b))) expresses that ‘it is possible that R(A(a), B(b))’.

Specific Analysis: P(R(A(a), B(b))) expresses the existence of, at least,
one functional role (like Fi) of the concept assertion A(a). Formally,
the possibility functional contingent is  based on role assertion R(A(a),
B(b))  interpretable as follows:

∃i[(K |= {A(a), B(b), Ri(a, b)}) ⇒ Fi(A(a), B(b))].

This means that there exists  at least  one role assertion that is satis-
fied by K and can support the construction of a functional role of A(a).
Consequently, that functional role maps A(a) onto B(b).9

6. ¬P(R(A(a), B(b))) expresses that it is impossible that R(A(a),
B(b)). Specific Analysis: according to ¬P(R(A(a), B(b))), there is no
functional role of the concept assertion A(a) that can be represented in
the form of Fi(A(a), B(b)) and can map A(a) onto B(b).

7. N (R(A(a), B(b))) expresses that ‘it is necessary that R(A(a),
B(b))’. Specific Analysis: N (R(A(a), B(b))) expresses the existence of
all possible functional roles of the concept assertion A(a) in the form of
Fi(A(a), B(b))). Formally, the necessity functional contingent is, based
on role assertion R(A(a), B(b)), interpretable as follows:

∀i[(K |= {A(a), B(b), Ri(a, b)}) ⇒ Fi(A(a), B(b))].

This means that for all possible role assertions that are satisfied by K,
there are functional roles that can map A(a) onto B(b).

8. ¬N (R(A(a), B(b))) expresses that R(A(a), B(b)) does not nec-
essarily hold. Specific Analysis: ¬N (R(A(a), B(b))) expresses that the
existence of the functional role ‘Fi(A(a), B(b))’ that can map A(a) onto
B(b) is not necessary.

5.2. Definability Analysis

The world description hasFather (alice, bob) expresses the facts that
Alice has a father and Bob is Alice’s father. According to the contingent
world description P(hasFather(alice, bob)), we can conclude that it is
possible that Alice has a father, and it is possible that Bob is Alice’s fa-
ther. Actually the focus of possibility has been on (i) having a father (by

9 The functional role Fi(A(a), B(b)) expresses that Fi maps A(a) onto B(b),
formally: Fi(A(a)) ≡ B(b).
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Alice), (ii) being a father (by Bob) for Alice, and (iii) the interrelation-
ships between ‘having a father (by Alice)’ and ‘being a father (by Bob)’.
We need to interpret P as a functional role of the functional role ‘fa-
therOf ’ in order to, terminologically, analyse P(hasFather(alice, bob)).
In fact, P is definable at the states at which the roles ‘having a father
(by Alice)’ and ‘being a father (by Bob)’ have been defined and are
meaningful. Note the following consequences:

1. According to P(hasFather(..., ...)), the functional contingent P can
logically be valid and meaningful at the states at which ‘having a father’
is defined and meaningful. Therefore, regarding P(hasFather(alice,

bob)), the definability of the relation ‘having a father’ between the indi-
vidual alice and the individual bob is the logical premise of the defin-
ability of the functional contingent P.

2. According to P(hasFather(. . . , . . .)) ⇒ P(hasFather(alice, . . .)),
it is possible that someone has a father and, therefore, it is possible that
Alice has a father. Informally, the possibility of the proposition ‘Alice
has a father’ is valid and meaningful if and only if the possibility of
‘having a father’ is valid and meaningful.

3. According to P(hasFather(. . . , . . .)) ⇒ P(hasFather(. . . , bob)),
it is possible that someone has a father and, therefore, it is possible
that Bob is the father of that person. Informally, the possibility of the
proposition ‘Bob is the father of someone who has a father’ is valid and
meaningful if and only if the possibility of ‘having a father’ is valid and
meaningful.

4. The possibility of the proposition ‘Alice has a father, and Bob is
Alice’s father’ is valid and meaningful if and only if (i) the possibility
of having a father (by Alice) and (ii) the possibility of being Alice’s
father (by Bob) are valid and meaningful. Then, the possibility of the
proposition ‘Bob is the father of Alice’ is valid and meaningful if and
only if (i) the possibility of having a father (by Alice), (ii) the possibility
of being a father (by Bob), and (iii) the possibility of having Bob as
father (by Alice) are valid and meaningful.

6. Semantic Analysis

Let T = {Daughter ⊑ Person, Father ⊑ Person} be the set of termi-
nological axioms in knowledge base K. Also, W = {Daughter(alice),
Father(bob), hasFather(alice, bob)} is the set of fundamental world de-
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scriptions (i.e., assertional axioms) in knowledge base K. Therefore,
K = (T , W) and, thus, T and W can semantically be satisfied by K.
Formally, K |= {T , W}.

A Contingent Assertional Axiom (fundamental contingent world de-
scription) is representable in the form of (world description, world de-
scription’s value). The values can be either ‘F ’ (stands for Falsity) or
‘T ’ (stands for Truth) or ‘V ’ (stands for Vagueness). Note that the
interval [0, 1] has been suggested in the possibilistic logic semantics, e.g.,
[24, 44]. It is worth mentioning that every possibilistic logic is a weighted
logic, where each classical logic formula is associated with a number in
the interval [0, 1]. Accordingly, the semantics of possibilistic DL has
usually been defined by a possibility distribution (like π) over the set I

of all classical description logic interpretations, formally: π : I → [0, 1].
Thus, π(I) represents the degree of compatibility of I with available
information. However, my offered semantics is (a) three-valued (based
on Truth, Falsity, and Vagueness) and (b) only offered for contingent
world descriptions in DLs.

In order to be more specific on this three-valued logic, we need to
define Contingent Interpretations Ic. As you will see, any contingent
interpretation can provide a semantic basis for satisfying the functional
contingents P, N and, subsequently, for satisfying the fundamental con-
tingent world descriptions. The contingent interpretation ‘Ic’ is provided
in order to satisfy the concepts of:

• functional necessity (in the form of In),
• functional possibility (in the form of Ip), and
• functional impossibility (in the form of Iimp).

In other words, the contingent interpretation Ic is utilised to provide
semantic models of functional contingents within DL world descriptions.
More specifically, if Ic can satisfy any of the members of W and, re-
spectively, can satisfy the relevant contingent functions of that world
description, then it will provide a Contingent Model.

6.1. Assertional Axioms for Functional Contingents

1. P(A(a)) is a possible concept assertion. Semantically,
(a) based on the possibility interpretation ‘Ip’, |P(A(a))|Ip = T .
(b) based on the impossibility interpretation ‘Iimp’,

|P(A(a))|Iimp = F .
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(c) based on the necessity interpretation ‘In’, |P(A(a))|In = V . Ac-
tually, we only know that A(a) is possible. So, there is no evidence
that A(a) is necessary.

2. N (A(a)) is a necessary concept assertion. Then, semantically,
(a) |N (A(a))|In = T . Informally, A(a) is necessary. Therefore, A(a)

is necessarily necessary.
(b) |N (A(a))|Ip = T . Informally, A(a) is necessary. Therefore, A(a)

is necessarily possible.
(c) |N (A(a))|Iimp = F . Informally, A(a) is necessary. Therefore,

A(a) is necessarily not impossible.
3. P(R(a, b)) is a possible role assertion. Semantically,

(a) |P(R(a, b)|Ip = T .
(b) |P(R(a, b)|Iimp = F .
(c) |P(R(a, b)|In = V . Here, we only know that a and b are possibly

related to each other (by means of R). In fact, there is no evidence
that R(a, b) is necessary.

4. N (R(c, d)) is a necessary role assertion. Semantically,
(a) |N (R(a, b))|In = T .
(b) |N (R(a, b))|Ip = T .
(c) |N (R(a, b))|Iimp = F . Here, we know that a and b are necessar-

ily related to each other (by means of R). Therefore, R(a, b) is
necessarily not impossible.

Proposition. According to the aforementioned items, the functional
contingents P and N are mappings from their central world descriptions
into the values {T, F, V }.

Considering K = (T , W), where T = {Daughter ⊑ Person, Father ⊑
Person} and W = {Daughter(alice), Father(bob), hasFather(alice,
bob)}, I shall draw your attention to the following examples:

Example 1. According to the contingent role assertion ‘P(hasFather
(alice, bob))’, ‘it is possible that Alice has a father, and it is possible
that Bob is Alice’s father’. In this example, (P(hasFather(alice, bob))Ip

= T , (P(hasFather(alice, bob))Iimp = F , and (P(hasFather(alice,
bob))In = T . Therefore, Ip is the possibility model of hasFather (alice,

bob) and In is the necessity model of P(hasFather(alice, bob)).

Example 2. According to the contingent concept assertion ‘N (Father
(bob))’, it is necessary that Bob is a father. In this example,
(Father(bob))In = T , (Father(bob))Ip = T , and (Father(bob))Iimp = F .
Therefore, In is the necessity model of N (Father(bob)). Obviously,
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N (Father(bob)) ⇒ P(Father(bob)), then In is the necessity model of
the possibility world description ‘P(Father(bob))’ as well.

Example 3. According to the contingent concept assertion ‘P(Daughter
(maria))’, it is possible that Maria is a daughter. In this example,
(Daughter(maria))Ip = T , (Daughter(maria))Iimp = V , and
(Daughter(maria))Iimp = V . Therefore, Ip is the possibility model of
P(Daughter(maria)).

Example 4. According to the contingent role assertion ‘P(hasFather
(alice, john))’, it is possible that Alice has a father and it is possi-
ble that John is Alice’s father. In this example, (P(hasFather(alice,

john)))Ip = T , (P(hasFather(alice, john)))In = V , and (P(hasFather
(alice, john)))Iimp = V .

6.2. Axiomatisation

Axiom 1. N (A(a)) ⇒ A(a).
This axiom expresses that necessary concept assertions are definitely
valid. It is axiomatised based on the concept of ‘reflexivity’.

Specific Analysis: We are certain that the individual a is necessarily
an instance of the concept A. Therefore, A(a) is necessarily valid. In
fact, A(a) is valid.

Axiom 2. N (R(a, b)) ⇒ R(a, b).
This axiom expresses that necessary role assertions are definitely valid.
It is axiomatised based on the concept of ‘reflexivity’.

Specific Analysis: We are certain that the individuals a and b are
necessarily connectable to each other (by means of R). Therefore, R(a, b)
is necessarily valid. In fact, R(a, b) is valid.

Axiom 3. N (A(a)) ⇒ P(A(a)).
This axiom expresses that necessary concept assertions are possible. It
is axiomatised based on the concept of ‘seriality’.

Specific Analysis: We are certain that ‘it is necessary that A(a)’ is
valid. Then, the individual a is necessarily describable under the label
of the concept A. Therefore, it is definitely possible to describe a as an
instance of the concept A. Then, it is possible to describe a by A. So,
A(a) is possible.

Axiom 4. N (R(a, b)) ⇒ P(R(a, b)).
This axiom expresses that necessary role assertions are possible. It is
axiomatised based on the concept of ‘seriality’.
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Specific Analysis: We are certain that ‘it is necessary that R(a, b)’
is valid. Then, the individuals a and b are necessarily relatable to each
other (by means of R). Therefore, it is definitely possible to relate a and
b by means of R. Then, R(a, b) is possible.

Axiom 5. A(a) ⇒ N (P(A(a))).
This axiom expresses that any valid concept assertion is necessarily pos-
sible. It is axiomatised based on the concept of ‘symmetry’.

Specific Analysis: We know (and are certain) that A(a) is valid.
Therefore, the concept A can describe the individual a. Thus, it is
definitely possible to describe a by A. Then, a is necessarily possibly
described by A. Hence, A(a) is necessarily possible.

Axiom 6. R(a, b) ⇒ N (P(R(a, b))).
This axiom expresses that any valid role assertion is necessarily possible.
It is axiomatised based on the concept of ‘symmetry’.

Specific Analysis: We know (and are certain) that R(a, b) is valid.
Therefore, it is definitely possible to relate a and b by means of R.
Then, a and b are necessarily possibly related by R. Hence, R(a, b) is
necessarily possible.

Axiom 7. N (A(a)) ⇒ N (N (A(a))).
This axiom represents the iteration (and transitivity) of necessary con-
cept assertions. It expresses that necessary concept assertions are nec-
essary.

Specific Analysis: We are certain that the individual a is necessarily
an instance of the concept A. So, a can necessarily be described by A.
Thus, ‘a can necessarily be described by A’ is definitely valid. Therefore,
it is necessary that a can necessarily be described by A.

Axiom 8. N (R(a, b)) ⇒ N (N (R(a, b))).
This axiom represents the iteration (and transitivity) of necessary role
assertions. It expresses that necessary role assertions are necessary.

Specific Analysis: We are certain that the individuals a and b are nec-
essarily related to each other by means of R. So, a and b can necessarily
be related to each other (based on R). In fact, ‘a and b can necessarily
be related by means of R’ is definitely valid. Therefore, it is necessary
that a and b can necessarily be related to each other (by means of R).

Axiom 9. N (N (A(a))) ⇒ N (A(a)).
This axiom expresses that the necessity of a necessary concept assertion
implies the necessity of that concept assertion. It is axiomatised based
on the concept of ‘density’.
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Specific Analysis: This axiom is analysable based on axiom 1. We
are certain that it is necessary that the individual a can necessarily be
described by the concept A. Therefore, a can necessarily be described
by A. Hence, it is necessary that A(a).

Axiom 10. N (N (R(a, b))) ⇒ N (R(a, b)).
This axiom expresses that the necessity of a necessary role assertion
implies the necessity of that role assertion. It is axiomatised based on
the concept of ‘density’.

Specific Analysis: This axiom is analysable based on axiom 2. We are
certain that it is necessary that the individuals a and b can necessarily be
related to each other (by means of R). Therefore, a and b can necessarily
be related to each other (by means of R). Hence, it is necessary that
R(a, b).

Axiom 11. P(A(a)) ⇒ N (P(A(a))).
This axiom expresses that possible concept assertions are necessarily
possible.

Specific Analysis: We know that the individual a might be an instance
of the concept A. Thus, it is possible to represent a under the label of A.
Hence, it is definitely possible to represent a under the label of A. So,
it is necessarily possible to describe a by A. In fact, A(a) is necessarily
possible.

Axiom 12. P(R(a, b)) ⇒ N (P(R(a, b))).
This axiom expresses that possible role assertions are necessarily possi-
ble.

Specific Analysis: We know that the individuals a and b might be
connected to each other by means of R. Thus, it is possible to represent
R(a, b). Hence, it is definitely possible to relate a and b by means of R.
So, it is necessarily possible to relate a and b by means of R. In fact,
R(a, b) is necessarily possible.

Axiom 13. N [N (A(a)) ⇒ A(a)].
This axiom expresses that the necessity of a concept assertion necessarily
implies the validity of that concept assertion. It is axiomatised based on
the concept of ‘shift-reflexivity’.

Specific Analysis: This axiom is analysable based on axiom 1. We
know that the individual a is necessarily describable by the concept A.
Therefore, ‘a is necessarily describable by A’ necessarily implies that
‘a can be described by A’. This means that it is necessary that A(a)
necessarily implies A(a). Hence, A(a) is valid.
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Axiom 14. N [N (R(a, b)) ⇒ R(a, b)].
This axiom expresses that the necessity of a role assertion necessarily
implies the validity of that role assertion. It is axiomatised based on the
concept of ‘shift-reflexivity’.

Specific Analysis: This axiom is analysable based on axiom 2. We
know that the individuals a and b are necessarily connectable (by means
of R). Therefore, ‘a and b are necessarily connectable (by means of R)’
necessarily implies that ‘a and b are connectable (by means of R)’. This
means that it is necessary that R(a, b) necessarily implies R(a, b). Hence,
R(a, b) is valid.

Axiom 15. P(N (A(a))) ⇒ N (P(A(a))).
This axiom expresses that the possibility of the necessity of a concept
assertion implies the necessity of its possibility. It is axiomatised based
on the concept of ‘convergency’.

Specific Analysis: Suppose that it is possible that A(a) is necessary.
Then, it is not necessary that A(a) is necessary. Therefore, A(a) is
necessarily possible (and not necessary). In fact, N (P(A(a))). Note
that this axiom has a strong correlation with axiom 3.

Axiom 16. P(N (R(a, b))) ⇒ N (P(R(a, b))).
This axiom expresses that the possibility of the necessity of a role asser-
tion implies the necessity of its possibility. It is axiomatised based on
the concept of ‘convergency’.

Specific Analysis: Suppose that it is possible that R(a, b) is neces-
sary. Then, R(a, b) is not necessarily necessary. Therefore, R(a, b) is
necessarily possible (and not necessary). In fact, N (P(R(a, b))). Note
that this axiom has a strong correlation with axiom 4.

Axiom 17. [N (A(a) ⇒ B(b))] ⇒ [N (A(a)) ⇒ N (B(b))].
This axiom represents the distribution of necessity over concept asser-
tions.

Specific Analysis: We know that A(a) and B(b) are valid. We also
know that A(a) necessarily implies B(b). Therefore, the necessity of
B(b) is deduced from the necessity of A(a). For example, we know that
Father(bob) and Daughter(alice). We also know that Father(bob) nec-
essarily implies Daughter(alice). Therefore, the necessity of Daughter
(alice) is deduced from the necessity of Father(bob). Informally, we
know that Bob is a father and Alice is a daughter. We also know that
‘being a father by Bob’ necessarily implies ‘being a daughter by Alice’.
In fact, we know that Bob has become a father and, subsequently, Alice
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has become a daughter. Therefore, the necessity of ‘being a daughter by
Alice’ is deduced from the necessity of ‘being a father by Bob’.

Axiom 18. [N (R(a, b) ⇒ S(c, d))] ⇒ [N (R(a, b)) ⇒ N (S(c, d))].
This axiom represents the distribution of necessity over role assertions.

Specific Analysis: We know that R(a, b) and S(c, d) are valid. We also
know that R(a, b) necessarily implies S(c, d). Therefore, the necessity of
S(c, d) is deduced from the necessity of R(a, b). For example, we know
that hasMother(bob, mary) and we know that hasFather (alice, bob).
We also know that hasMother(bob, mary) necessarily implies hasFather
(alice, bob). Therefore, the necessity of hasFather(alice, bob) is de-
duced from the necessity of hasMother(bob, mary). Informally, we know
that Bob has a mother and Mary is his mother and we know that Alice
has a father, and Bob is Alice’s father. We also know that ‘being the
mother of Bob (by Mary)’ necessarily implies ‘being the father of Alice
(by Bob)’. Therefore, the necessity of ‘being the father of Alice (by Bob)’
is deduced from the necessity of ‘being the mother of Bob (by Mary)’.

6.3. Semantics of Negative Contingent World Descriptions

Regarding the following items, the notions of ‘satisfiability’, ‘logical
consequence’, and ‘tight logical consequence for possibilistic knowledge
bases’ are definable as similar to [24, 28].

1. P(A(a)) ≡ ¬N (¬A(a)).
Specific Analysis. If we know that A can possibly describe a, then it
will not be necessary that A cannot describe a. This means that it will
not be necessary that A cannot describe a. Similarly, if we know that it
is not necessary that A cannot describe a, then it will not be necessary
that A cannot describe a. This means that A will possibly describe a. In
fact, [P(A(a)) ⇒ ¬N (¬A(a))] ⊓ [¬N (¬A(a)) ⇒ P(A(a))]. This means
that: P(A(a)) ≡ ¬N (¬A(a)).

2. P(R(a, b)) ≡ ¬N (¬R(a, b)).
Specific Analysis. If we know that R can possibly relate a and b, then
it will not be necessary that R does not relate a and b with each other.
This means that it will not be necessary that R does not relate a and
b with each other. Similarly, if we know that it is not necessary that R

does not relate a and b with each other, then it will not be necessary
that R does not relate a and b with each other. Thus, R will possibly
relate a and b with each other. In fact, [P(R(a, b)) ⇒ ¬N (¬R(a, b))] ⊓
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[¬N (¬R(a, b)) ⇒ P(R(a, b))]. This means that: P(R(a, b)) ≡
¬N (¬R(a, b)).

3. N (A(a)) ≡ ¬P(¬A(a)).
Specific Analysis. If we know that A necessarily describes a, then there
will be no possibility that A cannot describe a. Hence, it will be impos-
sible that A cannot describe a. Similarly, if we know that it is impossible
that A cannot describe a, then there will be no possibility that A cannot
describe a. Therefore, A will necessarily be able to describe a. In fact,
[N (A(a)) ⇒ ¬P(¬A(a))] ⊓ [¬P(¬A(a)) ⇒ N (A(a))]. This means that:
N (A(a)) ≡ ¬P(¬A(a)).

4. N (R(a, b)) ≡ ¬P(¬R(a, b)).
Specific Analysis. If we know that it is necessary that R(a, b), then there
will be no possibility that R(a, b) will not be valid. In other words, it will
be impossible that R(a, b) will not be valid. Similarly, if we know that
it is impossible that R(a, b) is not valid, then there will be no possibility
that R(a, b) will not be valid. Therefore, R(a, b) will necessarily be valid.
In fact, [N (R(a, b)) ⇒ ¬P(¬R(a, b))] ⊓ [¬P(¬R(a, b)) ⇒ N (R(a, b))].
This means that: N (R(a, b)) ≡ ¬P(¬R(a, b)).

6.3.1. Semantic representation of negative contingent world

descriptions

1. ¬(P(A(a)), T ) ≡ (¬P(A(a)), F ).
2. ¬(P(A(a)), F ) ≡ (¬P(A(a)), T ).
3. ¬(P(A(a)), V ) ≡ (¬P(A(a)), V ).
4. ¬(P(R(a, b)), T ) ≡ (¬P(R(a, b)), F ).
5. ¬(P(R(a, b)), F ) ≡ (¬P(R(a, b)), T ).
6. ¬(P(R(a, b)), V ) ≡ (¬P(R(a, b)), V ).
7. ¬(N (A(a)), T ) ≡ (¬N (A(a)), F ).
8. ¬(N (A(a)), F ) ≡ (¬N (A(a)), T ).
9. ¬(N (A(a)), V ) ≡ (¬N (A(a)), V ).

10. ¬(N (R(a, b)), T ) ≡ (¬N (R(a, b)), F ).
11. ¬(N (R(a, b)), F ) ≡ (¬N (R(a, b)), T ).
12. ¬(N (R(a, b)), V ) ≡ (¬N (R(a, b)), V ).

Consider the following examples:

Example 5. We know that Martin is not a father. Therefore, |P(Father
(martin))|Ip = (P(Father(martin)), F ). Hence, it is impossible to de-
scribe Martin by the concept Father. In fact, the term ‘Martin is a father’
is impossible. Consequently, it is deducible that ¬Father(martin).
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Example 6. Bob is the father of Alice. So |P(hasFather(alice, john))|Ip

= (P(hasFather(alice, john)), F ). Thus, it is impossible to relate Alice
and John by the relation hasFather. In fact, the term ‘Alice has a father
and John is Alice’s father’ is impossible. Consequently, it is deducible
that ¬hasFather (alice, john).

Example 7. We are not certain that James is a father (or not). So,
the term ‘James is a father’ is semantically vague. In fact, based on
our conditional information, it is unnecessary that ‘James is a father’.
However, it is possible that ‘James is a father’. Consequently, we can
represent our knowledge by either:

1. |¬N (Father(james))|In = (N (Father(james)), V ), or
2. |¬N (Father(james))|Ip = (P(Father(james)), T ).

Example 8. Suppose that we are not certain that hasMother(alice, ann)
(i.e., we are not certain that ‘Alice has a mother and Ann is Alice’s
mother’). Thus, we can conclude that the term ‘Alice has a mother
and Ann is Alice’s mother’ is possible. Formally, |P(hasMother(alice,

ann))|Ip = (P(hasMother(alice, ann)), T ). In addition, based on our
conditional information, it is unnecessary that ‘Alice has a mother and
Ann is Alice’s mother’. Formally: |¬N (hasMother(alice, ann))|In =
(N (hasMother(alice, ann)), V ). Note that the term ‘Alice has a mother
and Ann is Alice’s mother’ is based on the conjunction of the terms ‘Alice
has a mother’ and ‘Ann is Alice’s mother’. Alice (as a human being) cer-
tainly has (or has had) a mother. So, ‘Alice has a mother’ is necessarily
valid. In fact, we can conclude that the vagueness of the term ‘Alice has
a mother and Ann is Alice’s mother’ is because of the vagueness of the
term ‘Ann is Alice’s mother’. In fact, (N (hasMother(alice, ann)), V ) ⇒
[(N (Daughter(alice), T ) ∧ N ((Mother(ann)), V )]. Obviously, a contin-
gent role assertion has been expressed which is based on the conjunction
of two contingent concept assertions in order to be semantically inter-
preted.

7. Conclusions

The main focus of this research has been on possibility and necessity of
DL world descriptions. This paper has initially focused on DL funda-
mental world descriptions (that are in the form of either concept asser-
tions or role assertions) and has introduced functional contingents P (for
possibility) and N (for necessity) over fundamental world descriptions.
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P and N are interpreted as the functional roles of the most central
concept assertions and role assertions in every world description. Func-
tional contingents support structural analyses of the concepts of ‘being-
functionally-possible’ and ‘being-functionally-necessary’. Based on the
role assertion R(a, b), the functional role F (that is supported by the
role R) associates the singleton {b} (that consists of the individual b)
with the singleton {a} (that consists of the individual a).

According to W = {A(a), B(b), R(a, b)}, the individuals a and b can
be described by the concepts A and B. This research has proved that
the validity of the possibility of R(a, b) is equivalent to the existence
of  at least  one functional role of A(a), like Fi(A(a)), that can be
mapped onto B(b). Therefore, there is  at least  one possible R that
can functionally relate a and b with each other. In addition, it has been
proved that the validity of the necessity of R(a, b) is equivalent to the
existence of all possible functional roles of A(a) (that can be mapped
onto B(b)). The concept of functional necessity means that there is
always a functional relation that can functionally relate a and b with
each other.

This research has introduced contingent interpretations (or Ic) in
order to handle the semantics of functional contingency. The basic
assumption is that any Ic can provide a semantic basis for satisfying
functional contingents P and N and, subsequently, for satisfying fun-
damental contingent world descriptions. Contingent interpretations are
utilised to provide semantic models for functional possibilities and func-
tional necessities within DL world descriptions. Relying on contingent
interpretations, a three-valued semantics (based on Truth, Falsity, and
Vagueness) has been analysed. It is concluded that the functional con-
tingents P and N are two kinds of mappings from their central world
descriptions into the values {T, F, V }.

This paper has finally offered several axioms and annotated DL world
descriptions based on functional contingents. Furthermore, a semantic
analysis of negative contingent world descriptions has been offered.
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